Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η

Σχετικά έγγραφα
A. Να δείξετε ότι για δύο συμπληρωματικά ενδεχόμενα Α και Α ενός δειγματικού χώρου, ισχύει

ΘΕΜΑ 1o A. Να αποδείξετε ότι για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ισχύει ότι Ρ(Α»Β)=Ρ(Α)+Ρ(Β) Μονάδες 10

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

(f(x) + g(x)) = f (x) + g (x).

Ω ισχύει: P A B P(A) P(B) P(A (Μονάδες 7 ) του πεδίου ορισμού της; (Μονάδες 4 ) ii. Να δώσετε τον ορισμό της μέσης τιμής ενός συνόλου ν παρατηρήσεων.

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΘΕΜΑ Α Α1. Για οποιαδήποτε ασυμβίβαστα μεταξύ τους ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω, με απλά ισοπίθανα ενδεχόμενα, να αποδείξετε ότι:

ΘΕΜΑ Α. α) Αν x>0, τότε ( x ) = x

g( x) ( g( x)) ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 25 ΜΑΪΟΥ 2004 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

δεδομένων με συντελεστές στάθμισης (βαρύτητας)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. B. Πώς ορίζεται ο συντελεστής μεταβολής ή συντελεστής. μεταβλητότητας μιας μεταβλητής X, αν x > 0 και πώς, αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΘΕΜΑ Α Α1. Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, να αποδείξετε ότι ( f (x) + g(x)

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

x, όπου c σταθερός πραγματικός αριθμός. Μονάδες 10

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙΔΕΣ

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. A. Η συνάρτηση f είναι παραγωγίσιμη στο ΙR. και c πραγματική σταθερά. Να αποδείξετε ότι (c f(x)) =c f (x), x ΙR.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

P(A ) = 1 P(A). Μονάδες 7

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 3 ΣΕΛΙΔΕΣ

F είναι ίσος µε ν. i ÏÅÖÅ ( ) h 3,f 3.

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2004

ΛΥΚΕΙΟ ΠΕΤΡΟΥΠΟΛΗΣ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ : ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΘΕΜΑ 1ο Α. Να αποδειχθεί ότι για δύο ενδεχόμενα Α και Β ενός δειγματικού χώρου Ω ισχύει: P(A B) = P(A) + P(B) P(A B). Μονάδες 10

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2010 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΩΝ & ΤΑΞΗΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ HMEΡΗΣΙΩΝ & ΕΣΠΕΡΙΝΩΝ ΕΠΑΓΓΕΛΜΑΤΙΚΩΝ ΛΥΚΕΙΩΝ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2012

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2012 ΕΚΦΩΝΗΣΕΙΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΘΕΜΑ 1 ο. Α3. Έστω η συνάρτηση f(x) = x ν, ν ϵ N-{0, 1}. Να αποδείξετε ότι η συνάρτηση f είναι παραγωγίσιμη στο και ότι ισχύει: , δηλαδή x 1

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

Επαναληπτικό Διαγώνισµα Μαθηµατικά Γενικής Παιδείας Γ Λυκείου

ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ

β) Αν υπάρχουν τα limf (x), και είναι γ) Αν οι συναρτήσεις f, g είναι παραγωγίσιμες στο, τότε ισχύει: ( f g ) (x) = f (x) g (x), x

f ( x) 0 για κάθε εσωτερικό σημείο x του Δ,

g είναι παραγωγίσιμες στο x 0, να αποδείξετε ότι και η συνάρτηση f x 0 και ισχύει

ΑΡΧΗ 2ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ γ) Για την παράγωγο μιας σύνθετης συνάρτησης ισχύει (f(g(x))) =f (g(x)) g (x) Μονάδες 2

A ένα σημείο της C. Τι

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Α. Έστω μία συνάρτηση f ορισμένη σε ένα διάστημα. Αν η f είναι συνεχής στο και για κάθε εσωτερικό σημείο x του ισχύει f (x)

ΘΕΜΑ 1 ο. Α1. Πότε λέμε ότι μία συνάρτηση f είναι συνεχής σε ένα κλειστό διάστημα [α, β]; (Μονάδες 4)

Α. α) ίνεται η συνάρτηση F(x)=f(x)+g(x). Αν οι συναρτήσεις f, g είναι παραγωγίσιµες, να αποδείξετε ότι: F (x)=f (x)+g (x).

( ) ( ) ( ) ( ) Α2. Έστω μια συνάρτηση f με πεδίο ορισμού A. Πότε λέμε ότι η συνάρτηση f παρουσιάζει τοπικό μέγιστο στο x1 Μονάδες 4.

ΑΡΧΗ 1 ΗΣ ΣΕΛΙΔΑΣ. είναι μιγαδικοί αριθμοί, να αποδειχθεί ότι:

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΤΕΣΣΕΡΙΣ (4)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. x 100% = s. lim. x x. γ) Αν οι συναρτήσεις f, g: A είναι παραγωγίσιμες στο πεδίο ορισμού τους Α, τότε ισχύει:

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΟΜΟΙΩΣΗ ΘΕΜΑΤΩΝ 3

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΕΠΑΝΑΛΗΠΤΙΚΕΣ Γ ΗΜΕΡΗΣΙΩΝ

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

f (x) g (x) για κάθε εσωτερικό σημείο x του Δ,

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΝΕΟ ΣΥΣΤΗΜΑ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Γ ΛΥΚΕΙΟΥ

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ. Μονάδες 9 B. Έστω μια συνάρτηση f και x o ένα σημείο του πεδίου ορισμού της. Πότε θα λέμε ότι η f είναι συνεχής στο x o ; Μονάδες 6

ΘΕΜΑΤΑ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ «ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ»

ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΞΙ (6) Α1.i. Να διατυπώσετε το θεώρημα ενδιαμέσων τιμών (Μονάδες 2) και στη

f x g x f x g x, x του πεδίου ορισμού της; Μονάδες 4 είναι οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν και w

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 14 ΙΟΥΝΙΟΥ 2001 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ

P A B P(A) P(B) P(A. , όπου l 1

P(A ) = 1 P(A). Μονάδες 7

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΘΕΜΑ Α Α1. Αν μια συνάρτηση f είναι παραγωγίσιμη σε ένα σημείο x 0, τότε να αποδείξετε ότι είναι και συνεχής στο σημείο αυτό.

α,β,γ και α 0 στο σύνολο των μιγαδικών

ΘΕΜΑ Α Α1. Έστω t 1,t 2,...,t ν οι παρατηρήσεις μιας ποσοτικής μεταβλητής Χ ενός δείγματος μεγέθους ν, που έχουν

ΜΑΘΗΜΑΤΙΚΑ & ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ 2015 ΕΚΦΩΝΗΣΕΙΣ

ΠΕΡΙΦΕΡΕΙΑΚΗ Δ/ΝΣΗ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Β. ΑΙΓΑΙΟΥ

ΘΕΜΑ 1ο Α.1. Αν η συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα Δ, τότε να αποδείξετε ότι:

Θέματα Εξετάσεων Γ Λυκείου Μαθηματικά και Στοιχεία Στατιστικής

ΘΕΜΑΤΑ & ΛΥΣΕΙΣ ΠΑΝΕΛΛΑŸΙΚ Ν ΕΞΕΤΑΣΕ Ν ( ) & ΘΕΜΑΤ Ν ΠΡΟΣΟΜΕΙ ΣΗΣ Ο.Ε.Φ.Ε ( ) Γ ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΙΚΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

ΘΕΜΑ 1ο Α.1. Αν η συνάρτηση f είναι παραγωγίσιμη σε ένα διάστημα Δ, τότε να αποδείξετε ότι:

Μονάδες 10 ΦΡΟΝΤΙΣΤΗΡΙΑ ΦΛΩΡΟΠΟΥΛΟΥ Σελίδα 1

α) Για κάθε μιγαδικό αριθμό z 0 ορίζουμε z 0 =1

Transcript:

ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 7 ΑΠΡΙΛΙΟΥ 203 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΚΑΙ ΣΤΟΙΧΕΙΑ ΣΤΑΤΙΣΤΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ ΘΕΜΑ Α Α. Για δυο ασυµβίβαστα ενδεχόµενα Α και Β ενός δειγµατικού χώρου Ω να αποδειχθεί ότι Ρ(Α Β) = Ρ(Α) + Ρ(Β). Α2. Να δοθεί ο ορισµός της διαµέσου δ ενός δείγµατος ν παρατηρήσεων. Μονάδες 4 Α3. Έστω µια συνάρτηση f µε πεδίο ορισµού Α και x A. Πότε λέµε ότι η f στο x παρουσιάζει τοπικό µέγιστο; Μονάδες 3 Α4. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο τετράδιό σας δίπλα στο γράµµα που αντιστοιχεί σε κάθε πρόταση, τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος αν η πρόταση είναι λανθασµένη. α) Το ιστόγραµµα συχνοτήτων αποτελείται από διαδοχικά ορθογώνια που κάθε ένα έχει εµβαδόν ίσο µε την σχετική συχνότητα κάθε κλάσης. β) Μια συνάρτηση f είναι γν. αύξουσα σε ένα διάστηµα όταν για κάθε x,x 2 µε x <x 2 έχουµε f(x )>f(x 2 ).

γ) υο ενδεχόµενα Α, Β ενός δειγµατικού χώρου Ω λέγονται ασυµβίβαστα όταν Α Β=. δ) Αν Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω και Α Β τότε P(A B) = P(A). ε) Οι αθροιστικές συχνότητες N i εκφράζουν το πλήθος των παρατηρήσεων που είναι ίσες ή µεγαλύτερες της τιµής x i. ΘΕΜΑ Β Έστω Ω ο δειγµατικός χώρος ενός πειράµατος τύχης και Α, Β δυο ενδεχόµενα του Ω. Η πιθανότητα να πραγµατοποιηθεί µόνο το ενδεχόµενο Α είναι και η πιθανότητα να 3 πραγµατοποιηθούν τα ενδεχόµενα Α και Β συγχρόνως είναι 4. Β. Να βρείτε την πιθανότητα του ενδεχοµένου να πραγµατοποιείται το ενδεχόµενο Α. Μονάδες 7 Β2. Αν η πιθανότητα να πραγµατοποιείται ένα τουλάχιστον 5 από το Α, Β είναι να βρείτε την πιθανότητα να 6 πραγµατοποιείται το ενδεχόµενο Β. Μονάδες 7 Β3. Να υπολογίσετε τις πιθανότητες των ενδεχοµένων. i) Να πραγµατοποιείται µόνο ένα από τα Α, Β. ii) Να µην πραγµατοποιείται κανένα από τα Α, Β.

Β4. Αν το Ω αποτελείται από απλά ισοπίθανα ενδεχόµενα και το ενδεχόµενο Α περιέχει 4 στοιχεία να βρείτε το πλήθος των στοιχείων του Ω. ΘΕΜΑ Γ Έστω x µια ποσοτική µεταβλητή ως προς την οποία εξετάζουµε ένα δείγµα µεγέθους v και x, x 2, x v οι παρατηρήσεις που έχουν µέση τιµή x και τυπική απόκλιση s. 3 2 Θεωρούµε τη συνάρτηση f (x) = x (x+ 2s)x + 2x s, x R. Αν η ευθεία y=-9x+ εφάπτεται της γραφικής παράστασης της f στο σηµείο της µε τετµηµένη x o =τότε: Γ. Να δείξετε ότι x= 4,s= και να µελετήσετε την f ως προς τα ακρότατα. Γ2. Να βρείτε τον µικρότερο θετικό αριθµό c κατά τον οποίο πρέπει να αυξηθούν οι τιµές των παρατηρήσεων ώστε το δείγµα να είναι οµοιογενές. Γ3. Υποθέτουµε ότι η παραπάνω κατανοµή είναι κανονική ή περίπου κανονική. Αν το πλήθος των παρατηρήσεων x i µε xi 2 είναι 0 τότε να βρείτε το µέγεθος του δείγµατος. Γ4. Έστω Α, Β ενδεχόµενα ενός δειγµατικού χώρου Ω. Αν 3 3 2 2 Α Βνα αποδείξετε ότι: P (A) P (B) 6P (A) 6P (B). ΘΕΜΑ Στον παρακάτω πίνακα δίνονται οι θερµοκρασίες 00 περιοχών της Ελλάδας τον µήνα Ιανουάριο, οι οποίες έχουν επιλεγεί τυχαία.

Θερµοκρασίες x i v i x i v i N i [, ) 0x+2 [, ) 26 00e x-2 +4 [, ) 0x+60 [, ) 4x 384-20x [, ) -600A 00 Σύνολο Όπου A= lim x 2 3 x 5x+ 6 2 7x+ 4.. Να δειχθεί ότι A=. 4 2. Να βρεθεί το x ώστε η µέση τιµή των θερµοκρασιών να είναι η µικρότερη δυνατή. 3. Να βρεθεί το x ώστε η πιθανότητα µια περιοχή να έχει θερµοκρασία η οποία ανήκει στην 4 η κλάση να είναι ίση µε την πιθανότητα µια περιοχή να έχει θερµοκρασία η οποία ανήκει στην 2 η κλάση, ελαττωµένη κατά 0,08. 4. Για x=2 να συµπληρωθεί ο πίνακας και να βρεθεί η πιθανότητα µια περιοχή να έχει θερµοκρασία από 5,4 ως 8. Ο ΗΓΙΕΣ(για τους εξεταζόµενους). Στο τετράδιό σας να γράψετε µόνο τα προκαταρκτικά (ηµεροµηνία, εξεταζόµενο µάθηµα). Να µην αντιγράψετε τα θέµατα στο τετράδιο. 2. Να γράψετε το ονοµατεπώνυµό σας στο πάνω µέρος των φωτοαντιγράφων αµέσως µόλις σας παραδοθούν. εν επιτρέπεται να γράψετε καµιά άλλη σηµείωση. Κατά

την αποχώρησή σας να παραδώσετε µαζί µε το τετράδιό σας και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέµατα. 4. Να γράψετε τις απαντήσεις σας µόνο µε µπλε ή µόνο µε µαύρο στυλό. Μπορείτε να χρησιµοποιήσετε µολύβι µόνο για σχέδια, διαγράµµατα και πίνακες. 5. Να χρησιµοποιήσετε χαρτί µιλιµετρέ. 6. Κάθε απάντηση τεκµηριωµένη είναι αποδεκτή. 7. ιάρκεια εξέτασης: τρεις (3) ώρες µετά τη διανοµή των φωτοαντιγράφων. ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ