LAGRANGIAN EQUILIBRIUM EQUATIONS IN CYLINDRICAL AND SPHERICAL COORDINATES

Σχετικά έγγραφα
Example 1: THE ELECTRIC DIPOLE

Laplace s Equation in Spherical Polar Coördinates

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

1 3D Helmholtz Equation

Curvilinear Systems of Coordinates

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

ANTENNAS and WAVE PROPAGATION. Solution Manual

derivation of the Laplacian from rectangular to spherical coordinates

Chapter 7a. Elements of Elasticity, Thermal Stresses

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Analytical Expression for Hessian

( P) det. constitute the cofactor matrix, or the matrix of the cofactors: com P = c. ( 1) det

The Laplacian in Spherical Polar Coordinates

Chapter 6 ( )( ) 8 ( ) ( )( ) Exercise Solutions. Microelectronics: Circuit Analysis and Design, 4 th edition Chapter 6. EX6.

Approximate System Reliability Evaluation

Finite Field Problems: Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Tutorial Note - Week 09 - Solution

Matrix Hartree-Fock Equations for a Closed Shell System

Solutions Ph 236a Week 2

Homework 3 Solutions

Strain and stress tensors in spherical coordinates

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

ΑΓΓΕΛΗΣ ΧΡΗΣΤΟΣ ΠΑΝΑΓΙΩΤΗΣ 6 OO ΑΓΓΕΛΙΔΗΣ ΧΑΡΙΛΑΟΣ ΧΡΗΣΤΟΣ 4 OO ΑΓΓΟΥ ΑΝΑΣΤΑΣΙΑ ΔΗΜΗΤΡΙΟΣ 6 OO ΑΔΑΜΙΔΟΥ ΕΥΑΓΓΕΛΙΑ ΑΒΡΑΑΜ 3 OO ΑΛΕΒΙΖΟΥ ΠΑΝΑΓΙΩΤΑ

Orbital angular momentum and the spherical harmonics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

The Simply Typed Lambda Calculus

Exercise, May 23, 2016: Inflation stabilization with noisy data 1

4.2 Differential Equations in Polar Coordinates

Slide 1 of 18 Tensors in Mathematica 9: Built-In Capabilities. George E. Hrabovsky MAST

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

A NEW CLASS OF MODULAR EQUATIONS IN RAMANUJAN S ALTERNATIVE THEORY OF ELLIPTIC FUNCTIONS OF SIGNATURE 4 AND SOME NEW P-Q ETA-FUNCTION IDENTITIES

Solutions to Exercise Sheet 5

Section 8.3 Trigonometric Equations

Math221: HW# 1 solutions

General Relativity (225A) Fall 2013 Assignment 5 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Electronic Companion to Supply Chain Dynamics and Channel Efficiency in Durable Product Pricing and Distribution

Matrices and Determinants

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. του Γεράσιμου Τουλιάτου ΑΜ: 697

( y) Partial Differential Equations

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

The Friction Stir Welding Process

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Section 7.6 Double and Half Angle Formulas

Section 9.2 Polar Equations and Graphs

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

Second Order Partial Differential Equations

1 Full derivation of the Schwarzschild solution

Fundamental Equations of Fluid Mechanics

r = x 2 + y 2 and h = z y = r sin sin ϕ

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

ΣΧΕΔΙΑΣΜΟΣ ΕΠΙΓΕΙΟΥ ΣΥΣΤΗΜΑΤΟΣ ΑΛΥΣΟΚΙΝΗΣΗΣ ΓΙΑ ΜΕΤΑΦΟΡΑ ΤΡΟΛΕΪ

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΕΘΝΩΝ ΣΧΕΣΕΩΝ & ΟΙΚΟΝΟΜΙΑΣ

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

Example Sheet 3 Solutions

Edexcel FP3. Hyperbolic Functions. PhysicsAndMathsTutor.com

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

2 Composition. Invertible Mappings

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΣΜΖΜΑ ΖΛΔΚΣΡΟΛΟΓΩΝ ΜΖΥΑΝΗΚΩΝ ΚΑΗ ΣΔΥΝΟΛΟΓΗΑ ΤΠΟΛΟΓΗΣΩΝ ΣΟΜΔΑ ΤΣΖΜΑΣΩΝ ΖΛΔΚΣΡΗΚΖ ΔΝΔΡΓΔΗΑ

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Δημιουργία Λογαριασμού Διαχείρισης Business Telephony Create a Management Account for Business Telephony

Homework 8 Model Solution Section

A Note on Intuitionistic Fuzzy. Equivalence Relation

Fractional Colorings and Zykov Products of graphs

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ADVANCED STRUCTURAL MECHANICS

Time dependent Convection vs. frozen convection approximations. Plan

Approximation of distance between locations on earth given by latitude and longitude

On a four-dimensional hyperbolic manifold with finite volume

P4 Stress and Strain Dr. A.B. Zavatsky HT08 Lecture 5 Plane Stress Transformation Equations

Areas and Lengths in Polar Coordinates

EE512: Error Control Coding

ECE145a / 218a Tuned Amplifier Design -basic gain relationships

Lecture 6. Goals: Determine the optimal threshold, filter, signals for a binary communications problem VI-1

Every set of first-order formulas is equivalent to an independent set

PhysicsAndMathsTutor.com

Ειδικό πρόγραμμα ελέγχου για τον ιό του Δυτικού Νείλου και την ελονοσία, ενίσχυση της επιτήρησης στην ελληνική επικράτεια (MIS )

ST5224: Advanced Statistical Theory II

ΕΡΕΥΝΑ ΕΠΙΤΥΧΙΑ ΚΑΤΑΡΤΙΣΗ ΕΡΓΑΣΙΑ ΕΜΠΕΙΡΙΑ ΥΠΟΤΡΟΦΙΕΣ ΕΚΠΑΙΔΕΥΣΗ ΑΚΑΔΗΜΑΙΚΗ ΕΠΙΤΥΧΙΑ ΚΥΠΡΟΣ ΟΔΗΓΟΣ ΕΠΙΤΥΧΙΑΣ: ΣΤΑΔΙΟΔΡΟΜΙΑ ΧΩΡΙΣ ΣΥΝΟΡΑ!

Concrete Mathematics Exercises from 30 September 2016

George S. A. Shaker ECE477 Understanding Reflections in Media. Reflection in Media

δ 6.19 δ 7.26 HET 007 ΦΟΥΡΑΝΙΟ FURAN ΦΥΣΙΚΕΣ ΚΑΙ ΦΑΣΜΑΤΟΣΚΟΠΙΚΕΣ ΙΔΙΟΤΗΤΕΣ PHYSICAL AND SPECTROSCOPIC PROPOERTIES

On Quasi - f -Power Increasing Sequences

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Please be sure that your kid memorized the song. Students homework -Pg.2: Read the song and the translation 3 times.

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ

Transcript:

Compute, Mateial & Continua 3 (2006) 37-42 LAGANGIAN EQUILIBIUM EQUAIONS IN CYLINDICAL AND SHEICAL COODINAES.Y. Voloh Depatment of Mehanial Engineeing, John Hopin Univeity, Baltimoe, MD Abtat Lagangian o efeential equilibium equation fo mateial undegoing lage defomation ae of inteet in the developing field of mehani of oft biomateial and nanomehani. he main featue of thee equation i the neeity to deal with the Fit iola-ihhoff, o nominal, te teno whih i a two-point teno efeing imultaneouly to the efeene and uent onfiguation. hi two-point natue of the Fit iola-ihhoff teno i not alway appeiated by the eeahe and the total ovaiant deivative neeay fo the fomulation of the equilibium equation in uvilinea oodinate i ometime inauately onfued with the egula ovaiant deivative. Supiingly, the taditional ontinuum mehani liteatue doe not diu thi iue popely, exept fo ome bief notion on the two-point natue of the iola-ihhoff teno. We aim at patially filling thi gap by giving a full yet imple deivation of the Lagangian equilibium equation in ylindial and pheial oodinate.. Intodution Lagangian ala equilibium equation in ylindial and pheial oodinate fo mateial undegoing lage defomation ae aely diued in the liteatue. he mot influential monogaph on nonlinea elatiity and ontinuum mehani, inluding Antman (995); Chadwi (976); Cialet (988); Eingen (962); Geen and Adin (970); Geen and ena (968); Gutin (98); Haupt (2000); Jaunemi (967); Liu (2002); Lu e (990); Malven (969); Maden and Hughe (983); Ogden (984); uedell and oupin (96); On leave of abene fom the ehnion; E-mail: voloh@jhu.edu; voloh@tehnion.a.il

Compute, Mateial & Continua 3 (2006) 37-42 uedell and Noll (965); Wang and uedell (973); Wilmani (998), do not adde thi iue. Howeve, the Lagangian equilibium equation in ylindial and pheial oodinate an be vey ueful in olving nonlinea poblem analytially o emi-analytially. Sometime, it i poible to aume inompeibility of the mateial what allow fo uing a imple Euleian deiption fo obtaining ome elementay analytial olution. hi i not the geneal ae, howeve, whee we need the Lagangian equilibium equation of the fom Div 0 () in ylindial and pheial oodinate. hee equation an be deived fom the total ovaiant deivative of the t iola-ihhoff te teno. hough thi way may be elegant we pefe a moe taightfowad pedetian way, whih, howeve, doe not equie any nowledge of the geneal teno alulu fom the eade. 2. Cylindial oodinate We intodue othonomal bai in ylindial oodinate (Malven, 969) fo the efeene onfiguation. (2) (o,in,0) ; ( in,o,0) ; (0,0,) By diet alulation we have ;. (3) All othe deivative of the bae veto ae equal to eo. Analogouly, we have fo the uent onfiguation: (o,in,0) ; ( in,o,0) ; (0,0,), (4) ;. (5) Now, we wite the divegene opeato in the fom (Malven, 969) Div. (6) he plan i to ompute the ight-hand ide of thi equation tem by tem. We tat with the fit tem on the ight hand ide of Eq. (6) 2

Compute, Mateial & Continua 3 (2006) 37-42, (7) whee. N m N m With aount of othonomality of the bae veto we have. (8) Diffeentiating the Euleian bai, we get,, (9) 0. Now, ubtituting Eq. (9) in Eq. (8) we have. (0) Analogouly to Eq. (7)-(0) we alulate the lat two tem on the ight-hand ide of Eq. (6) 3

Compute, Mateial & Continua 3 (2006) 37-42, () (2),, (3) 0,, (4) 4

Compute, Mateial & Continua 3 (2006) 37-42, (5), (6),, (7) 0,. (8) Finally, ubtituting Eq. (0), (4), and (8) in Eq. (6) we have 5

Compute, Mateial & Continua 3 (2006) 37-42 Div (9) 3. Spheial oodinate We intodue othonomal bai in pheial oodinate (Malven, 969) fo the efeene onfiguation (in o,in in,o) (oo,oin, in ) ( in,o,0). (20) By diet alulation we have the following noneo deivative of the bae veto ; o ; ; in in ; o Analogouly, we have fo the uent onfiguation: (in o,in in,o ) (o o,o in, in ) ( in,o,0). ` (2), (22) ; ; in ;. (23) o ; in o We will ue the following abbeviation fo the ae of impliity S in ; C o; in; o. (24) Now, we wite the divegene opeato in the fom (Malven, 969) Div. (25) S he plan i again to ompute the ight-hand ide of thi equation tem by tem. 6

Compute, Mateial & Continua 3 (2006) 37-42 We tat with. (26) With aount of othonomality of the bae veto we have. (27) Diffeentiating the Euleian bai, we get, (28). Now, ubtituting Eq. (28) in Eq. (27) we have 7

Compute, Mateial & Continua 3 (2006) 37-42. (29) Analogouly to Eq. (26)-(29) we alulate the lat two tem on the ight-hand ide of Eq. (25), (30), (3),, (32) 8

Compute, Mateial & Continua 3 (2006) 37-42,, (33) S S S S S S S S S S, (34) C S C S C S S S, (35), 9

Compute, Mateial & Continua 3 (2006) 37-42 Div S C S C S C S S S S S S S S, (36), S S Finally, ubtituting Eq. (29), (33), and (37) in Eq. (25) we have 2 C S S S S 2 C S S S S 2 C S S S S. (37). (38) 4. Conluion Lagangian equilibium equation in ylindial (Eq. 9) and pheial oodinate (Eq. 38) have been deived in the peent wo. 5. efeene Antman, S.S. (995): Nonlinea poblem of elatiity. Spinge-Velag. Chadwi,. (976): Continuum mehani. Wiley. 0

Compute, Mateial & Continua 3 (2006) 37-42 Cialet,.G. (988): Mathematial elatiity, Volume : hee-dimenional elatiity. Noth Holland. Eingen, A.C. (962): Nonlinea theoy of ontinuou media. MGaw-Hill. Geen, A.E., Adin, J.E. (970): Lage elati defomation. Oxfod Univeity e. Geen, A.E., ena, W. (968): heoetial elatiity. Oxfod Univeity e. Gutin, M.E. (98): An intodution to ontinuum mehani. Aademi e. Haupt,. (2000): Continuum mehani and theoy of mateial. Spinge. Jaunemi, W. (967): Continuum mehani. MMillan Company. Liu, I.S. (2002): Continuum mehani. Spinge. Lu e, A.I. (990): Nonlinea theoy of elatiity. Noth Holland. Malven, L.E. (969): Intodution to the mehani of a ontinuou medium. entie-hall. Maden, J.E., Hughe,.J.. (983): Mathematial foundation of elatiity. entie-hall. Ogden,.W. (984): Nonlinea elati defomation. Elli Howood. uedell, C., oupin,.a. (960): Claial field theoie. In: Flugge, S. (Ed.): Enylopedia of hyi, Vol. III/. Spinge. uedell, C., Noll, W. (965): he nonlinea field theoie of mehani. In: Flugge, S. (Ed.): Enylopedia of hyi, Vol. III/3. Spinge. Wang, C.C., uedell, C. (973): Intodution to ational elatiity. Noodhoff. Wilmani,. (998): hemomehani of ontinua. Spinge.