ENA TAXIDI STH SUNOQH. g ab T a bc. R i jkl

Σχετικά έγγραφα
Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

Pragmatik Anˆlush ( ) TopologÐa metrik n q rwn Ask seic

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS

Diakritˆ Majhmatikˆ I. Leutèrhc KuroÔshc (EÔh Papaðwˆnnou)

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

SUNARTHSEIS POLLWN METABLHTWN. 5h Seirˆ Ask sewn. Allag metablht n sto diplì olokl rwma

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Θεωρία Βελτιστοποίησης. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

25 OktwbrÐou 2012 (5 h ebdomˆda) S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

SofÐa ZafeirÐdou: GewmetrÐec

Mègisth ro - elˆqisth tom

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN.

Diˆsthma empistosônhc thc mèshc tim c µ. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH EKTIMHSH PARAMETRWN - 2. Dhm trhc Kougioumtz c.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

1 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος. Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN EPIKAMPULIA OLOKLHRWMATA

Eisagwg sthn KosmologÐa

GENIKEUMENA OLOKLHRWMATA

11 OktwbrÐou S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

Κλασσική Ηλεκτροδυναμική II

Ask seic me ton Metasqhmatismì Laplace

9. α 2 + β 2 ±2αβ. 10. α 2 ± αβ + β (1 + α) ν > 1+να, 1 <α 0, ν 2. log α. 14. log α x = ln x. 19. x 1 <x 2 ln x 1 < ln x 2

Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac

Ανάλυση ις. συστήματα

Anagn rish ProtÔpwn & Neurwnikˆ DÐktua Probl mata 2

Hmiomˆdec telest n sônjeshc kai pðnakec Hausdorff se q rouc analutik n sunart sewn

ISTORIKH KATASKEUH PRAGMATIKWN ARIJMWN BIBLIOGRAFIA

6h Seirˆ Ask sewn. EpikampÔlia oloklhr mata

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

JEMATA EXETASEWN Pragmatik Anˆlush I

Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PAR

APEIROSTIKOS LOGISMOS I

Eukleideiec Gewmetriec

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

f(x) =x x 2 = x x 2 x =0 x(x 1) = 0,

Θεωρία Πιθανοτήτων και Στατιστική

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

JewrÐa UpologismoÔ. Grammatikèc QwrÐc Sumfrazìmena kai Autìmata StoÐbac

Farkas. αx+(1 α)y C. λx+(1 λ)y i I A i. λ 1,...,λ m 0 me λ 1 + +λ m = m. i=1 λ i = 1. i=1 λ ia i A. j=1 λ ja j A. An µ := λ λ k = 0 a λ k

Ergasthriak 'Askhsh 2

SUNOLA BIRKHOFF JAMES ϵ ORJOGWNIOTHTAS KAI ARIJMHTIKA PEDIA

Shmei seic sto mˆjhma Analutik GewmetrÐa

5. (12 i)(3+4i) 6. (1 + i)(2+i) 7. (4 + 6i)(7 3i) 8. (1 i)(2 i)(3 i)

Στατιστική για Χημικούς Μηχανικούς

Anaz thsh eustaj n troqi n se triplˆ sust mata swmˆtwn

+#!, - ),,) " ) (!! + Henri Poincar e./ ', / $, 050.

Upologistikˆ Zht mata se Sumbibastikèc YhfoforÐec

1, 3, 5, 7, 9,... 2, 4, 6, 8, 10,... 1, 4, 7, 10, 13,... 2, 5, 8, 11, 14,... 3, 6, 9, 12, 15,...


Upologistik Fusik Exetastik PerÐodoc IanouarÐou 2013


Shmei seic Sunarthsiak c Anˆlushc

Στατιστική για Χημικούς Μηχανικούς

Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJ

AM = 1 ( ) AB + AΓ BΓ+ AE = AΔ+ BE. + γ =2 β + γ β + γ tìte α// β. OΓ+ OA + OB MA+ MB + M Γ+ MΔ =4 MO. OM =(1 λ) OA + λ OB

HU215 - Frontist rio : Seirèc Fourier

στο Αριστοτέλειο υλικού.

2 PerÐlhyh Se aut n thn ergasða, parousi zoume tic basikìterec klassikèc proseggðseic epðlushc Polu-antikeimenik n Problhm twn BeltistopoÐhshs(PPB) ka

ΜΑΘΗΜΑΤΙΚΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

thlèfwno: , H YHFIAKH TAXH A' GumnasÐou Miqˆlhc TzoÔmac Sq. Sumb. kl.


στο Αριστοτέλειο υλικού.

2+sin^2(x+2)+cos^2(x+2) Δ ν =[1 1 2 ν 1, ν ) ( ( π (x α) ημ β α π ) ) +1 + a 2

Didaktorikèc spoudèc stic HPA, sta Majhmatikˆ. 20 MartÐou 2015

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN. Ask seic kai Jèmata sthn Pragmatik Anˆlush I TMHMA POLITIKWN MHQANIKWN

Ανάλυση ασκήσεις. συστήματα

Shmei seic sto mˆjhma Analutik GewmetrÐa

Autìmath Exagwg Peril yewn kai h Axiolìghs touc

MELETH TWN RIZWN TWN ASSOCIATED ORJOGWNIWN

spin triplet S =1,M S =0 = ( + ) 2 S =1,M S = 1 = spin singlet S =0,M S =0 = ( )

ΜΕΤΑΒΟΛΙΚΕΣ ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΕΛΕΥΘΕΡΩΝ ΣΥΝΟΡΩΝ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΑ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΝΙΠΥΡΑΚΗ ΜΑΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Θεωρία Πιθανοτήτων και Στατιστική

Σήματα Συστήματα Ανάλυση Fourier για σήματα και συστήματα συνεχούς χρόνου Περιοδικά Σήματα (Σειρά Fourier)

Σχήμα 1.1: Διάφορες ισόχρονες καμπύλες με διαφορετικές μεταλλικότητες Ζ, και περιεκτικότητα σε ήλιο Υ.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002

SofÐa ZafeirÐdou. Analutik GewmetrÐa. Tm ma Majhmatik n Panepist mio Patr n. Bohjhtikèc Shmei seic gia to mˆjhma. SofÐa ZafeirÐdou

Ergasthriak 'Askhsh 3

EISAGWGH STON PROGRAMMATISMO ( ) 'Askhsh 2

AntistoÐqish Ontologi n

Φυλλο 3, 9 Απριλιου Ροδόλφος Μπόρης

I

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Ανάλυση. σήματα και συστήματα

2

Ta Jewr mata Alexander kai Markov thc JewrÐac Kìmbwn

S mata Sunart. Tm ma Majhmatik n Panepist mio Kr thc. epiblèpwn kajhght c Jeìdouloc Garefalˆkhc. To Je rhma Twn Pr twn Arijm n Se. Gi rgoc N.

Eisagwg sth Sunarthsiak Anˆlush. Shmei seic

majhmatikoð upologismoð. To biblðo mporeð na qwristeð jematikĺ se treic enìthtec. Thn prÿth enìthta apoteloôn

KBANTOMHQANIKH II (Tm ma A. Laqanˆ) 28 AugoÔstou m Upìdeixh: Na qrhsimopoihjeð to je rhma virial 2 T = r V.


YWMIADH BASILEIOU fifianalush PROSARMOGHS ELASTOPLASTIKWN METALLIKWN KATASKEUWN UPO TO TRISDIASTATO KRITHRIO DIARROHS TRESCA ME TEQNIKES TOU HMIJETIKO

G. A. Cohen ** stìqo thn kubernhtik nomojesða kai politik, den upˆrqei tðpota to qarakthristikì sth morf thc.)

EUSTAJEIA DUNAMIKWN SUSTHMATWN 1 Eisagwg O skop c tou par ntoc kefala ou e nai na parousi sei th basik jewr a gia th mel th thc eust jeiac en c mh gra

PERIEQŸOMENA I YHFIAKH THLEORASH 11 1 EISAGWGH STHN YHFIAKH THLEORASH Eisagwg Analogikì bðnteo

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE

Transcript:

ENA TAXIDI STH SUNOQH Γ i jk g ab T a bc K i jk i jk { i jk } g ab R i jkl Suggrafèac: Ant nioc Mhtsìpouloc 1 Epiblèpwn: Kajhght c Miqˆlhc Tsamparl c 2 AJHNA 2017 1 E-mail: antonmitses@gmailcom 2 Τμήμα Φυσικής, Τομέας Αστρονομίας-Αστροφυσικής-Μηχανικής, Πανεπιστήμιο Αθηνών, Πανεπιστημιούπολη, Αθήνα 157 83, Ελλάδα

1 Stouc goneðc mou, IoulÐa kai Swt rh, qwrðc th bo jeia twn opoðwn autì to upèroqo taxðdi de ja eðqe gðnei potè

EISAGWGH Skopìc aut c thc ergasðac eðnai na anadeðxei th sten sqèsh pou upˆrqei anˆmesa se afhrhmènh ˆlgebra, diaforik gewmetrða kai Fusik AfoÔ anaptôxoume pr ta basikèc algebrikèc, topologikèc kai gewmetrikèc domèc ja suneqðsoume me thn idèa tou gewmetrikoô antikeimènou embajônontac sthn kataskeu twn tanustik n pedðwn H prˆxh thc parag gishc pˆnw se gewmetrikˆ antikeðmena ja proseggisjeð ekten c tìso gewmetrikˆ (parˆllhlh metatìpish) ìso kai algebrikˆ eisˆgontac jemeli dh ergaleða sth melèth enìc q rou, ìpwc h sunoq, oi autoparˆllhlec, oi gewdaisiakèc, h strèyh kai h kampulìthta Tèloc, tic majhmatikèc teqnikèc pou anaptôxame ja tic efarmìsoume sth Neut neia Mhqanik aposkop ntac sth gewmetrikopoðhsh twn periorism n se mh olìnoma dunamikˆ sust mata Se autì to shmeðo ja jela na ekfrˆsw thn eugnwmosônh mou wc proc to prìswpo tou kurðou Miqˆlh Tsamparl gia thn episthmonik kajod ghsh, tic filosofikèc suzht seic, kai thn hjik upost rixh pou tìso aplìqera mou èqei prosfèrei ìla autˆ ta qrìnia Euqarist 2

ANTI PROLOGOU Sta agglikˆ de lème suggrafèac, allˆ skèto grafèac ( writer) Se pr th anˆgnwsh deðqnei uperbol ; giatð na lème kˆpoion pou grˆfei biblða sun + grafèa, kai ìqi aplˆ grafèa? H prìjesh sun èqei th shmasða tou mazð, en prokeimènw mac lèei ìti ìtan kˆpoioc grˆfei èna biblðo den to grˆfei mìnoc tou allˆ pˆntote mazð me kˆpoion ˆllo Oi arqaðoi mac papoôdec pðsteuan ìti ekeðnoc pou kˆnei èna pneumatikì èrgo, den to kˆnei mìnoc tou allˆ sunepikouroômenoc apì tic MoÔsec, tic ennèa jeìthtec twn grammˆtwn kai twn teqn n Gi autì kai sthn arq twn èrgwn touc (blèpe omhrikˆ èph) epikaloôntai th bo jeia thc ekˆstote MoÔsac apì thn opoða zhtoôn èmpneush; prˆxh, omologoumènwc, uyðsthc tapeinìthtac kai megaleðou yuq c MoÔsa, loipìn, xekðna thn apì pou jec aut n thn istorða kai pec thn kai se mac - GiatÐ? - Monˆqa gia Aret gia to kalìn kai to agajìn 3

Perieqìmena 1 OI DUO OYEIS TOU NOMISMATOS KAI H FUSIKH 6 2 BASIKES ALGEBRIKES DOMES 9 3 BASIKES TOPOLOGIKES KAI GEWMETRIKES DOMES 15 4 UBRIDIKES DOMES 26 5 OMADA PHLIKO 32 6 METAJESEIS 35 7 SUNARTHSEIS PANW SE POLLAPLOTHTES 38 8 GEWMETRIKA ANTIKEIMENA 48 9 PARAGWGISH GEWMETRIKWN ANTIKEIMENWN 56 10 JEMELIWSH TWN TANUSTIKWN PEDIWN 76 101 EFAPTOMENA DIANUSMATA 76 102 SUNEFAPTOMENA DIANUSMATA 85 103 TANUSTES 86 104 DIAFORIKES MORFES 89 105 DIANUSMATIKA PEDIA 116 106 TOPIKA TANUSTIKA PEDIA 129 107 TANUSTIKA PEDIA 142 11 OLONOMES KAI MH OLONOMES BASEIS 144 12 O ALGEBRIKOS ORISMOS THS PARAGWGISHS SE TOPIKA TANUSTIKA PEDIA 147 13 H STREYH KAI H KAMPULOTHTA THS PARAGWGISHS TO- PIKWN TANUSTIKWN PEDIWN 151 14 APO TH SUNOQH STHN KAMPULOTHTA 153 15 H PROSEGGISH CARTAN STH SUNOQH 155 151 TANUSTHS STREYHS KAI KAMPULOTHTAS WS PROS MIA MH OLONOMH BASH 155 152 OI DOMIKES EXISWSEIS TOU CARTAN 159 153 TA PEDIA MORFWN C i j, T i, KAI R i j 161 154 OI TAUTOTHTES TOU BIANCHI 165 4

16 G-QWROI 166 17 ASKHSEIS 166 18 GEWMETRIKH MHQANIKH 192 181 O DEUTEROS NOMOS TOU NEUTWNA 193 182 EXISWSEIS EULER-LAGRANGE 202 183 EXISWSEIS DESMEUMENHS KINHSHS 204 1831 EXELIXH DUNAMIKOU SUSTHMATOS ME ENAN DESMO 207 1832 EXELIXH DUNAMIKOU SUSTHMATOS ME POLLOUS DE- SMOUS 213 1833 H ARQH TOU D ALEMBERT STH DESMEUMENH KINHSH 215 19 MH OLONOMA LAGKRANZIANA SUSTHMATA 217 191 TOPOJETHSH TOU PROBLHMATOS 217 Aþ STOIQEIA JEWRIAS ORIZOUSWN 223 Bþ KAJOLIKA ANTISUMMETRIKA ANTIKEIMENA 231 Bþ1 TO GENIKEUMENO DELTA TOU KRONECKER 231 Bþ2 TA SUMBOLA TOU LEVI-CIVITA 243 Gþ H EXISWSH TOU Dirac 249 5

1 OI DUO OYEIS TOU NOMISMATOS KAI H FUSIKH {To biblðo thc FÔshc eðnai grammèno sth gl ssa twn majhmatik n} Sth sôgqronh jewrhtik fusik aut h frˆsh tou GalilaÐou faðnetai pio epðkairh apì potè, miac kai ton teleutaðo ai na h diaqwristik gramm metaxô Jewrhtik c Fusik c kai Majhmatik n den eðnai kajìlou eudiˆkrith Ta majhmatikˆ zwntaneôoun sth Fusik, kai h Fusik qreiˆzetai ta majhmatikˆ gia na perigrˆyei kai na ermhneôsei ta fusikˆ fainìmena KainoÔriec jewrðec Fusik c odhgoôn se nèa majhmatikˆ kai kainoôriec majhmatikèc jewrðec odhgoôn se nèa Fusik H axiwmatik mèjodoc (arqikèc ènnoiec, axi mata, jewr mata) kai ta diˆfora logikˆ sust mata eðnai ekeðna ta majhmatikˆ jemèlia pˆnw sta opoða qtðzetai h episthmonik skèyh Melet ntac diˆfora majhmatikˆ antikeðmena (arqikèc ènnoiec, deutereôousec ènnoiecorismoð) parathroôme ìti emfanðzoun dôo monˆqa eid n qarakthristikˆ: 1) gewmetrikˆ (sq mata-poiìthtec), kai 2) algebrikˆ (arijmoð-posìthtec) Sunep c h pl rhc katano - sh miac majhmatik c ènnoiac proôpojètei th qr sh tìso algebrik n ìso kai gewmetrik n mejìdwn H diamìrfwsh tou ìlou anˆgetai sth sônjesh twn antijètwn Diaforetikèc optikèc gwnðec odhgoôn sth bajôterh ousða pou perikleðei to kˆje majhmatikì antikeðmeno Prwtarqikˆ sustatikˆ sthn anˆptuxh aut n twn dôo diaforetik n, allˆ sugqrìnwc allhlosumplhroômenwn, proseggðsewn eðnai oi gnwstèc ènnoiec tou sunìlou kai thc sunˆrthshc Me ton ìro sônolo (Set), katˆ ton Cantor, kaloôme kˆje kal c orismènh sullog A saf c diakekrimènwn antikeimènwn {a 1, a 2, }, kai grˆfoume A = {a i i I} ìpou I èna sônolo deikt n To kenì-ˆdeio sônolo sumbolðzoume me Nèa sônola apì dh gnwstˆ mporoôn na paraqjoôn me prˆxeic ìpwc h ènwsh (A B), h tom (A B), h afaðresh (A B), kai to Kartesianì ginìmeno (A B) Shmantik epðshc eðnai kai h idèa tou dunamosunìlou P (A), to opoðo apoteleðtai apì ìla ta uposônola tou A Lème ìti to sônolo B eðnai uposônolo tou A, B A, ìtan kˆje stoiqeðo tou B eðnai kai stoiqeðo tou A; dhlad B A = B, eˆn B A = A tìte B = A Sthn perðptwsh pou A B kai B A sumperaðnoume ìti A = B To pl joc twn stoiqeðwn enìc sunìlou A sumbolðzetai me A kai kathgoriopoieð ta sônola se peperasmèna sônola ( A < N ) kai apeirosônola (metr sima A = N kai mh metr sima A > N ) To mikrìtero anˆmesa sta apeirosônola eðnai to sônolo twn fusik n arijm n N Sugkekrimèna ìla ta ˆpeira den eðnai Ðdia allˆ mporoôn na taxinomhjoôn H taxinìmhsh aut mporeð na lˆbei q ra diìti ex orismoô h sôgkrish thc plhjikìthtac dôo sunìlwn gðnetai mèsw thc jemeli douc diadikasðac tou zeugar matoc 3 H sunˆrthsh ( apeikìnish monìtimh antistoðqish) eðnai to ˆllo basikì sustatikì pou qreiazìmaste gia na qtðsoume tìso thn algebrik ìso kai th gewmetrik perigraf Me autìn ton ìro kaloôme mða diadikasða h opoða antistoiqðzei se kˆje stoiqeðo (ìrisma) enìc sunìlou A (pedðo orismoô) èna monˆqa stoiqeðo (tim ) apì èna ˆllo sônolo 3 Δηλαδή μέσω μίας ένα προς ένα αντιστοίχισης (συνάρτηση) των στοιχείων των δύο συνόλων Ταυτόχρονη εξάντληση των στοιχείων παραπέμπει σε ισότητα Τυχόν περίσευμα στοιχείων οδηγεί φυσιολογικά στις έννοιες μικρότερος και μεγαλύτερος 6

B (pedðo tim n) Se aut n thn perðptwsh grˆfoume f : A B, A f B EpÐshc, f(a) = b B, gia a A To sônolo f(a), dhlad h eikìna tou A sto pedðo tim n, eðnai èna uposônolo tou B Anˆloga me ton trìpo pou gðnetai h kˆje antistoðqish diakrðnoume ta ex c eðdh apeikonðsewn: a) Stajer apeikìnish; f(a) = const gia kˆje a A b) 'Ena proc èna, (1-1), embˆptunsh; f(a) = f(b) = a = b, isodônama a b = f(a) f(b) Ed A = f(a) kai A B g) EpÐ, epibˆptunsh; b B, a A : b = f(a) Ed f(a) = B kai A B d) 1-1 kai epð, amfimonos manth; tìte A = B kai orðzetai h antðstrofh sunˆrthsh f 1 : B A me ton kanìna f 1 (b) a eˆn f(a) = b, dhlad f 1 (f(a)) = a e) tautotik sunˆrthsh; id A : A A, id A (a) = a, a A EpÐshc, mporoôme na orðsoume th sônjesh metaxô dôo sunart sewn A f B kai B g C wc thn apeikìnish g f : A C me ton kanìna (g f)(a) g(f(a)), a A; kaj c kai mða ènnoia isìthtac ìtan èqoun Ðdio pedðo orismoô, Ðdio pedðo tim n, kai Ðdio tôpo anistoðqishc Parathr ste ìti ìtan f 1, tìte f 1 f = id A kai f f 1 = id B Genikìtera, mporoôme na orðsoume mða antistoðqish h opoða prosdðdei se kˆje ìrisma perissìterec apì mða timèc (pleiìtimh sunˆrthsh) Ja mporoôsame na antiparabˆloume tic diadikasðec monìtimhc kai pleiìtimhc antistoðqishc me to filosofikì qˆsma pou qwrðzei tic jewrðec thc klasik c (nteterminismìc) kai thc kbantik c Fusik c (pijanokratða) Sugkekrimèna h ènnoia thc troqiˆc mia kat exoq n monìtimh antistoðqish katargeðtai apì touc pijanokratikoôc nìmouc pou eisˆgei h arq thc abebaiìthtac, me apotèlesma h perigraf thc exèlixhc enìc sust matoc na apaiteð th qr sh pleiìtimwn sunart sewn Sunduˆzontac sônola kai sunart seic, loipìn, mazð me kˆpoia axi mata kai upì thn prìnoia enìc logikoô sust matoc, mporoôme na anaparˆxoume ìlec ekeðnec tic algebrikèc kai gewmetrikèc-topologikèc domèc pou perigrˆfoun ton afhrhmèno majhmatikì kìsmo (Kìsmoc twn Ide n) elpðzontac ìti o Plˆtwnac kai o GalilaÐoc èqoun telikˆ dðkio (faðnetai na èqoun) O fusikìc eðnai ekeðnoc o epist monac pou kaleðtai na anakalôyei poiec majhmatikèc domèc eðnai oi katˆllhlec gia na diatup sei tic jewrðec tou sqetikˆ me ton Fusikì Kìsmo (UlopoÐhsh twn kajar n ide n) Algebrikìc trìpoc (D Hilbert): Melèth sunìlwn kai prˆxewn pˆnw sta stoiqeða touc P c allhlepidroôn ta stoiqeða enìc sunìlou gia na d soun nèa stoiqeða (sumperiforˆ stoiqeðo-stoiqeðo) Posotik perigraf (Omˆda, DaktÔlioc-PedÐo-Akèraia perioq, Prìtupo-Dianusmatikìc q roc, 'Algebra- Tanustik ˆlgebra-Exwterik ˆlgebra-Clifford ˆlgebra) Gewmetrikìc-Topologikìc trìpoc (H Poincare): Melèth dom n pou proikðzoun ta sônola me ènnoiec ìpwc h topikìthta-geitoniˆ (topologða) kai h parallhlða-parˆllhlh metatìpish (gewmetrða); plèon èna sônolo kaleðtai q roc kai ta stoiqeða tou shmeða Poiotik melèth Optik anaparˆstash twn ide- n (diˆgramma-eikìna) (Topologikìc q roc, Topologik pollaplìthta, LeÐa pollaplìthta, Rhmˆnia pollaplìthta, Nhmatik dèsmh, Gewmetrikˆ antikeðmena, Sunoq, Parag gish, Autoparˆllhlec) 7

SunoyÐzontac, loipìn, kˆpwc ta prˆgmata, mporoôme na poôme ìti ston kajarì, apostasiopoihmèno apì thn Ôlh, kìsmo twn majhmatik n ide n sunantˆme kurðwc dôo eðdh perigraf n 4 ; thn algebrik perigraf pou gðnetai mèsw twn algebrik n dom n, kai th gewmetrik perigraf pou epikaleðtai topologikèc kai gewmetrikèc domèc H anapìfeukth probol twn proðìntwn thc kajar c Nìhshc ston Ulikì Kìsmo mèsw twn aisj sewn o- dhgeð nomoteleiakˆ sthn upobˆjmish twn proanaferjèntwn perigraf n se posìthtec kai poiìthtec, se arijmoôc kai morfèc (sq mata) antðstoiqa Ta sônola, oi sunart seic (genikˆ antistoiqðseic) kai ta axi mata (anapìdeiktec sumperiforèc) eðnai ta basikˆ sustatikˆ gia th diamìrfwsh twn majhmatik n dom n H nìhsh gennˆ idèec pou mèsw twn aisj sewn probˆllontai upì to eðdoc morf n ston Ulikì Kìsmo Lìgw tou stenoô desmoô mac me thn ul, pollèc forèc, jewroôme thn empeirða pou apoktˆme mèsw twn aisj sewn wc thn proapaitoômenh enèrgeia gia thn afôpnish thc nìhshc 'Ulh empeirða Nìhsh = Idèec aisj seic aisj seic 'Ulh H afôpnish thc nìhshc eðnai aut pou mac kˆnei èxupnous anjr pouc; ìpwc marturˆ kai h gl ssa mac: èxupnoc = ex + Ôpnoc = ektìc Ôpnou H èxodoc apì ton l jargo thc Ôlhc kai h epaf me thn kajarìthta tou Kìsmou twn Ide n mac kajistˆ èxupnouc, kai en dunˆmei koinwnoôc sthn anaz thsh gia thn katanìhsh tou musthrðou thc zw c Tèloc, axðzei na shmei soume ìti gia thn kataskeu mðac Fusik c jewrðac ta basikˆ sustatikˆ pou qreiˆzetai na tautopoi soume eðnai ta akìlouja: 1 To upìstrwma (q roc upobˆjrou) entìc tou opoðou lambˆnei q ra h kðnhsh, kai kat epèktash ta upì melèth fusikˆ fainìmena Sugkekrimèna tautopoðhsh twn topologik n kai gewmetrik n dom n pou ton perigrˆfoun (pq: O EukleÐdeioc q roc thc Neut neiac mhqanik c) 2 Ta fusikˆ megèjh Autˆ eðnai aplèc lèxeic, kenèc no matoc (qˆrn epikoinwnðac), pou tic eisˆgoume gia na perigrˆyoume qarakthristikˆ pou parathroôntai sta upì melèth fusikˆ fainìmena Apoktˆne ousða monˆqa efìson ta sundèsoume me kˆpoia diadikasða mètrhshc H mètrhsh ja anadeðxei th sumperiforˆ touc upodeiknôontac tic majhmatikèc domèc pou ta perigrˆfoun Sugkekrimèna, h mètrhsh ja antistoiqðsei ta fusikˆ megèjh se arijmoôc kajorðzontac to pl joc twn sunistws n pou ta perigrˆfoun (monìmetra bajmwtˆ, kai dianusmatikˆ) 3 MÐa arq epikoinwnðac ( arq sqetikìthtac, arq antikeimenikìthtac), dhlad ènan nìmo metasqhmatismoô pou sundèei tic metr seic diaforetik n 4 Συχνά παρατηρούνται και υβριδικά μαθηματικά συστήματα, όπου συνδυάζονται και αλγεβρικές και γεωμετρικές δομές (πχ: Ομάδες Lie) 8

parathrht n gia to Ðdio fusikì mègejoc Tautopoi ntac to deôtero kai to trðto b ma 5 brðskoume thn kathgorða gewmetrik n antikeimènwn 6 pou perigrˆfei th sumperiforˆ twn fusik n megej n thc jewrðac mac H gn sh aut ja mac bohj sei na broôme ta analloðwta thc jewrðac mac (pq: taqôthta fwtìc sth jewrða thc eidik c sqetikìthtac) kai sth sunèqeia na ftiˆxoume kanìnec mèsw twn opoðwn ja mporèsoume na problèyoume thn Ôparxh kai ˆllwn fusik n megej n pou akìma den èqoume orðsei 4 Touc fusikoôc nìmouc (axi mata pou epalhjeôontai peiramatikˆ) me touc opoðouc sundèontai ta fusikˆ megèjh thc jewrðac mac (pq: oi nìmoi tou NeÔtwna sthn klasik mhqanik ) H diatôpwsh twn nìmwn ja prèpei na eðnai sômfwnh me thn arq sunalloi tou thc jewrðac 5 Touc adraneiakoôc parathrhtèc, dhlad ekeðnh thn omˆda parathrht n wc proc touc opoðouc oi fusikoð nìmoi thc jewrðac eðnai analloðwtoi Monˆqa aut h kathgorða parathrht n mporeð na ektelèsei peirˆmata gia na epalhjeôsei ìqi th jewrða H al jeia pou anaparistˆ h ekˆstote fusik jewrða den isqôei gia ìlouc touc parathrhtèc, allˆ monˆqa gia ekeðnouc pou orðzontai kˆje forˆ wc adraneiakoð 6 MÐa arq antistoiqðac; prosdiorismìc orðwn sta opoða diaforetikèc fusikèc jewrðec ofeðloun tautðzontai efìson perigrˆfoun fusikˆ fainìmena gia ta opoða amfìterouc èqoun lìgo Gia parˆdeigma: a) H jewrða thc genik c sqetikìthtac tautðzetai me th jewrða thc Neut niac barôthtac sthn perðptwsh asjen n pedðwn barôthtac b) H JewrÐa thc eidik c sqetikìthtac gia sqetikèc taqôthtec polô mikrìterec thc taqôthtac tou fwtìc sumpðptei me ta arijmhtikˆ apotelèsmata thc Neut niac Fusik c 2 BASIKES ALGEBRIKES DOMES Me ton ìro algebrik dom ( algebrikì sôsthma) anaferìmaste se mða sullog enìc perissotèrwn sunìlwn efodiasmènh me mða perissìterec duadikèc prˆxeic (eswterikèc exwterikèc) oi opoðec akoloujoôn sugkekrimèna axi mata (tautikì stoiqeðo, antðstrofo, prosetairistikìthta, antimetajetikìthta, epimeristikìthta) IsodÔnama ja mporoôse kˆpoioc na qarakthrðsei wc algebrik dom tic prˆxeic kai ta axi mata me ta opoða efodiˆzoume èna sônolo MÐa (eswterik - kleist ) duadik prˆxh se èna sônolo A den eðnai tðpote ˆllo parˆ mða apeikìnish A A A, en mða exwterik eðnai apeikìnish thc morf c B A A Genikìtera, mporoôme na skeftoôme kai prˆxeic me k-orðsmata, A k A } {{ A } A H diadikasða gia thn kataskeu algebrik n dom n eðnai polô k-forèc 5 Μαζί το δεύτερο και το τρίτο συστατικό λέμε ότι αποτελούν την Αρχή Συναλλοιώτου της θεωρίας μας 6 Το γεωμετρικό αντικείμενο είναι μία μαθηματική δομή που αποτελείται από συνιστώσες σε κάθε σύστημα συντεταγμένων (γεωμετρικοποιημένος παρατηρητής), και έναν νόμο μετασχηματισμού που συνδέει συνιστώσες σε διαφορετικά συστήματα συντεταγμένων 9

apl proqwr ntac stadiakˆ apì tic aploôsterec (mìno èna sônolo kai mða prˆxh) proc tic sunjetìterec (perissìtera sônola kai prˆxeic) domèc H omˆda, o daktôlioc, to pedðo, to prìtupo, o dianusmatikìc q roc, kai h ˆlgebra eðnai autèc pou sunantˆme pio suqnˆ sth jewrhtik Fusik, kaj c kai se ˆlla episthmonikˆ pedða ìpwc h QhmeÐa, h BiologÐa kai h Plhroforik (ed sunantˆme kai pl joc ˆllwn dom n) O tomèac twn majhmatik n pou meletˆei tic diˆforec algebrikèc domèc xeqwristˆ onomˆzetai afhrhmènh ˆlgebra (abstract algebra) EpÐshc, upˆrqei kai o klˆdoc thc kajolik c ˆlgebrac (universal algebra) ston opoðo kˆje diaforetikì eðdoc algebrik c dom c antimetwpðzetai san èna eniaðo antikeðmeno pou onomˆzetai genikeumènh ˆlgebra Gia parˆdeigma, ìlec oi omˆdec, ìla ta prìtupa, ìloi oi daktôlioi emfanðzoun th dom mðac genikeumènhc ˆlgebrac 'Opwc kˆje prospˆjeia genðkeushc, ètsi kai h kajolik ˆlgebra, ektìc thc oikonomikìterhc perigraf c pou prosfèrei, mèsa apì thn anˆdeixh koin n qarakthristik n se fainomenikˆ teleðwc diaforetikèc algebrikèc domèc; sumbˆlei kai sth diˆnoixh nèwn kateujônsewn, efarmozìmenh se teleðwc kainoôriec katastˆseic Autì fusikˆ ofeðletai sto ìti h kajolik ˆlgebra leitourgeð se èna an tero epðpedo afaðreshc apì thn afhrhmènh ˆlgebra 'Ena akìma an tero epðpedo afaðreshc epitugqˆnetai me th dhmiourgða thc filìdoxhc jewrðac kathgori n, ìpou plèon ìqi mìno kˆje diaforetik algebrik dom, allˆ kai kˆje ˆllo eðdoc majhmatik c dom c (pq: topologik, gewmetrik ) mporeð na melethjeð san èna aplì antikeðmeno th legìmenh kathgorða Me ˆlla lìgia ta diˆfora eðdh algebrik n kai gewmetrik n dom n epidèqontai th dom miac kathgorðac afhrhmènh ˆlgebra < kajolik ˆlgebra < jewrða kathgori n Gia parˆdeigma: 'Ola ta sônola katˆllhla efodiasmèna (prˆxh, axi mata) epidèqontai th dom omˆdac; kai ìlec oi omˆdec mazð mporoôn na jewrhjoôn san stoiqeða enìc nèou sunìlou to opoðo katˆllhla efodiasmèno epidèqetai th dom tìso miac genikeumènhc ˆlgebrac ìso kai miac kathgorðac H anˆgkh dhmiourgðac enopoihmènwn jewri n, ìpwc h kajolik ˆlgebra kai h jewrða kathgori n, basðzetai sthn parat rhsh ìti pollˆ diaforetikˆ eðdh algebrik n (kai mh algebrik n) dom n emfanðzoun megˆlo arijmì koin n qarakthristik n Gia parˆdeigma, metaxô dôo algebrik n dom n tou Ðdiou eðdouc mporoôme pˆntote na orðsoume ènan omomorfismì, dhlad mða apeikìnish pou diathreð thn ekˆstote dom (pðnakec prˆxewn) Sugkekrimèna diakrðnoume: omomorfismoôc omˆdwn, omomorfismoôc daktulðwn, omomorfismoôc protôpwn, omomorfismoôc dianusmatik n q rwn (oi pasðgnwstec grammikèc apeikonðshc), algebrikoôc omomorfismoôc, topologikoôc omomorfismoôc (gnwstoð wc suneqeðc sunart - seic), ktl Autì èqei wc apotèlesma, gia parˆdeigma, na sunantˆme sth jewrða twn omˆdwn jewr mata anˆloga me autˆ sth jewrða twn daktulðwn Merikèc shmantikèc algebrikèc domèc, mazð me kˆpoia shmantikˆ sumperˆsmata, sunoyðzontai parakˆtw: Omˆda (Gr): < G, > 1) G Set 2) : G G G 3) e (tautotikì stoiqeðo), g 1 (antðstrofoi), prosetairistikìthta 10

Se kˆje omˆda G to tautotikì stoiqeðo eðnai monadikì; kai gia kˆje g G upˆrqei monadikìc antðstrofoc g 1 'Otan h omˆda ikanopoieð epiplèon kai thn antimetajetik idiìthta (g 1 g 2 = g 2 g 1 ), tìte lègetai abelian omˆda kai grˆfoume < G, > ab H omˆda, an kai antimetwpðzetai apì touc FusikoÔc wc h aploôsterh algebrik dom, gðnetai eôkola antilhptì ìti sthn pragmatikìthta den eðnai Ta parakˆtw (epagwgikˆ) diagrˆmmata ro c uposthrðzoun aut n th jèsh Mˆgma (G, ) prosetairistikìthta Hmiomˆda e Monoeidèc g 1 Omˆda < G, >! = axiwmatik monadikìthta, (!) = apodeiknuìmenh monadikìthta [(G, ) & g i, g j G,! p, q G : g i p = g j, q g i = g j ] = G = omadoeidèc (quasigroup) G Qsg [G Qsg & g i G, (!) e G : g i e = e g i = g i ] = dexiì G-sÔnolo: G = brìqoc loop G Lp Mˆgma diairetìthta Omadoeidèc e Brìqoc prosetairistikìthta Omˆda 1) X Set, < G, > Gr 2) : X G X 3) x (g 1 g 2 ) = (x g 1 ) g 2, x e = x, x X, g 1, g 2 G OmoÐwc orðzetai kai to aristerì G-sÔnolo Lème ìti to G dra sto X apì ta dexiˆ KaloÔme troqiˆ enìc shmeðou x X to sônolo x G {y X y = x g, g G} DaktÔlioc (Rg): < R,, >, (prìsjesh), (pollaplasiasmìc) 1) R Set 2), : R R R 3) < R, > ab, prosetairistikì, epimeristikì aristerˆ kai dexiˆ pˆnw sto SumbolÐzoume to tautotikì stoiqeðo gia thn prìsjesh me 0 kai to onomˆzoume mhdenikì oudètero stoiqeðo En ton antðstrofo wc proc thn prìsjesh, pou antistoiqeð se kˆpoion a R, ton lème antðjeto tou a kai grˆfoume a, dhlad a ( a) = ( a) a = 0 Kˆpoiec basikèc idiìthtec enìc daktulðou, gia kˆje a i, a j R, eðnai oi ex c: 1) a i 0 = 0 a i = 0, 2) a i ( a j ) = ( a i ) a j = (a i a j ), kai 3) ( a i ) ( a j ) = a i a j 'Otan o daktôlioc èqei kai tautotikì (monadiaðo 1 R) stoiqeðo gia ton pollaplasiasmì, tìte lègetai monadiaðoc daktôlioc 'Enac monadiaðoc, antimetajetikìc 11

daktôlioc, pou èqei kai pollaplasiastikoôc antðstrofouc gia ta mh mhdenikˆ stoiqeða tou lègetai pedðo (pq: R, C) TonÐzoume th frˆsh mh mhdenikˆ stoiqeða diìti 0 a = a 0 = 0 gia kˆje a R 'Enac monadiaðoc, antimetajetikìc daktôlioc pou ikanopoieð epiplèon thn pollaplasiastik idiìthta thc diagraf c (isodônamo me th mh Ôparxh mhdenodiairètwn) lègetai akèraia perioq 'Ena mh mhdenikì stoiqeðo x R lème ìti eðnai ènac mhdenodiairèthc tou R ìtan upˆrqei y 0 R tètoio ste x y = 0 y x = 0 Kˆje pedðo eðnai kai akèraia perioq ; to antðjeto den isqôei To sônolo twn akeraðwn èqei th dom akèraiac perioq c, allˆ den eðnai pedðo (aristerì) R-Prìtupo (Mod R ): 1) < V, + > ab (dianôsmata), < R,, > 1 (bajmwtˆ) 2) : R V V (aristeroc) bajmwtìc pollaplasiasmìc 3) κ ( v + u) = κ v + κ u, (κ λ) v = κ v + λ v, (κ λ) v = κ (λ v), kai 1 v = v, gia kˆje κ, λ R, kai u, v V H dom pou anagnwrðzoume san dianusmatikì q ro (V ec F ), kai qrhsimopoioôme eurèwc stic jewrðec fusik c, den eðnai parˆ èna prìtupo pˆnw se èna pedðo F (sun jwc to R to C) Kˆpoiec basikèc idiìthtec pou sunepˆgetai h dom enìc F-dianusmatikoÔ q rou se èna sônolo V eðnai oi akìloujec ( λ F, v V ): 1)! 0 V : 0 + v = v + 0 = v; 2)! v V : v + ( v) = ( v) + v = 0; 3) 0 v = 0; 4) λ 0 = 0; 5) λ v = 0 λ = 0 v = 0; 5) ( 1) v = v To sônolo ìlwn twn grammik n apeikonðsewn apì èna R-prìtupo V ston daktôlio R efodiasmèno me tic katˆllhlec prˆxeic orðzei epðshc èna prìtupo gnwstì wc duikì prìtupo V Sugkekrimèna, eˆn f, g V eisˆgoume tic prˆxeic + kai me touc kanìnec: a) (f +g)( v) f( v) g( v), kai b) (λ f)( v) λ f( v) gia kˆje λ R, v V Sthn perðptwsh pou to V eðnai ènac dianusmatikìc q roc, lìgw tou ìti (V ) V (mèsw fusikoô isomorfismoô), h kataskeu duik n q rwn stamatˆei ston V To sônolo twn grammikˆ anexˆrthtwn dianusmˆtwn pou parˆgoun ènan dianusmatikì q ro V onomˆzetai bˆsh tou q rou V 'Enac dianusmatikìc q roc mporeð na èqei perissìterec apì mða bˆseic Koinì qarakthristikì ìlwn twn bˆsewn enìc V eðnai ìti èqoun ton Ðdio arijmì dianusmˆtwn O koinìc plhjˆrijmoc twn bˆsewn onomˆzetai diˆstash tou V kai grˆfoume dim(v ) Wc proc th diˆstas tou ènac dianusmatikìc q roc qarakthrðzetai wc peperasmènoc mh peperasmènoc (apeirodiˆstatoc) To axðwma thc epilog c, isodônama to l mma tou Zorn, exasfalðzoun thn Ôparxh bˆshc se opoiond pote dianusmatikì q ro; se antðjesh me ta prìtupa pou mporeð na èqoun ìqi bˆsh Prìtupa ta opoða èqoun bˆsh onomˆzontai eleôjera prìtupa; kˆje dianusmatikìc q roc eðnai èna eleôjero prìtupo Ta eleôjera prìtupa, ìmwc, èqoun mða jemeli dh diaforˆ me touc dianusmatikoôc q rouc, oi bˆseic touc den èqoun stajerì arijmì stoiqeðwn Monˆqa 12

sthn perðptwsh pou o daktôlioc R pˆnw ston opoðo orðzetai to eleôjero prìtupo ikanopoieð thn idiìthta IBN (analloðwtoc plhjˆrijmoc bˆshc-invariant basis number) 7 ìlec oi bˆseic tou protôpou èqoun ton Ðdio plhjˆrijmo Autìn ton stajerì arijmì onomˆzoume tˆxh tou eleôjerou protôpou, orologða isodônamh thc diˆstashc twn dianusmatik n q rwn Eˆn sumbolðsoume me Bs(V ) to sônolo ìlwn twn bˆsewn enìc dianusmatikoô q rou V, tìte mporoôme na grˆyoume ta ex c (! dhl nei Ôparxh kai monadikìthta, F n m = sônolo (n m)-pinˆkwn): [ ] dim(v ) = n, { e i } Bs(V ), i = 1,, n = v V,! v i F : v = v i e i { e i }, { m j } Bs(V )!A i j, B i j F : e i = A j i m j & m i = B j i e j A i rb r j = B i ra r j = δ i j AB = BA = I = diag(1,, 1), A [A i j], B [B i j] F n n = B = A 1, det(a) 0 v V = v = v i e i = ṽ i m i = v i = B i jṽ j & ṽ i = A i jv j Oi grammikèc apeikonðseic θ i : V F, θ i ( v) v i, ìpou v = v i e i kai i = 1,, n (probol pˆnw sth bˆsh { e i } tou V ), orðzoun mða bˆsh {θ i } ston V H bˆsh aut eðnai gnwst wc duik bˆsh sthn { e i } tou V Profan c lìgw thc probolik c idiìthtac isqôei ìti θ i ( e j ) = δj i Sunep c dim(v ) = dim(v ) = n F-'Algebra (Alg F ): 1) V V ec F, 2) : V V V, 3) L(V, V ; V ) (blèpe orismì polugrammik c apeikìnishc sto tèloc aut c thc enìthtac) Eˆn V Alg F kai epiplèon o dianusmatikìc pollaplasiasmìc eðnai prosetairistikìc, tìte lème ìti to sônolo V èqei th dom mðac prosetairistik c F-ˆlgebrac MÐa prosetairistik ˆlgebra epð tou pedðou F pou èqei monadiaðo diˆnusma gia thn prˆxh lègetai monadiaða prosetairistik F-ˆlgebra MÐa F-ˆlgebra sthn opoða h prˆxh eðnai antimetajetik lègetai antimetajetik F-ˆlgebra EpÐshc, mða ˆllh polô shmantik algebrik dom pou mporoôme na ftiˆxoume xekin ntac apì mða F-ˆlgebra eðnai aut thc ˆlgebrac Lie Sugkekrimèna [ ] V Alg F, v v = 0, v ( u w) + u ( w v) + w ( v u) = 0, v, u, w V }{{} (Jacobi identity) V = ˆlgebra Lie V Lie F = [, ] = agkôlh Lie ( ) [, ] L(V, V ; V ) & [ v, v] = 0 = [ v, u] = [ u, v] Jacobi: [ v, [ u, w]] + [ u, [ w, v]] + [ w, [ v, u]] = 0 7 Λέμε ότι ένας δακτύλιος R ικανοποιεί την ιδιότητα IBN εάν και μόνον εάν για κάθε m, n Z +, τα R-πρότυπα R m και R n είναι ισομορφικά μονάχα για m = n Κάθε πεδίο και κάθε αντιμεταθετικός δακτύλιος ικανοποιούν την ιδιότητα IBN 13

Qrhsimopoi ntac tic parapˆnw basikèc algebrikèc domèc, ènac aplìc trìpoc na dhmiourg soume nèa algebrikˆ sust mata upˆkoua se autèc tic domèc eðnai to Kartesianì ginìmeno ( eujô ˆjroisma, gia peperasmèna sust mata) Sugkekrimèna, xekin ntac apì dôo algebrikˆ sust mata A kai B tou Ðdiou tôpou mporoôme na ftiˆxoume èna nèo sôsthma, epðshc tou Ðdiou tôpou, eˆn orðsoume wc basikì sônolo to A B kai wc basikèc prˆxeic autèc pou epˆgontai anˆ sunist sa apì ta arqikˆ sust mata Gia parˆdeigma, eˆn èqoume dôo omˆdec < G, > kai < H, >, to sônolo G H efodiasmèno me thn prˆxh (g 1, h 1 ) (g 2, h 2 ) (g 1 g 2, h 1 h 2 ) gia kˆje g i G, h j H, eôkola apodeiknôetai ìti ikanopoieð th dom miac omˆdac Sthn perðptwsh peperasmènwn dianusmatik n q rwn isqôei ìti dim(v W ) = dim(v ) + dim(w ) EpÐshc, anatrèqontac sthn idèa tou uposunìlou mporoôme xekin ntac apì gnwstˆ algebrikˆ sust mata na dhmiourg soume nèa algebrikˆ sust mata tou Ðdiou tôpou Gia parˆdeigma, eˆn < G, > eðnai mða omˆda kai H G tètoio ste (H, ) eðnai epðshc omˆda, tìte ja lème ìti to H eðnai mða upoomˆda tou G; kai ja grˆfoume H < G Me parìmoio trìpo orðzoume upodaktulðouc, upopedða, upoprìtupa, (dianusmatikoôc) upìqwrouc, upoˆlgebrec, ktl 'Eqontac qtðsei kˆpoiec basikèc algebrikèc domèc, pollèc forèc qreiazìmaste kˆpoia epiplèon ergaleða ètsi ste na melet soume kai na sugkrðnoume diaforetikèc domèc pou ègkeitai sthn Ðdia kathgorða Tètoia ergaleða ta ftiˆqnoume sun jwc qrhsimopoi ntac a- peikonðseic pou phgaðnoun apì mða omˆda G se mða ˆllh omˆda G, apì èna prìtupo V se èna ˆllo V kai oôtw kajex c Apì thn plhj ra tètoiwn apeikonðsewn shmantikìteroi eðnai oi omomorfismoð (diathroôn th dom ) Anˆloga me to eðdoc twn dom n pou sundèoun diakrðnontai se omomorfismoôc omˆdac, omomorfismoôc daktulðou, omomorfismoôc metaxô dianusmatik n q rwn (grammikèc apeikonðseic), algebrikoôc omomorfismoôc, kai pˆei lègontac Genikˆ, metaxô dôo algebrik n dom n A kai A tou Ðdiou tôpou, ènac omomorfismìc f : A A ikanopoieð th sunj kh f(a 1 a 2 ) = f(a 1 ) f(a 2 ) gia kˆje a 1, a 2 A, kai lème ìti to A eðnai omomorfikì me to f(a) A 'Opwc ja doôme sthn epìmenh enìthta antðstoiqec apeikonðseic pou diathroôn gewmetrikèc kai topologikèc domèc eðnai oi suneqeðc sunart seic kai oi omoiomorfismoð omomorfismìc epi epimorfismìc, omomorfismìc omomorfismìc A A endomorfismìc omomorfismìc 1 1 monomorfismìc epi, 1-1 isomorfismìc epi, 1-1 automorfismìc Mèsw apeikonðsewn ìpwc oi omomorfismoð, orðzontac nèec apeikonðseic ìpwc sthn perðptwsh tou V, mporoôme na ftiˆqnoume kainoôria sônola ikanˆ na upakoôsoun se dh gnwstèc domèc 'Ena sônolo apeikonðsewn, polô shmantikì gia thn anˆptuxh thc tanustik c jewrðac, eðnai autì twn polugrammik n apeikonðsewn Eˆn V i, W V ec F gia i = 1, 2,, n, tìte mða polugrammik apeikìnish eðnai mða sunˆrthsh f : V 1 V n W pou eðnai grammik se kajèna apì ta orðsmatˆ thc kai grˆfoume f L(V 1,, V n ; W ) To sônolo L(V 1,, V n ; W ) efodiasmèno me mða katˆ shmeðo dianusmatik prìsjesh kai ènan katˆ shmeðo bajmwtì pollaplasiasmì pˆnw sto pedðo F apoktˆ th dom enìc F-dianusmatikoÔ 14

q rou me diˆstash [ ] dim L(V 1,, V n ; W ) = dim(v 1 ) dim(v n ) dim(w ) H teleutaða al jeia sthrðzetai sta akìlouja: 'Estw E i 1i n r ( v 1,, v n ) (v i 1 1 v in n ) W br, v i V i, ìpou { e kik } Bs(V k ), { b r } Bs(W ) E i 1i n r L(V 1,, V n ; W ) = E i 1i n r ( e 1j1,, e njn ) = (δ i 1 j1 δ in j n ) W br {E i 1i n r } {E i 1i n r : i k = 1, 2,, dim(v k ), k = 1, n, r = 1, 2,, dim(w )} Bs[L(V 1,, V n ; W )] 'Ara f L(V 1,, V n ; W ), (!) f r i 1 i n F : f = f r i 1 i n E i 1i n r 'Opwc ja èqei gðnei dh antilhptì, ìtan èqoume dôo diaforetikˆ sônola A,B efodiasmèna to kajèna me kˆpoia dedomènh algebrik dom eswterik n-exwterik n prˆxewn kai axiwmˆtwn, tìte ja lème ìti ta orizìmena algebrikˆ sust mata A, B eðnai tou Ðdiou tôpou ìtan ja èqoun tautìshmh algebrik dom (Ðdio arijmì sunìlwn, Ðdiac morf c prˆxeic, Ðdia axi mata) ( ) SÔnolo A A A A, B A A, A C A, A n A, n Z + eisagwg nèwn sunìlwn (mporeð na èqoun dom ) me drˆsh sto arqikì A axi mataprwtìkollo sumperiforˆc } {{ } ALGEBRIKH DOMH = ALGEBRIKO SUSTHMA A ParathroÔme ìti opoiasd pote morf c apeikìnish den eðnai katˆllhlh gia na orðsei mða algebrik dom Oi apeikonðseic, ìpwc kai ta sônola, eðnai aplèc majhmatikèc ontìthtec, oi opoðec mporoôn na stajoôn apì mìnec touc èxw apì algebrikèc (kai mh algebrikèc) domèc 3 BASIKES TOPOLOGIKES KAI GEWMETRI- KES DOMES 'Opwc eðdame, ìlec oi algebrikèc domèc pˆnw se èna sônolo A qarakthrðzontai apì apeikonðseic pou kˆnoun prˆxeic pˆnw sta stoiqeða tou A dðnontac asfal c ˆlla stoiqeða pˆli mèsa sto A An kai autèc oi domèc mac bohjˆne na anaptôxoume polô isqurˆ majhmatikˆ montèla gia thn perigraf tou FusikoÔ Kìsmou, apotugqˆnoun sto na perigrˆyoun ìlec 15

tic diaforetikèc fusikèc sumperiforèc pou parathroôntai Gi autìn to lìgo nèec mh algebrikèc domèc èqoun anaptuqjeð gia na kalôyoun autèc tic anˆgkec Oi basikìterec apì autèc tic domèc, pou apasqoloôn touc jewrhtikoôc fusikoôc, eðnai oi topologikèc kai oi gewmetrikèc, kaj c kai ekeðnec pou eisˆgoun thn ènnoia thc sqèsewc isodunamðac 'Otan èna sônolo eðnai efodiasmèno me gewmetrikèc kai topologikèc domèc, sunhjðzoume na to apokaloôme q ro kai ta stoiqeða tou shmeða ( ) SÔnolo X X X R, metrik -apìstash U X R n, topikèc suntetagmènec R n R n, omˆda metasqhmatism n T X {U i X i I}, topologða X n R k, n, k Z + X X {T, F }, sqèsh (isodunamðac), Γ i jk, sunoq, parallhlh metatìpish axi mataprwtìkollo sumperiforˆc } {{ } MH ALGEBRIKH - GEWMETRIKH - TOPOLOGIKH DOMH = MH ALGEBRIKO - GEWMETRIKO - TOPOLOGIKO SUSTHMA X SÔnola,,,, SÔnola ApeikonÐseic Kˆpoiec basikèc topologikèc kai gewmetrikèc domèc (sust mata) eðnai oi akìloujec: Topologikìc q roc: (X, T X ) 1) X Set 2) T X {U i X i I} 3), X T X, i U i = X (epikˆluyh), kai to T X eðnai kleistì se peperasmènec 8 tomèc kai se opoiod pote arijmì en sewn twn 8 Απαιτούνται πεπερασμένες τομές, διότι εάν επιτρέπονταν απεριόριστες τομές θα παραβιαζόταν η κλειστότητα του T X Για παράδειγμα, στην περίπτωση της Ευκλείδειας ευθείας, όπου X = R και το T X παράγεται από ενώσεις όλων των ανοιχτών υποσυνόλων (a, b) του R, για κάθε n Z + έχουμε i=1 ( 1 n, 1 ) = {0} T X (δεν είναι ανοιχτό υποσύνολο) n 16

stoiqeðwn tou To sônolo T X kˆpoiwn uposunìlwn tou X, pou upakoôei sta parapˆnw axi mata, onomˆzetai topologða kai lème ìti orðzei sto sônolo X mia topologik dom Ta stoiqeða thc topologðac T X onomˆzontai anoiqtˆ uposônola To Ðdio sônolo X mporeð na efodiasteð me diaforetikèc topologðec T X kai T X, odhg ntac sth dhmiourgða dôo teleðwc diaforetik n q rwn (X, T X ) kai (X, T X ) ParathroÔme ìti, se antðjesh me tic algebrikèc domèc, mða topologik dom ousiastikˆ efodiˆzei to q ro-sônolo me thn ènnoia thc geitoniˆc kai thc topikìthtac DiakrÐnoume ta ex c basikˆ eðdh topologðac gia ènan q ro X: a) thn tetrimmènh ( elˆqisth mh diakrit ) topologða {, X}; b) th diakrit ( mègisth) topologða pou perièqei ìla ta uposônola tou X, dhlad to T X eðnai to dunamosônolo P (X); g) thn EukleÐdeia ( sunhjismènh) topologða ìtan X = R n (parˆgetai apì en seic ìlwn twn anoiqt n sfair n); d) thn epagìmenh topologða ( topologða upoq rou) S X; T S {S U U T X } = epagìmenh topologða = (S, T S ) = topologikìc upìqwroc tou (X, T X ) EpÐshc, èna shmantikì ergaleðo pou qrhsimopoioôme gia na sugkrðnoume thn topologik dom dôo diaforetik n topologik n q rwn, èstw (X, T X ) kai (Y, T Y ), eðnai autì thc suneqoôc sunˆrthshc Sugkekrimèna [f : (X, T X ) (Y, T Y ), f 1 (V ) T X, V T Y ] f = suneq c sunˆrthsh [ f = suneq c sunˆrthsh f = (1 1, epð) f 1 ] [ f 1 = suneq c sunˆrthsh ] f = omoiomorfismìc Me ˆlla lìgia ènac omoiomorfismìc metaxô dôo topologik n q rwn den eðnai parˆ mða amfimonos manth kai amfisuneq c sunˆrthsh 'Otan dôo topologikoð q roi sundèontai me omoiomorfismì lègontai omoiomorfikoð, kai apì topologik c pleurˆc eðnai akrib c Ðdioi Suqnˆ to na deðxoume ìti dôo q roi eðnai omoiomorfikoð, brðskontac ènan omoiomorfismì, den eðnai kajìlou eôkolo kai gi autì to lìgo qreiˆzetai na anatrèxoume sto ex c basikì je rhma: Kˆje topologikìc q roc eðte lìgw thc topologðac tou eðte (ex arq c) axiwmatikˆ emfanðzei sugkekrimèna qarakthristikˆ (topologikˆ analloðwta), ta opoða paramènoun analloðwta kˆtw apì omoiomorfismoôc Me bˆsh autì to je rhma sumperaðnoume ta ex c: a) DÔo topologikoð q roi pou de moirˆzontai ta Ðdia topologikˆ analloðwta den eðnai omoiomorfikoð b) DÔo topologikoð q roi pou eðnai omoiomorfikoð moirˆzontai ta Ðdia topologikˆ analloðwta Gia parˆdeigma, mða sfaðra kai ènac tìroc (ntìnatc) den eðnai omoiomorfikoð q roi, diìti de moirˆzontai to topologikì analloðwto pou sqetðzetai me ton arijmì twn op n pou diajètoun wc q roi; mða sfaðra den èqei trôpec, en ènac tìroc èqei mða AntÐjeta, kˆpoioc mporeð na deðxei ìti mða koôpa me qeroôli kai ènac tìroc eðnai omoiomorfikoð q roi H dom tou topologikoô q rou apeleujer nei th skèyh mac apì ta EukleÐdeia desmˆ thc kai mac wjeð sto na taxinom soume tic idiìthtec enìc q rou se: 17

a) PrwtogeneÐc (endogeneðc) idiìthtec Autèc pou perigrˆfoun qarakthristikˆ tou q rou apì apeujeðac parembˆseic sta shmeða tou anˆloga me tic geitonièc pou orðzei h topologða pou èqoume eisˆgei b) DeuterogeneÐc (exwgeneðc) idiìthtec Autèc prokôptoun apì sumperˆsmata ta opoða exˆgontai apì drˆseic (parˆllhlh metatìpish, parag gish) mac pˆnw se gewmetrikˆ antikeðmena embaptismèna mèsa sto q ro Se autèc tic idiìthtec ja anaferjoôme ìtan orðsoume thn ènnoia tou gewmetrikoô antikeimènou kai thc parag gishc Ja doôme ìti ènac topologikìc q roc efodiasmènoc me mða sunoq emfanðzei qarakthristikˆ ìpwc h strèyh (mh kleðsimo parallhlogrˆmmou) kai h kampulìthta (mh taôtish parˆllhla metatopismènou dianôsmatoc katˆ m koc enìc brìqou) H pl rhc gn sh tou q rou epitugqˆnetai mèsw thc melèthc kai me touc dôo parapˆnw trìpouc O kˆje trìpoc mac dðnei ˆllou eðdouc plhroforða gia ton q ro leitourg ntac sumplhrwmatikˆ Gia parˆdeigma analogisteðte tic enèrgeiec stic opoðec probaðnete ìtan jèlete na gnwrðsete èna ˆtomo Ousiastikˆ mporeðte eðte na èrjete se ˆmesh aisjhthriak epaf mazð tou eðte na rwt sete ˆlla ˆtoma pou to gnwrðzoun Oi Ðdiec akrib c enèrgeiec mporoôn na ektelestoôn kai katˆ thn anagn rish enìc q rou Basikèc prwtogeneðc idiìthtec enìc topologikoô q rou eðnai oi akìloujec: 1 H sumpagìthta (compactness) Wc proc aut n thn idiìthta ènac q roc mporeð na entaqjeð se dôo basikèc upokathgorðec: a) stouc sumpageðc q rouc (compact spaces), kai b) stouc parasumpageðc q rouc (paracompact spaces) 2 H sunektikìthta (connectedness) Aut h idiìthta mˆc deðqnei praktikˆ an ènac q roc eðnai enniaðoc qwrismènoc se kommˆtia Me bˆsh aut n ènac q roc mporeð na qarakthristeð wc: a) sunektikìc (connected), b) lìgw diadrom c-sunektikìc, dromikˆ sunektikìc, (path-connected) kai g) aplˆ sunektikìc (simply connected) Anatrèqontac sthn upˆrqousa bibliografða kˆpoioc mporeð na brei kai ˆlla pollˆ eðdh sunektikìthtac anˆloga me to ti meletˆme kˆje forˆ Ta trða proanaferjènta eðnai autˆ pou sunant ntai suqnìtera sth jewrhtik fusik 3 H diaqwrisimìthta (separability) ta axi mata diaqwrismoô SÔmfwna me aut n thn idiìthta ènac topologikìc q roc diakrðnetai sta parakˆtw eðdh: a) Q roc Kolmogorov (T 0 -q roc), b) Q roc Fréchet (T 1 -q roc), g) Q roc Hausdorff (T 2 -q roc), d) Omalìc (regular) q roc Hausdorff (T 3 -q roc), e) Kanonikìc (normal) q roc Hausdorff (T 4 -q roc), kai st) Tèleia kanonikìc (completely normal) q roc Hausdorff Gia na perigrafoôn oi idiìthtec twn parapˆnw topologik n q rwn, kˆpoia ˆlla basikˆ ergaleða (pˆntote sônola kai sunart seic; tðpota ˆllo den upˆrqei, mìno autˆ), pèran twn suneq n sunart sewn kai twn omoiomorfism n, eðnai ta ex c: 1) 18

H epikˆluyh, 2) h anoiqt epikˆluyh, 3) h upoepikˆluyh, 4) to koskðnisma kai 5) h diadromh 'Enac topologikìc q roc lègetai sumpag c ìtan gia kˆje anoiqt epikˆluy tou mpor na brw toulˆqiston mða peperasmènh anoiqt upoepikˆluyh Dhlad mia upoepikˆluyh me peperasmèno arijmì stoiqeðwn 'Estw (X, T X ) ènac topologikìc q roc, tìte mða epikˆluy tou C 1 (X) eðnai èna sônolo uposunìlwn tou pou ton parˆgei Dhlad C 1 (X) {A i A i X, i I} ìpou i = 1, 2,, n, ètsi ste i A i = X 'Ara, h topologða enìc q rou eðnai apl c mða epikˆluy tou kleist se en seic kai se peperasmènec tomèc, pou perièqei ta tetrimmèna uposônola Eˆn epiplèon ta uposônola A i an koun sthn topologða T X, h C 1 (X) qarakthrðzetai wc anoiqt epikˆluyh (open cover) tou X 'Ena uposônolo 9 thc (anoiqt c) epikˆluyhc C 1 (X) pou suneqðzei na parˆgei-kalôptei ton q ro lègetai (anoiqt ) upoepikˆluyh (subcover) Ed axðzei na shmei soume ìti mða epikˆluyh thc opoðac ta stoiqeða eðnai uposônola twn stoiqeðwn miac dedomènhc epikˆluyhc kaleðtai koskðnisma (refinement) Algebrikˆ ennooôme ta ex c: Eˆn C 1 (X) mða epikˆluyh, tìte h epikˆluyh C r(1) (X) {B i B i A j, A j C 1 (X)} ìpou i I, j J, lègetai koskðnisma To koskðnisma eðnai èna eðdoc diamelismoô miac dh upˆrqousac epikˆluyhc 'Oloi oi peperasmènoi 10 topologikoð q roi kai ìla ta kleistˆ uposônola [a, b] tou R eðnai sumpageðc q roi Sugkekrimèna se ènan q ro peperasmènou arijmoô shmeðwn opoiad pote anoiqt epikˆluyh ja eðnai peperasmènh, kai sunep c ja apoteleð h Ðdia peperasmènh upoepikˆluyh tou eautoô thc Apì thn ˆllh pleurˆ h apìdeixh thc sumpagìthtac tou [a, b] den eðnai tìso tetrimmènh kai mˆlista kajðstatai adônath me thn ˆmesh qr sh tou orismoô pou d same Autì ofeðletai sto gegonìc ìti o orismìc apaiteð thn exètash ìlwn twn anoiqt n epikalôyewn tou q rou oi opoðec sthn perðptws mac teðnoun sto ˆpeiro kajist ntac adônath th melèth kajemðac xeqwristˆ Gi autì to lìgo anatrèqoume sto je rhma twn Heine-Borel SÔmfwna me autì eˆn A R n, tìte to A eðnai sumpagèc eˆn kai mìno an to A eðnai kleistì (closed) kai fragmèno (bounded) 'Otan n = 1, A = [a, b] Gia n = 2, A = (x 0, r) = dðskoc me kèntro to shmeðo x 0 kai aktðna r, dhlad (x 0, r) = {x R 2 d(x, x 0 ) r, r R, x 0 R 2 } ìpou d(x, x 0 ) = x x 0 eðnai h apìstash metaxô twn dosmènwn shmeðwn Gia n = 3, to A eðnai sfaðra, dhlad S(x 0, r) = {x R 3 x x 0 r} 9 Κάθε σύνολο μπορεί να θεωρηθεί και ως υποσύνολο του εαυτού του, δηλαδή A A 10 Αποτελούνται από πεπερασμένο πλήθος σημείων 19

Praktikˆ ja mporoôsame na poôme ìti ènac q roc eðnai sumpag c ìtan afair ntac stoiqeða apì mia opoiad pote epikˆluy tou paramènei kalummènoc apì peperasmèno arijmì stoiqeðwn thc 'Enac topologikìc q roc (X, T X ) lème ìti eðnai Hausdorff eˆn h topologða tou eðnai tètoia ste dôo opoiad pote shmeða tou na mporoôn na an koun se xèna anoiqtˆ uposônola Sun jwc sth Fusik oi q roi upobˆjrou thc jewrðac mac prèpei na ikanopoioôn autì to aplì axðwma diaqwrisimìthtac Me autìn ton trìpo mporoôn dôo shmeða na diaqwristoôn apolôtwc kai na melethjoôn to èna anexèrthta apì to ˆllo Mˆlista h anexarthsða twn diastˆsewn enìc q rou ja prèpei na èqei ˆmesh sqèsh me thn ènnoia thc diaqwrhsimìthtˆc tou Se antðjeth perðptwsh den ja Ðsque h arq thc epallhlðac Hausdorff - Diaqwrisimìthta - Arq epallhlðac 'Enac q roc lègetai sunektikìc eˆn DEN mporeð na grafeð san ènwsh dôo perissotèrwn xènwn mh ken n anoiqt n uposunìlwn thc dojeðsac topologðac Sthn antðjeth perðptwsh qarakthrðzetai wc mh sunektikìc (disconnected) Gia parˆdeigma, ènac topologikìc q roc efodiasmènoc me thn tetrimènh topologða eðnai pˆntote sunektikìc, dhlad èna enniaðo kommˆti Apì thn ˆllh pleurˆ ènac peperasmènoc topologikìc q roc me th diakekrimènh topologða den eðnai potè sunektikìc diìti mporeð pˆntote na spˆsei se xèna anoiqtˆ uposônola Je rhma 31 Eˆn ènac q roc X eðnai mh sunektikìc oi nhsðdec stic opoðec diaireðtai eðnai lìgw diadrom c sunektikèc kai lègontai sunektikèc sunist sec (X i ) Kˆje sunektik sunist sa eðnai ousiastikˆ mða klˆsh isodunamðac pou orðzetai apì thn akìloujh sqèsh isodunamðac: x y diadrom apì to x sto y Grˆfoume [x] = X i KaloÔme aplˆ sunektikì ènan topologikì q ro qwrðc opèc Diaisjhtikˆ autì gðnetai eôkola antilhpto, kai ìpwc ja doôme aut h pr th aðsjhsh pou èqoume de diafèrei shmantikˆ apì autì pou antilambˆnetai ènac gewmètrhc 'Otan sthn topologða lème ìti ènac q roc den èqei trôpec ennooôme ìti opoiad pote kleist diadrom 11 ston X mporeð na surriknwjeð suneq c se èna shmeðo entìc tou X, isodônama, diathr ntac stajèra ta ˆkra, mia opoiad pote anoiqt diadrom mporeð na paramorfwjeð suneq c (mèsw miac omotopðac 12 ) se opoiad pote ˆllh me ta Ðdia ˆkra EpÐshc, gia na metr soume katˆ pìso ènac topologikìc q roc apèqei apì to na gðnei aplˆ 11 Συνεχής συνάρτηση p από το [0, 1](εφοδιασμένο με επαγόμενη τοπολογία) στο X τέτοια ώστε p(0) = p(1) 12 Αλγεβρικά η έννοια του συνεχή μετασχηματισμού μιας ανοιχτής διαδρομής σε μία άλλη εκφράζεται με μία συνεχή συνάρτηση που λέγεται ομοτοπία Εάν C 1 : [0, 1] X και C 2 : [0, 1] X είναι δύο διαδρομές με κοινά άκρα, δηλαδή C 1 (0) = C 2 (0) = p X και C 1 (1) = C 2 (1) = q X, τότε θα λέμε ότι η C 1 είναι 20

sunektikìc, sunhjðzetai na qrhsimopoioôme thn algebrik dom thc jemeli douc omˆdac (fundamental group) wc proc èna dedomèno shmeðo x 0 X Aut h jemeli dhc omˆda sumbolðzetai me π 1 (X, x 0 ) kai mporeð na oristeð wc to sônolo twn omotopik n klˆsewn isodunamðac pou epˆgontai apì th suneq surrðknwsh ìlwn twn brìqwn pou dièrqontai apì to stajerì shmeðo x 0 QarakthrÐzoume wc dromikˆ sunektikì ènan topologikì q ro (X, T X ) ston o- poðo dôo opoiad pote shmeða tou mporoôn na enwjoôn mèsw mðac diadrom c Kˆje aplˆ sunektikìc q roc eðnai kai dromikˆ sunektikìc, to antðjeto ìmwc den isqôei Je rhma 32 Kˆje lìgw diadrom c-sunektikìc q roc eðnai sunektikìc allˆ to antðstrofo den eðnai pˆntote alhjèc Topologik pollaplìthta M: 'Enac Hausdorff, sunektikìc topologikìc q roc M o opoðoc moiˆzei topikˆ ston EukleÐdeio q ro R n (efodiasmènoc me th sun jh topologða) H teleutaða frˆsh shmaðnei ìti o q roc M eðnai efodiasmènoc me mða anoiqt epikˆluyh C = {U i M} tètoia ste gia kˆje anoiqtì uposônolo U i C na upˆrqei ènac topikìc omoiomorfismìc φ i : U i M φ i (U i ) R n, ìpou φ i (U i ) eðnai èna anoiqtì uposônolo tou R n Tìte lème ìti h topologik pollaplìthta M èqei diˆstash n, kai grˆfoume dim(m) = n SÔmfwna me to je rhma analloðwtou pedðou tou Brouwer, eˆn U, V R n, to U eðnai anoiqtì uposônolo, kai f : U V eðnai ènac omoiomorfismìc, tìte to uposônolo V eðnai epðshc anoiqtì wc proc th sun jh topologða tou R n Qrhsimopoi ntac autì to je rhma mporoôme na deðxoume ìti: 1) Oi q roi R m kai R n eðnai omoiomorfikoð eˆn kai mìnon eˆn n = m, kai 2) eˆn m n kanèna (mh kenì) anoiqtì uposônolo tou R n den mporeð na eðnai omoiomorfikì me anoiqtˆ uposônola tou R m H diˆstash miac topologik c pollaplìthtac M eðnai monadik Eˆn kˆti tètoio den Ðsquei tìte ja odhgoômastan se anatrop twn sumperasmˆtwn tou parapˆnw plaisðou kai sunep c se ˆtopo Sugkekrimèna, ja up rqan topikoð omoiomorfismoð ψ α : V α M ψ α (V α ) R m tètoioi ste sta shmeða allhloepikˆluyhc V α U i oi apeikonðseic ψ α φ 1 i na prèpei na eðnai omoiomorfismoð apì anoiqtˆ uposônola tou R n se anoiqtˆ uposônola tou R m, ATOPO Aut h analloi thta thc diˆstashc sunepˆgetai ìti dôo topologikèc pollaplìthtec me diaforetik diˆstash eðnai adônaton na eðnai omoiomorfikèc ομότοπη με τη C 2 όταν υπάρχει μία συνεχής συνάρτηση (ομοτοπία) h : [0, 1] [0, 1] X τέτοια ώστε: 1) h(t, s = 0) = C 1 (t), t [0, 1], 2) h(t, s = 1) = C 2 (t), t [0, 1], και 3) h(t = 0, s) = p, h(t = 1, s) = q, s (0, 1) Η παράμετρος s διακρίνει τις ενδιάμεσες διαδρομές (από τη C 1 μέχρι τη C 2 ), και η παράμετρος t τρέχει κατά μήκος τους (όπως ο χρόνος στην κίνηση ενός σωματιδίου) 21

EpÐshc, apaitoôme apì mða topologik pollaplìthta na eðnai sunektik san topologikìc q roc ètsi ste na apokleistoôn oi peript seic Ôparxhc topik n omoiomorfism n se diaforetik c diˆstashc EukleÐdeiouc q rouc R n 'Enac mh sunektikìc q roc den mporeð pˆntote na orðsei mða topologik pollaplìthta, diìti mporeð na a- poteleðtai apì sunektikèc sunist sec ikanèc na orðsoun topologikèc pollaplìthtec diaforetik c diˆstashc Eˆn orðzame wc topologik pollaplìthta ènan Hausdorff topologikì q ro M efodiasmèno me mða anoiqt epikˆluyh {U i } kai topikoôc omoiomorfismoôc φ i : U i φ i (U i ) R n i ìpou φ i (U i ) anoiqtˆ uposônola, tìte h ènnoia thc diˆstashc de ja tan kal c orismènh Se aut n thn perðptwsh h apaðthsh gia sunektikìthta ja tan aparaðthth ètsi ste n i = n gia kˆje i I Kˆje zeôgoc (U a, φ a ) onomˆzetai qˆrthc kai lème ìti orðzei èna topikì sôsthma suntetagmènwn ( {x i } me i ) = 1, 2,, n Sugkekrimèna gia kˆje p U a grˆfoume φ a (p) = x 1 (p),, x n (p), ìpou x i x i a pr i φ a eðnai oi sunart seic suntetagmènwn { kai } pr i oi probolikèc sunart seic apì ton R n sto R To sônolo J M (U a, φ a ) ìlwn twn qart n ston M onomˆzetai ˆtlac Gia na kˆnoume fusik, ìmwc, h dom thc topologik c pollaplìthtac den eðnai arket miac kai apousiˆzoun teleðwc oi ènnoiec thc apeirost c metabol c kai thc diaforisimìthtac Gi autìn ton lìgo prèpei na eisˆgoume thn ènnoia thc leðac dom c (genðkeush thc k-diaforðsimhc dom c gia k = ) Onomˆzoume leða pollaplìthta ( C -pollaplìthta) (M, J M ) kˆje topologik pollaplìthta M sthn opoða oi sunart seic allhloepikˆluyhc φ a φ 1 b : φ b (U a U b ) R n φ a (U a U b )R n eðnai leðec (C ) gia kˆje epilog deikt n (a, b) ètsi ste U a U b Sq ma 1: Oi sunart seic allhloepikˆluyhc 22

'Enac ˆtlac J M pˆnw se mða topologik pollaplìthta M pou ikanopoieð thn parapˆnw sunj kh diaforisimìthtac onomˆzetai leða dom 'Estw (U a, φ a ) kai (U b, φ b ) dôo allhloepikaluptìmenoi qˆrtec pˆnw se mða leða pollaplìthta M me suntetagmènec {x i } kai {x i } antðstoiqa Epeid oi apeikonðseic φ a, φ b eðnai omoiomorfismoð, kai oi antðstrofèc touc φ 1 a, φ 1 b eðnai omoiomorfismoð; omoðwc kai oi sunjèseic sunart sewn pou prokôptoun 'Ara oi φ a φ 1 b kai φ b φ 1 a ektìc apì leðec eðnai kai omoiomorfismoð (amfidiaforðseic, diaforomorfismoð) Ousiastikˆ, me thn apaðthsh na eðnai lèiec, oi sunart seic allhloepikˆluyeic orðzoun ènan epitreptì metasqhmatismì suntetagmènwn x i = x i (x i ), x i = x i (x i ) me orðzousa Iakwbian c diˆforh tou mhdenìc (det[ji i ] 0) O pðnakac thc iakwbian c orðzetai wc J i i xi x i kai ikanopoieð tic sqèseic antistreyimìthtac Ji i i Jj = δj i kai J i i J i j = δi j Me th bo jeia thc Iakwbian c mporoôme na orðsoume gewmetrikˆ antikeðmena, ìpwc oi 1-fìrmec (1-forms) kai ta dianôsmata (vectors), apait ntac oi n (diˆstash pollaplìthtac M) to pl joc sunist sec 13 touc stic perioqèc allhloepikˆluyhc U i U j na metasqhmatðzontai apì tic suntetagmènec x i stic x i sômfwna me tic parakˆtw sqèseic { T i = Ji i T i, V i = Ji i V i, (1-fìrma) (diˆnusma) ìpou oi deðktec paðrnoun akèraiec timèc apì 1 èwc n, kai oi emplekìmenec posìthtec eðnai anaparastˆseic sunart sewn apì thn pollaplìthta M ston R EpÐshc T i, V i eðnai oi sunist sec twn gewmetrik n antikeimènwn sto topikì sôsthma suntetagmènwn {x i } kai T i, V i sto {x i } Gia parˆdeigma eˆn f eðnai mða pragmatik sunˆrthsh pˆnw sthn pollaplìthta, tìte oi posìthtec f f x i,i mporoôn na orðsoun (prokôptei ˆmesa apì ton sun jh apeirostikì logismì sunart sewn poll n metablht n, df = f dx i ) sunist sec mðac 1-fìrmac x i f,i = f x i = f x i x i x i = J i i f,i f,i = J i i f,i Pˆnw se autèc tic leðec pollaplìthtec, o sun jhc apeirostikìc logismìc sunart - sewn poll n metablht n (F : R n R m ) mporeð na epektajeð polô eôkola mèsw katˆllhlwn sunart sewn anaparˆstashc 13 Οι συνιστώσες ενός γεωμετρικού αντικειμένου ως προς κάποιο τοπικό σύστημα συντεταγμένων είναι συναρτήσεις από σημεία της n-διάστατης πολλαπλότητας στον R Επειδή όμως τέτοιου είδους συναρτήσεις μας είναι αδύνατον να τις διαχειριστούμε αλγεβρικά χρησιμοποιούμε τις τοπικές αναπαραστάσεις τους από τον R n στον R Αυτές οι αναπαραστάσεις επάγονται από τους ομοιομορφισμούς φ a και φ b που συντεταγμενοποιούν τον χώρο στις περιοχές αλληλοεπικάλυψεις U a U b 23

Q roc sônolo shmeðwn topologða Topologikìc q roc { } 'Atlac (U a, φ a) sunektikìc,hausdorff Topologik pollaplìthta LeÐa pollaplìthta Topologik pollaplìthta metrik leða dom LeÐa pollaplìthta Riemann pollaplìthta (gewdaisiakèc)-sômbola Christoffel LeÐa pollaplìthta sunoq Pollaplìthta me parallhlða (autoparˆllhlec) Perissìtera gia th dom pollaplot twn me sunoq ja anaptôxoume sta epìmena kefˆlaia kai idiaðtera sto kefˆlaio twn gewmetrik n antikeimènwn EkeÐ ja gðnei antilhptì ìti h sunoq eðnai èna aplì gewmetrikì antikeðmeno pou eisˆgei thn ènnoia thc sunalloðwthc parag gishc Metrikìc q roc: (X, d) 1) X Set 2) d : X X R 3) d(x, y) = d(y, x), d(x, y) 0, d(x, y) = 0 x = y (idiìthta Hausdorff), d(x, y) d(x, z) + d(z, y), gia kˆje x, y, z X H apeikìnish d sunodeuìmenh apì ta parpˆnw axi mata lème ìti orðzei mða apìstash sto sônolo X, dhlad mða gewmetrik dom ParathroÔme ìti h apaðthsh d(x, y) 0 prokôptei apì tic upìloipec sunj kec wc ex c: d(x, y) + d(y, x) d(x, x) = 2d(x, y) 0 = d(x, y) 0 'Estw ìti to sônolo X eðnai mða Riemann pollaplìthta Tìte mporeð na apokt sei th dom enìc metrikoô q rou, eˆn orðsoume wc apìstash metaxô dôo opoiond pote shmeðwn tou to elˆqisto m koc apì ta m kh ìlwn twn kampul n pou ta sundèoun Kˆje metrikìc q roc (X, d) mporeð na lˆbei sugqrìnwc kai th dom enìc topologikoô q rou me topologða aut n pou epˆgetai apì th sunˆrthsh apìstashc d Sugkekrimèna, mèsw thc apìstashc d, orðzoume wc anoiqtˆ uposônola sto X kˆje uposônolo U tou X pou ikanopoieð th sunj kh x U, r > 0 : B(x, r) = {y X d(x, y) < r} U O topologikìc q roc pou orðzei ènac metrikìc q roc eðnai pˆntote Hausdorff EpÐshc mða ˆllh polô shmantik topologik dom, me pollèc proektˆseic, eðnai aut thc nhmatik c dèsmhc Ja afier soume xeqwristì kefˆlaio sthn anˆptux thc miac kai diadramatðzei kajoristikì rìlo sthn katˆ Ehresmann genðkeush thc sunoq c 24