I

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "I"

Transcript

1 Panepist mio Patr n Sqol Jetik n Episthm n Tm ma Majhmatik n Tomèas Efarmosmènhs An lushs Eust jeia kai Q oc Qamilt niwn Susthm twn Poll n Bajm n EleujerÐac: Apì thn Klasik sth Statistik Mhqanik Didaktorik Diatrib Qr stou G. Antwnìpoulou MajhmatikoÔ P tra 2006

2 I

3 II Stouc goneðc mou, sthn adelf mou, ston pappoô mou kai sthn EuelÐna

4 III EUQARISTIES Ja jela na euqarist sw apì th jèsh aut ton epiblèponta thc didaktorik c mou diatrib c, k. Anast sio MpoÔnth, Kajhght tou Tm matoc Majhmatik n tou PanepisthmÐou Patr n kaj c epðshc kai ton k. SpÔro Pneumatikì, Kajhght tou Tm matoc Majhmatik n tou PanepisthmÐou Patr n, mèloc thc trimeloôc Sumbouleutik c Epitrop c. H kajod ghsh, h episthmonik sumbol kai bo jei touc se eôkolec kai dôskolec stigmèc thc poreðac mou ston q ro thc Epist mhc twn Majhmatik n tan kaðria kai katalutik gia thn prìodì mou. 'Iswc to shmantikìtero pou mou èmajan eðnai na sundu zw thn episthmonik drasthriìthta me thn anjr pinh prosèggish kai thn eurôthta twn endiaferìntwn pou prèpei na qarakthrðzoun ènan jer ponta thc Epist mhc twn Majhmatik n kai genikìtera twn jetik n episthm n. Euqarist, epðshc, ton k. Miqa l Braq th, Kajhght tou Tm matoc Majhmatik n tou PanepisthmÐou Patr n, trðto mèloc thc Sumbouleutik c Epitrop c, gia ton sumbouleutikì rìlo tou wc proc ton orjì trìpo diexagwg c thc episthmonik c èreunac kai gia thn eukairða ereunhtik c sunergasðac pou mou prosèfere kai pou anèptuxa apì koinoô kai me ton upoy fio did ktora tou Tm matoc Majhmatik n tou PanepisthmÐou Patr n, k. Gi nnh Petal. H epituqhmènh kai apodotik aut sunergasða mac mou prosèfere pollèc nèec gn seic kai empeirðec gôrw apì proqwrhmèna jèmata thc Arijmhtik c An lushc kai twn Exeliktik n AlgorÐjmwn, twn apeikonðsewn twn epitaqunt n uyhl n taqut twn kai thc dunamik c touc kai eðqe wc apotèlesma th sun suggraf episthmonik n rjrwn sta jèmata aut. Euqarist, idiaitèrwc ton did ktora kai ereunht k. Qar lampo Skìko gia tic polôwrec episthmonikèc suzht seic kai sunergasðec pou eðqame kat thn di rkeia ekpìnhshc aut c thc diatrib c kai oi opoðec od ghsan se mða seir apì koinèc dhmosieôseic rjrwn se diejn periodik me kritèc kaj c kai parousi seic se diejn sunèdria. Tèloc, ja jela na euqarist sw ton Ereunht tou Kèntrou AstronomÐac thc AkadhmÐac Ajhn n k. Qr sto Eujumiìpoulo kai ton ereunht tou ULB k. BasÐleio Mp sio gia tic polôtimec sumboulèc kai parathr seic touc se jèmata thc Mh Grammik c Epist mhc kai twn Dunamik n Susthm twn. Ja jela epðshc na euqarist sw ton Kajhght tou EleÔjerou PanepisthmÐou twn Bruxell n (ULB) k. Grhgìrio NÐkolh gia thn projumða, euq risth di jesh kai qrìno pou dièjese gia suzht seic gôrw apì ènnoiec kai jèmata thc Statistik c Mhqanik c kai Dunamik n Susthm twn Poll n Bajm n EleujerÐac, kat thn epðskey mou sto ULB apì ton M rtio wcton IoÔnio tou EkeÐ ektìc apì ton k. B. Mp sio eðqa thn eukairða na sunergasj kai me ton Kajhght tou EleÔjerou PanepisthmÐou twn Bruxell n k. Pierre Gaspard ton opoðo kai euqarist. H sunergasða aut apotèlese thn arq mðac nèac ereunhtik c sunergasðac, h opoða suneqðzetai akìma kai t ra, se Qamilt nia sust mata mesaðou pl jouc arijm n eleujerðac twn opoðwn h statistik sumperifor prosomoi zei me aut n susthm twn shmantik megalôterou pl jouc swmatidðwn. Epiplèon, arket apì ta arijmhtik progr mmata H/U, eidik tou deôterou tm matoc thc diatrib c pou afor ta poludi stata Qamilt nia sust mata, ulopoi jhkan sto upologistikì par llhlo sôsthma hlektronik n upologist n ANIC 4 tou EleÔjerou PanepisthmÐou Bruxell n.

5 IV Euqarist epðshc ton Kajhght tou A.T.E.I MesologgÐou k. L mpro Drìso gia tic idiaðtera qr simec parathr seic tou se jèmata upologistik c Mh Grammik c Dunamik c kai twn efarmog n touc se pollèc llec kateujônseic ìpwc autèc thc Plhroforik c kai thc DioÐkhshc Epiqeir sewn. ApoteleÐ idiaðterh qar gia mèna na anafèrw thn polôtimh oikonomik enðsqush pou mou pareðqe to ereunhtikì prìgramma HRAKLEITOS tou EpiqeirhsiakoÔ Progr mmatoc gia thn EkpaÐdeush kai Arqik Epaggelmatik Kat rtish II (EPEAEKII) tou Eurwpa koô KoinwnikoÔ TameÐou (EKT) sta plaðsia tou opoðou ekpon jhke h paroôsa didaktorik diatrib. UpotrofÐec epðshc apì to prìgramma Karajeodwr c tou PanepisthmÐou Patr n kaj c kai apì to EmpeirÐkeio 'Idruma up rxan idiaðtera shmantikèc gia thn prìodì mou kurðwc kat ta pr ta èth ekpìnhshc thc diatrib c. KleÐnontac, ja jela na ekfr sw thn eugnwmosônh mou stouc goneðc mou, Ge rgio kai AnastasÐa, ìqi mìno gia thn ulik all kurðwc kai gia thn hjik kai yuqologik st rixh, katanìhsh kai isorropða pou mou prosèferan kaj' ìlh th di rkeia twn spoud n mou gôrw apì thn Majhmatik Epist mh. Kont se autoôc kai h adelf mou Panagi ta summerðsthke ta probl mata kai tic empeirðec mou kai me bo jhse mèsw twn kat llhlwn gn sewn pou diajètei na antilhfj kai llec ìmorfec ptuqèc thc anjr pinhc zw c pou brðskontai èxw apì ton mikrìkosmo pou mou epèballe h periorismènh diabðwsh enìc upoy fiou did ktora. Tèloc, ja jela na tonðsw thn kaðria suneisfor kai bo jeia thc k. EuelÐnac AjanasopoÔlou, h opoða me st rixe me prwtìgnwrh jèlhsh kai dônamh, deðqnont c mou katanìhsh kai sumpar stash. Mou st jhke pragmatik kai me anidiotèleia tìso stic dôskolec ìso kai stic euq ristec stigmèc kat th di rkeia thc ekpìnhshc thc diatrib c diathr ntac me p nta ston drìmo thc hremðac kai thc upenjômishc tou stìqou mou kai tou skopoô mou. P tra Septèmbrioc, 2006 Qr stoc G. Antwnìpouloc Majhmatikìc

6 V

7 VI DHMOSIEUSEIS SE DIEJNH PERIODIKA ME KRITES PRIN APO TH DIATRIBH 1. Chaos in a Near Integrable Hamiltonian Lattice, Rothos V. M, Antonopoulos Ch. & Drossos L., 2002, Int. J. Bif. Chaos, 12, 8, DHMOSIEUSEIS SE DIEJNH PERIODIKA ME KRITES POU PROEKUYAN APO TH DIATRIBH 1. Geometrical Properties of Local Dynamics in Hamiltonian Systems: the Generalized Alignment Index (GALI) Method, Skokos Ch., Bountis T. & Antonopoulos Ch., submitted at February Stability of Simple Periodic Orbits and Chaos in a Fermi Pasta Ulam Lattice, Antonopoulos Ch. & Bountis T., 2006, Physical Review E, 73, Chaotic Dynamics of N degree of Freedom Hamiltonian Systems, Antonopoulos C., Bountis T. & Skokos C., 2006, Int. J. Bif. Chaos, 16, 6, Detecting Order and Chaos in Hamiltonian Systems by the SALI Method, Skokos Ch., Antonopoulos Ch., Bountis T. C. & Vrahatis M. N., 2004, J. Phys. A, 37, How does the Smaller Alignment Index (SALI) Distinguish Order from Chaos?, Skokos Ch., Antonopoulos Ch., Bountis T. C. & Vrahatis M. N., 2003, Prog. Theor. Phys. Supp., 150, ERGASIES SE DIEJNH SUNEDRIA POU PROEKUYAN APO TH DIATRIBH 1. SALI: An Efficient Indicator of Chaos with Application to 2 and 3 Degrees of Freedom Hamiltonian Systems, Antonopoulos Ch., Manos A. & Skokos Ch., In Proceedings of the 1 st International Conference From Scientific Computing to Computational Engineering, 1 st IC SCCE, ed. Tsahalis D. T., Patras Univ. Press, Vol. III, Smaller Alignment Index (SALI): Determining the Ordered or Chaotic Nature of Orbits in Conservative Dynamical Systems, Skokos Ch., Antonopoulos Ch., Bountis T. C. & Vrahatis M. N., In Proceedings of the Conference Libration Point Orbits and Applications, eds. Gomez G., Lo M. W. & Masdemont J. J., World Scientific,

8 VII ERGASIES SE PANELLHNIA SUNEDRIA POU PROEKUYAN APO TH DIATRIBH 1. Estimation of the Dynamic Aperture of Symplectic Mappings Using Evolutionary Algorithms, Ch. G. Antonopoulos, I. G. Petalas, T. C. Bountis & M. N. Vrahatis, In Proceedings of Volos 18 th Summer School and Conference, ed. T. C. Bountis. 2. A Fast and Reliable Method for Distinguishing Regular from Chaotic Motion in Hamiltonian Systems, Antonopoulos Ch., Skokos Ch., Bountis T. C. & Vrahatis M. N., In Recent Advantages in Mechanics and Related Fields, Volume in Honour of Prof. Goudas C. L., Univ. of Patras, Smaller Alignment Index (SALI): Detecting Order and Chaos in Conservative Dynamical Systems, Skokos Ch., Antonopoulos Ch., Bountis T. C. & Vrahatis M. N., In Proceedings of the 4 th GRACM Congress on Computational Mechanics, ed. Tsahalis D. T., Vol. IV, ANAFORES SE ARJRA DIEJNWN PERIODIKWN POU PROEKUYAN APO TH DIATRIBH 1. Detecting Irregular Orbits in Gravitational N Body Simulations, Gemmeke, J. F. & Portegies Zwart, S. F. & Kruip, C. J. H., 2006, Communications in Nonlinear Science and Numerical Simulation (2006), doi: /j.cnsns The Resonant Structure of Jupiter s Trojan Asteroids I. Long Term Stability and Diffusion, Robutel, P. & Gabern, F., 2006, Monthly Notices of the Royal Astronomical Society, Vol. 372, Issue 4, pp Self Consistent Models of Cuspy Triaxial Galaxies with Dark Matter Haloes, Capuzzo Dolcetta R. & Leccese L. & Merritt D. & Vicari A., 2006, arxiv:astro ph/ , pdf version: ph/ , Preprint submitted to ApJ, Astrophysics 4. Lyapunov Indices With Two Nearby Trajectories in a Curved Spacetime, Wu X. & Huang T. Y. & Zhang H., 2006, Physical Review D Particles, Fields, Gravitation and Cosmology, Vol. 74, Issue 8, Article number The Resonant Structure of Jupiter s Trojan Asteroids I: Long Term Stability and Diffusion, Robutel P. and Gabern F., 2006, MNRAS, Inpress

9 VIII 6. Quasiperiodic and Chaotic Discrete Breathers in a Parametrically Driven System Without Linear Dispersion, Maniadis P. & Bountis T., 2006, Physical Review E, Vol. 73, pp Detecting Irregular Orbits in Gravitational N Body Simulations, Gemmeke J. F., Portegies Zwart S. F. & Kruip C. J. H., 2006, arxiv:astro ph/ v1 14 July 2006, pdf version: ph/ , Preprint submitted to Communications in Nonlinear Science and Numerical Simulation 8. Sensitivity tools vs. Poincaré sections, Barrio R., 2005, Chaos Solitons & Fractals, Vol. 25, No. 3, On the Integrability and Chaos of an N = 2 Maxwell Chern Simons Higgs Mechanical Model, deassisl.p.g.,helayël Neto, Haas F. & Nogueira A. L. M. A., 2005, Technical Report no: CBPF NF 013/05, Centro Brasileiro de Pesquisas Fisicas CCP/CBPF, Rio de Janeiro, Brasil, May 2005, arxiv:hep th/ v1 18 May 2005, pdf version: th/ Several Diagnostic Indexes for Orbital Chaos, Wu X. & Huang T. Y., 2005, Progress in Astronomy, Vol. 23, No. 4, pp , December 2005, ISSN ANAFORES SE ERGASIES DIEJNWN SUNEDRIWN POU PROEKUYAN APO TH DIATRIBH 1. Barred Galaxies: Studying the Chaotic and Ordered Nature of Orbits, Manos T. and Athanassoula E., 2006, In Proceedings of the 7 th Astronomy Conference of the Hellenic Astronomical Society (in press), astro ph/ Chaos and the Dynamical Evolution of Barred Galaxies, Manos T. and Athanassoula E., 2005, In Proceedings of the 5 th International Conference The fabulous destiny of galaxies: bridging past and present, Marseille, France (in press), astro ph/ Detecting Chaotic and Ordered Motion in Barred Galaxies, Manos T. and Athanassoula E., 2005, In SF2A 2005: Semaine de l Astrophysique Francaise, eds. Casoli F., Contini T., Hameury J. M. and Pagani L., EDP Sciences, Conference Series, ANAFORES SE DIDAKTORIKES DIATRIBES POU PROEKUYAN APO TH DIATRIBH 1. Caos e integrabilidade em teorias com supersimetria, de Assis L. P. G., 2005, Centro Brasileiro de Pesquisas Fisicas CBPF, Rio de Janeiro (in Portuguese)

10 IX 2. T xh kai Q oc se Autosunep Montèla Elleiptik n Galaxi n, Kalapojar koc K., 2005, Tomèac Astrofusik c AstronomÐac kai Mhqanik c, Tm ma Fusik c, Pan. Ajhn n ANAFORES SE METAPTUQIAKES ERGASIES POU PROEKUYAN APO TH DIATRIBH 1. Detecting Chaotic Orbits in N Body Simulations, Gemmeke J. F., 2005, Faculteit der Natuurwetenschappen, Wiskunde en Informatica, Universiteit van Amsterdam, The Netherlands 2. Kanonik kai Qaotik Dunamik Qamiltonian n Susthm twn Poll n Bajm n EleujerÐac, M noc A., 2004, Metaptuqiakì DÐplwma EidÐkeushc, Tomèac Efarmosmènhc An lushc, Tm ma Majhmatik n, Pan. Patr n

11 X

12 PERIEQ OMENA EuqaristÐec DhmosieÔseic III VI 1 Eisagwg 1 2 Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c Dunamik Sust mata kai Q roc F sewn Qamilt nia Dianusmatik PedÐa Orismìc Lagkranzian kai Qamilt nia Dunamik AgkÔlec Poisson Oloklhrwtikèc KampÔlec sto Q ro F sewn Dunamik n Susthm twn Apeikìnish Poincaré kai Epif neiec Tom n Qamilt niwn Susthm twn Oloklhrwsimìthta kai h JewrÐa KAM KÐnhsh p nw se Tìrouc Oloklhr simwn Qamilt niwn Dunamik n Susthm twn Ekjètec Lyapunov Dunamik n Susthm twn Jewrhtik Prosèggish Arijmhtik Prosèggish H Mèjodoc tou Mikrìterou DeÐkth Eujugr mmishc (SALI) H Mèjodoc tou Genikeumènou DeÐkth Eujugr mmishc (GALI) Orismìc tou Genikeumènou DeÐkth Eujugr mmishc (GALI) Jewrhtik Apotelèsmata Ekjetik Pt sh tou GALI stic Qaotikèc Troqièc OUpologismìc tou GALI gia tic Organwmènec Troqièc JewrÐa Monìdromwn Pin kwn Dunamik n Susthm twn XI

13 XII PERIEQ OMENA OMonìdromoc PÐnakac kai h OrÐzous tou Oi idiotimèc tou Monìdromou PÐnaka Eust jeia Grammik n Qamilt niwn Susthm twn JewrÐa Krein Diataragmèna Grammik Qamilt nia Sust mata Statistik Mhqanik, EntropÐa kai Jermodunamikì 'Orio Eisagwg sthn Statistik Mhqanik Istorik Anadrom Statistik Mhqanik kai h Ergodik Upìjesh EntropÐa kai Jermodunamikì 'Orio Anaskìphsh tou KefalaÐou Kanonik kai Qaotik Dunamik Qamilt niwn Susthm twn 2 kai 3 Bajm n EleujerÐac H Sumperifor tou SALI gia tic Kanonikèc Troqièc H Sumperifor tou SALI gia tic Qaotikèc Troqièc Prosdiorismìc Perioq n T xhc kai Q ouc H Sumperifor tou SALI se Leptèc Qaotikèc Perioqèc SÔgkrish tou SALI me 'Allec Mejìdouc Di krishc metaxô Qaotikìthtac kai Org nwshc To0 1(Mhdèn 'Ena) Test kai 'Allec Mèjodoi Efarmogèc thc Mejìdou tou Genikeumènou DeÐkth Eujugr mmishc (GALI) Arijmhtik Apotelèsmata se2 kai 3 BajmoÔc EleujerÐac Sumper smata Kanonik kai Qaotik Dunamik Qamilt niwn Susthm twn Poll n Bajm n E- leujerðac Aplèc Periodikèc LÔseic kai Topik An lush Eust jeiac Analutik Melèth Apl n Periodik n LÔsewn tou Montèlou FPU GrammikoÐ kai Mh GrammikoÐ Trìpoi Tal ntwshc An lush Eust jeiac tou Trìpou Tal ntwshc SPO1 tou FPU Analutik Melèth thc LÔshc OPM tou Montèlou FPU Analutikèc Ekfr seic gia Aplèc Periodikèc LÔseic tou BEC An lush Eust jeiac twn Troqi n IPM kai OPM tou Montèlou BEC Analutik Melèth thc LÔshc SPO2 tou Montèlou FPU Ast jeia APL kai F smata Lyapunov Qaotik n Perioq n ApostajeropoÐhsh APL kai Olik Qaotik Dunamik Upologismìc tou Megèjouc NhsÐdwn Eust jeiac F smata Lyapunov kai Jermodunamikì 'Orio SÔmptwsh Fasm twn Lyapunov se Qaotikèc Perioqèc H Troqi SPO2 kai h Kat rreush twn Epanafor n FPU

14 PERIEQ OMENA XIII 4.3 Efarmog thc Mejìdou tou Genikeumènou DeÐkth Eujugr mmishc (GALI) sto Plègma FPU Sumper smata Eust jeia kai Q oc se Sumplektikèc ApeikonÐseic kai DiaforoexeliktikoÐ Algìrijmoi Eisagwg DiaforoexeliktikoÐ Algìrijmoi Di stash Susqètishc Proteinìmenh MejodologÐa Peiramatik Apotelèsmata di stath Apeikìnish di stath Apeikìnish BeltistopoÐhsh wc proc tic Suqnìthtec thc Apeikìnishc Sumper smata Parart mata Par rthma A : DiagwniopoÐhsh tou Grammikopoihmènou Sust matoc thc Troqi c SPO Par rthma B : OPÐnakac Hill thc Periodik c Troqi c SPO Par rthma G : An lush se Seir Fourier thc Periodik c Sun rthshc Q(u) thc SPO Par rthma D : Exwterikì Ginìmeno (Wedge Product) Par rthma E : H Sqèsh MetaxÔ GALI 2 kai SALI BibliografÐa 169 Kat logoc Sqhm twn 177 Kat logoc Pin kwn 187

15 KEF ALAIO 1 Eisagwg To 2005 sumplhr jhkan 50 qrìnia apì thn diexagwg enìc di shmou arijmhtikoô peir matoc apì touc Fermi, Pasta kai Ulam (FPU) [31] sto Los Alamos twn H.P.A.. To peðrama aforoôse èna montèlo mh grammikoô monodi statou plègmatoc N = 32 swmatidðwn Ðshc m zac me stajerèc sunoriakèc sunj kec. Skopìc tou tan h epal jeush thc jewrðac thc Statistik c Mhqanik c pou proteðnei thn isokatanom thc enèrgeiac se ìla ta swmatðdia tou plègmatoc met apì k poio qronikì di sthma. Autì shmaðnei ìti mða posìthta enèrgeiac h opoða topojet jhke arqik se k poio apìtouc basikoôc trìpouc tal ntwshc tou sust matoc, met apì èna qronikì di sthma ja isomoirasjeð se k je llo parìmoio trìpo ste na odhghjeð telik to sôsthma mèsw epðlushc twn exis sewn thc Klasik c Mhqanik c se kat stash jermodunamik c isorropðac se sumfwnða me thn jewrða thc Statistik c Mhqanik c. Sugkekrimèna, oi Fermi, Pasta kai Ulam je rhsan ìti ta swmatðdia tou plègmatoc sundèontai metaxô touc me asjen c mh grammik elat ria kai ìti oi dun meic tic opoðec dèqetai k je swmatðdio proèrqontai apì ta dôo mesa geitonik tou. Je rhsan epðshc ìti to parap nw sôsthma diathreð thn arqik tou enèrgeia stajer kaj' ìlh th di rkeia exèlixhc tou peir matoc. Epiprìsjeta, qrhsimopoðhsan stajerèc sunoriakèc sunj kec, dhlad ta swmatðdia sta dôo kra paramènoun akðnhta kaj' ìlh th qronik di rkeia exèlixhc tou peir matoc (bl. sq. 1.1). Me tic parap nw paradoqèc, prokôptei èna Qamilt nio sôsthma N =32bajm n eleujerðac to opoðo par getai mèsw twn exis sewn tou Q milton apì thn Qamilt nia sun rthsh H = 1 2 N ẋ 2 j + j=1 j=0 N ( 1 2 (x j+1 x j ) α(x j+1 x j ) ) 4 β(x j+1 x j ) 4 = E (1.1) ìpou α kai β eðnai pragmatikèc par metroi. 'Otan β = 0kai α = 0prokÔptei to prìblhma FPU α montèlou (tritob jmia sun rthsh dunamikoô) en ìtan α =0kai β = 0prokÔptei to prìblhma FPU β montèlou (tetartob jmia sun rthsh dunamikoô). 1

16 2 Apì thn (1.1) prokôptoun oi k twji 32 mh grammikèc diaforikèc exis seic kðnhshc ( ẍ j (t) =x j+1 2x j +x j 1 +α (x j+1 x j ) 2 (x j x j 1 ) 2) ( +β (x j+1 x j ) 3 (x j x j 1 ) 3),j =1,...,N. KÔrioc stìqoc tou peir matoc tan na diapistwjeð an ja pragmatopoihjeð h anamenìmenh isokatanom thc enèrgeiac se ìlouc touc bajmoôc eleujerðac tou plègmatoc met apì k poio qronikì di - sthma kat th genik apaðthsh thc jewrðac thc Statistik c Mhqanik c twn Maxwell, Boltzmann kai Gibbs tou 18 ou ai na. H prìklhsh tan meg lh apì thn stigm pou o pr toc taqôc upologist c thc epoq c ekeðnhc tan diajèsimoc gia na exereunhjeð h dunamik realistik n mh grammik n susthm twn me meg lo arijmì swmatidðwn. (1.2) Sq ma 1.1: Sqhmatik anapar stash tou plègmatoc 32 swmatidðwn pou qrhsimopoðhsan oi Fermi, Pasta kai Ulam sto pr to arijmhtikì touc peðrama to 1955 sto Los Alamos twn H.P.A.. Ta bel kia deðqnoun to posì thc arqik c metatìpishc pou dìjhke sta swmatðdia ste na kinhjoôn arqik sômfwna me ton pr to trìpo tal ntwshc (normal mode q =1) tou antðstoiqou grammikoô sust matoc. Proc meg lh èkplhxh twn Fermi, Pasta kai Ulam to arijmhtikì peðrama, èdeixe ìti h isokatanom thc enèrgeiac se ìla ta swmatðdia tou plègmatoc den lamb nei q ra gia qamhlèc enèrgeiec E en antð aut c parathreðtai èna fainìmeno periodik c epanafor c kat to opoðo to sôsthma epistrèfei kat takt qronik diast mata stic arqikèc tou jèseic èqontac diegeðrei aisjht mìno touc pr touc 4 5 apì touc basikoôc trìpouc tal ntwshc. Wc basikì trìpo tal ntwshc ennooôme thn sunèqish apì touc N kanonikoôc trìpouc tal ntwshc (normal modes) tou antðstoiqou grammikoô sust matoc 1.1 me α = β =0[4, 68, 48, 39]. O qrìnoc epistrof c twn swmatidðwn k je for sthn arqik (perðpou) jèsh onom zetai qrìnoc epanafor c (recurrence time) tou sust matoc. Oi epanaforèc autèc, ìpwc eðnai fanerì, empodðzoun thn isokatanom thc enèrgeiac se ìlouc touc bajmoôc eleujerðac tou plègmatoc. Fusik gia arket meg lh enèrgeia E ( antðstoiqa meg lec timèc twn paramètrwn α β) sthn (1.1), h epanafor katarrèei kai energopoioôntai ìloi oi trìpoi tal ntwshc mèsw mðac omoiìmorfhc qaotik c dunamik c twn lôsewn thc (1.2). To er thma ìmwc paramènei ameðlikto: GiatÐ to mh grammikì autì plègma, èstw gia qamhlèc enèrgeiec, epideiknôei ta qarakthristik oloklhr simou sust matoc, tou opoðou oi lôseic exereunoôn èna periorismèno mìno uposônolo tou q rou f sewn? To fainìmeno twn epanafor n FPU, ìpwc onom sthke, rje se pl rh antðjesh me tic apìyeic thc episthmonik c kai ereunhtik c koinìthtac thc epoq c kai apotèlese thn arq miac gìnimhc episthmonik c prosp jeiac poll n ereunht n pagkosmðwc gia na katano soun touc bajôterouc lìgouc gia touc opoðouc den sumbaðnei h isokatanom thc enèrgeiac se ìla ta swmatðdia. MÐa apì tic pr tec

17 Kef laio1 : Eisagwg 3 prosp jeiec gia thn ex ghsh tou fainomènou ofeðletai stouc Izrailev kai Chirikov [49] to 1966, oi opoðoi isqurðzontai ìti h kat rreush twn epanafor n FPU sqetðzetai me thn sôgkroush epik luyh basik n suntonism n periodik n lôsewn tou sust matoc. To 1979 ègine gnwstìc o trìpoc akrib c pou oi epikalôyeic autèc odhgoôn se meg lhc klðmakac q ouc se Qamilt nia sust mata poll n bajm n eleujerðac [20]. Argìtera, uposthrðqjhke ìti h kat rreush twn epanafor n ofeðletai se mða morf asjenèsterou q ouc exaitðac thc allhlepðdrashc twn trìpwn tal ntwshc me mikrìterh qwrik perðodo (bl. sq. 1.1 pio p nw) kai autì eðnai arketì gia thn isokatanom thc enèrgeiac metaxô twn swmatidðwn tou plègmatoc [29, 28]. Tèloc, polô prìsfata, oi Flach et al. [32] exeidðkeusan tic parathr seic autèc deðqnontac ìti aut h met bash proc to asjenèc q oc sumpðptei me thn pr th apostajeropoðhsh twn qamhl n trìpwn tal ntwshc tou antðstoiqou grammikoô plègmatoc FPU. AutoÐ oi mh grammikoð trìpoi tal ntwshc apoteloôn èna par deigma troqi n pou ja onom soume sth diatrib aut aplèc periodikèc lôseic (APL), ìpou ìla ta swmatðdia epistrèfoun sthn arqik touc jèsh met apì mða mìno tal ntwsh, èqoun dhlad ìla thn Ðdia qarakthristik perðodo. Epomènwc, 50 qrìnia met thn perðfhmh aut anak luyh twn Fermi, Pasta kai Ulam h met bash apì tic epanaforèc sthn pragmatik statistik sumperifor paramènei èna jèma zwntan c èreunac pou suneqðzetai akìma kai stic mèrec mac [11]. H paroôsa diatrib èqei wc kôrio stìqo thc na apant sei sto krðsimo kai polô shmantikì er thma pou afor thn isokatanom thc enèrgeiac se poludi stata Qamilt nia sust mata sto jermodunamikì ìrio, ìpou N kai E me E/N = staj.. 'Enac lloc basikìc stìqoc mac eðnai o qarakthrismìc twn topik n statistik n idiot twn twn lôsewn sto ìrio autì mèsw twn legìmenwn fasm twn Lyapunov. O drìmoc pou akoloujoôme èqei wc afethrða thn melèth Qamilt niwn susthm twn lðgwn bajm n eleujerðac thc Klasik c Mhqanik c, ste na antl soume plhroforðec pou ja mac bohj soun na per soume sthn melèth twn plousiìterwn se dunamik fainìmena poludi statwn Qamilt niwn susthm twn, metabaðnontac me ton trìpo autì apì thn Klasik sth Statistik Mhqanik. To 2 o kef laio thc diatrib c apoteleð mða eisagwg stic aparaðthtec gn seic kai jewrðec pou apaitoôntai gia thn katanìhsh twn jem twn kai apotelesm twn pou ja anaptuqjoôn sta epìmena kef laia. Epiplèon, parousi zoume dôo nèec mejìdouc entopismoô thc qaotik c dunamik c poludi statwn Qamilt niwn susthm twn: Ton Mikrìtero DeÐkth Eujugr mmishc (SALI) kai ton Genikeumèno DeÐkth Eujugr mmishc (GALI). Perigr foume epðshc, orismèna basik jèmata thc jewrðac twn mh grammik n dunamik n susthm twn ìpwc: ta Qamilt nia dunamik sust mata, h apeikìnish Poincaré, oi ekjètec Lyapunov, h jewrða twn Monìdromwn Pin kwn kai h eust jeia twn troqi n. Tèloc, anaferìmaste se jèmata thcstatistik c Mhqanik c, ìpwc eðnai h entropða, to jermodunamikì ìrio kai h Ergodik Upìjesh, ston bajmì pou apaiteðtai gia thn katanìhsh thc met bashc apì thn Klasik Mhqanik lðgwn bajm n eleujerðac sth Statistik Mhqanik poludi statwn Qamilt niwn susthm twn. Sth sunèqeia, sto Kef laio 3 parousi zoume ta prwtìtupa ereunhtik apotelèsmata thc diatrib c pou aforoôn sthn kanonik kai qaotik dunamik Qamilt niwn susthm twn lðgwn bajm n eleujerðac. Ta sust mata aut apoteloôn idanikèc peript seic gia thn efarmog twn mejìdwn ento-

18 4 pismoô qaotik c dunamik c SALI kai GALI pou anaptôxame jewrhtik sto prohgoômeno kef laio, kai thn exagwg aparaðththc gn shc kai empeirðac pou ja qrhsimopoi soume sto 4 o kai 5 o kef laio thc diatrib c. Parousi zoume ta apotelèsmat mac gia thn sumperifor twn deikt n aut n sthn organwmènh kai qaotik dunamik kai ta sugkrðnoume me ta antðstoiqa llwn gnwst n mejìdwn thc diejnoôc bibliografðac. Tèloc, perigr foume apotelèsmata apì thn efarmog thc pio prìsfathc mejìdou tou Genikeumènou DeÐkth Eujugr mmishc GALI se mh oloklhr sima Qamilt nia sust mata 2 kai 3 bajm n eleujerðac. 'Ola aut sunistoôn to pr to komm ti thc diatrib c pou asqoleðtai me thn eust jeia kai qaotik dunamik Qamilt niwn susthm twn lðgwn bajm n eleujerðac thc Klasik c Mhqanik c. Sto 4 o kef laio pern me sto shmantikìtero mèroc thc diatrib c pou asqoleðtai me thn parousðash twn prwtìtupwn ereunhtik n apotelesm twn mac se Qamilt nia dunamik sust mata poll n bajm n eleujerðac, ìpwc eðnai ta sust mata FPU kai Bose Einstein Condensation (BEC). Ed, metabaðnoume apì ta Qamilt nia sust mata lðgwn bajm n eleujerðac se sust mata poll n bajm n kai eis goume nèec mejìdouc gia thn melèth twn perioq n eust jeiac kai qaotik c sumperifor c touc. Skopìc mac eðnai na katano soume thn sumperifor touc sto jermodunamikì ìrio kai na suneisfèroume ètsi sthn ap nthsh tou kaðriou erwt matoc gia ton an oi nìmoi thc Statistik c Mhqanik c isqôoun sthn perðptwsh twn poludi statwn Qamilt niwn susthm twn. Eidikìtera, sto Kef laio 4 qrhsimopoi ntac thn APL SPO2 tou FPU β montèlou (bl. (1.1)) me stajerèc sunoriakèc sunj kec, kat thn opoða k je trðto swmatðdio eðnai akðnhto sto qrìno en ta lla dôo an mes touc kinoôntai se antðjetec dieujônseic deðqnoume ìti to kat fli enèrgeiac pou brèjhke stic ergasðec [29] kai [32] gia thn prìbleyh Ôparxhc asjenoôc q ouc tautðzetai me to kat fli ast jeiac thc apl c periodik c troqi c mac SPO2 (bl. sq. 1.2)! Autì apoteleð èkplhxh, kaj c se ìlec tic mèqri t ra melètec thc kat rreushc twn epanafor n FPU, o kumat rijmoc k twn talant sewn pou eðnai upeôjunec gia thn met bash aut tan qamhlìc (k 4), en gia thn troqi SPO2 eðnai polô uyhlìteroc: k =2(N +1)/3. O nìmoc gia thn pt sh tou katwflðou enèrgeiac apostajeropoðhshc an swmatðdio thc troqi c SPO2 (bl. sq. 1.2) eðnai an logoc tou N 2 se antðjesh me ton nìmo N 1 gia mða llh APL tou Ðdiou sust matoc pou onom zoume SPO1, kat thn opoða an mesa se k je dôo akðnhta swmatðdia tou plègmatoc up rqei èna kinoômeno. Epomènwc, an k poioc jèlei na brei mða met bash sto q oc mèsw apostajeropoðhshc APL, ja tan logikì na analôsei pr ta thn troqi SPO2 par thn SPO1, afoô h SPO2 gðnetai astaj c se polô qamhlìterec enèrgeiec. Apì thn llh meri, epilègoume arqikèc sunj kec kont stouc astajeðc trìpouc tal ntwshc OPM(=Out of Phase Motion) twn Qamilt niwn FPU kai BEC, me skopì na diereun soume merikèc polô shmantikèc statistikèc idiìthtec thc dunamik c sto jermodunamikì touc ìrio, ìpou h enèrgeia E kai to N aux noun aujaðreta, gia E/N stajerì. Sugkekrimèna, upologðzoume to f sma twn ekjet n Lyapunov thc Qamilt niac FPU kai BEC sthn perioq twn troqi n OPM gia enèrgeiec ìpou oi troqièc autèc eðnai astajeðc. BrÐskoume ìti oi ekjètec Lyapunov proseggðzontai kal apì omalèc kampôlec thc morf c L i L 1 e αi/n (1.3)

19 Kef laio1 : Eisagwg 5 Sq ma 1.2: H sumpag c gramm eðnai h puknìthta enèrgeiac E 2u /N thc pr thc apostajeropoðhshc thc troqi c SPO2 thc Qamilt niac (1.1), en h diakekommènh gramm eðnai o nìmoc N 2 twn De Luca et al. [29] kai Flach et al. [32]. kai gia ta duo sust mata, me α 2.76 kai α 3.33 antðstoiqa kai i = 1, 2,..., K(N) ìpou K(N) 3N/4. To er thma pou epiqeiroôme na apant soume sto shmeðo autì thc diatrib c eðnai: P c ja mporoôsame na qrhsimopoi soume thn topik dunamik kont stic APL, gia na apokt soume mða perissìtero olik eikìna twn idiot twn thc kðnhshc, ìpwc p.q. thn emf nish meg lhc èktashc q ouc ston q ro f sewn? Sq ma 1.3: SÔgklish twn fasm twn Lyapunov geitonik n troqi n twn APL SPO1 kai SPO2 sthn enèrgeia E = 2.62 ìpou kai oi duo APL eðnai astajeðc. H arqik apìstash metaxô twn geitonik n troqi n eðnai Gia na apant soume sto er thma autì elègqoume an oi qaotikèc perioqèc twn wc nw astaj n APL epikoinwnoôn ston q ro f sewn, met apì mða krðsimh tim thc enèrgeiac. MÐa èndeixh gia

20 6 to e n mða tètoia epikoinwnða pr gmati sumbaðnei, prokôptei apì to e n gðnontai Ðsoi oi mègistoi ekjètec Lyapunov akìma kalôtera! apì to an sugklðnoun ta antðstoiqa f smata Lyapunov sthn perioq twn APL sthn Ðdia ekjetik sun rthsh kai me ton Ðdio qarakthristikì ekjèth ìpwc deðqnei to sq ma 1.3. Sugkekrimèna, afoô ta f smata aut sumpðptoun to sq ma 1.3 upodhloð thn Ôparxh meg lhc klðmakac qaotik c sumperifor c sto plègma FPU, toul qiston sthn perioq tou q rou f sewn ìpou kinoôntai qaotik oi dôo APL, kaj' ìlh th di rkeia thc qronik c touc exèlixhc. Qrhsimopoi ntac tic wc nw sqèseic (1.3) gia touc ekjètec Lyapunov L i,i=1,...,n upologðzoume to jroisma twn jetik n apì autoôc h KS = L i (1.4) i:l i >0 to opoðo onom zetai entropða Kolmogorov Sinai (h KS ) kai ekfr zei ton bajmì thc dunamik c ataxðac enìc dunamikoô sust matoc. Sundèetai me thn èntash thc qaotik c tou sumperifor c h opoða prosdiorðzetai apì to rujmì thc ekjetik c apìklishc geitonik n troqi n me lla lìgia tou megèjouc twn jetik n ekjet n Lyapunov. BrÐskoume loipìn gia ta sust mata FPU kai BEC ìti h entropða Kolmogorov Sinai aux nei grammik wc sun rthsh twn bajm n eleujerðac N stic qaotikèc perioqèc epibebai nontac ètsi ìti eðnai ektetamènh posìthta (extensive quantity) thc Statistik c Mhqanik c. Sto tèloc tou 4 ou kefalaðou parathroôme ìti oi qaotikèc perioqèc gôrw apì astajeðc aplèc periodikèc troqièc ston q ro f sewn mporeð na eðnai periorismènec kai polô diaforetikèc apì thn qaotik kðnhsh pou parathreðtai se llec perioqèc tou. Sthn pragmatikìthta m lista, anakalôptoume ìti up rqoun arketèc tètoiec perioqèc embujismènec h mða mèsa sthn llh! Gia par deigma, sthn perðptwsh tou sust matoc FPU me N = 5, ìtan h troqi SPO1 gðnetai astaj c, mða qaotik perioq me sq ma okt gðnetai emfan c sthn mesh geitoni tou, se mða epif neia tom c Poincaré (x 1, ẋ 1 ) upologismènh se qronikèc stigmèc ìpou to x 3 =0. Akìma kai ìtan h APL SPO1 eðnai astaj c, kontinèc troqièc talant nontai qaotik gôrw apì aut n gia polô meg louc qrìnouc, dhmiourg ntac telik to sq ma okt pou blèpoume sthn epif neia tom n Poincaré tou sust matoc. Xekin ntac katìpin apì shmeða lðgo pio makru, mða megalôterh qaotik perioq parathreðtai h opoða moi zei me exogkwmènh eikìna sq matoc okt kai den diaqèetai se ìlh thn isoenergeiak epif neia. Tèloc, epilègontac perissìtero makrun shmeða wc arqikèc sunj kec, mða eureðac klðmakac qaotik perioq emfanðzetai na epikrateð sthn prohgoômenh tom Poincaré. Tèloc, sto Kef laio 5 thc diatrib c pern me apì ta poludi stata Qamilt nia sust mata sth melèth thc eust jeiac kai qaotik c dunamik c sumplektik n apeikonðsewn. Parousi zoume mða nèa mèjodo pou sundu zei th qr sh tou Mikrìterou DeÐkth Eujugr mmishc SALI kai twn DA gia thn eôresh thc dunamik c aktðnac eust jeiac sumplektik n apeikonðsewn pou qrhsimopoioôntai stouc epitaquntèc swmatidðwn uyhl n energei n. Skopìc ed eðnai na apant soume sto krðsimo er thma: Poia eðnai h perioq fragmènhc kðnhshc sto q ro f sewn thc apeikìnishc, ètsi ste an epilèxoume tic arqikèc sunj kec ekeð na elaqistopoihjeð h ap leia swmatidðwn ston epitaqunt (eustaj c perioq thc sumplektik c apeikìnishc) kai na èqoume epituq èkbash twn peiram twn?

21 Kef laio1 : Eisagwg 7 Gia thn plhrèsterh k luyh orismènwn eidik n jem twn thc an lushc grammik c eust jeiac periodik n troqi n kai tou exwterikoô ginomènou dianusm twn pou qrhsimopoioôme sth jewrða tou Genikeumènou DeÐkth Eujugr mmishc GALI parajètoume sqetik Parart mata sto tèloc thc diatrib c.

22 8

23 KEF ALAIO 2 Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c To kef laio autì apoteleð mða eisagwg stic aparaðthtec gn seic pou apaitoôntai gia thn katanìhsh twn jem twn kai apotelesm twn pou ja anaptuqjoôn sta epìmena kef laia thc diatrib c. Epiplèon, parousi zoume dôo nèec mejìdouc entopismoô thc qaotik c dunamik c poludi statwn Qamilt niwn susthm twn: Ton Mikrìtero DeÐkth Eujugr mmishc (SALI) kai ton Genikeumèno DeÐkth Eujugr mmishc (GALI). Perigr foume epðshc, orismèna basik jèmata thc jewrðac twn mh grammik n dunamik n susthm twn ìpwc: ta Qamilt nia dunamik sust mata, hapeikìnish Poincaré, oi ekjètec Lyapunov, kai h jewrða twn Monìdromwn Pin kwn gia th melèth thc eust jeiac periodik n troqi n. Tèloc, anaferìmaste se jèmata apì th Statistik Mhqanik, ìpwc eðnai h entropða, to jermodunamikì ìrio kai h Ergodik Upìjesh, ston bajmì pou apaiteðtai gia thn katanìhsh thc met bashc apì thn Klasik Mhqanik twn lðgwn bajm n eleujerðac sth Statistik Mhqanik twn poludi statwn Qamilt niwn susthm twn. 2.1 Dunamik Sust mata kai Q roc F sewn Me ton ìro dunamikì sôsthma ennooôme genik k je sôsthma fusik n, qhmik n, biologik n oikonomik n metablht n oi opoðec eðnai suzeugmènec metaxô touc me mh grammikèc allhlepidr seic kai exelðssontai me thn p rodo tou qrìnou. Gia par deigma, ac jewr soume èna sôsthma n qhmik n en sewn oi opoðec summetèqoun se mða seir qhmik n antidr sewn. K poia qronik stigm t, oi antðstoiqec sugkentr seic twn en sewn aut n mporoôn na parastajoôn apì èna shmeðo (x 1 (t),x 2 (t),...,x n (t)) tou n di statou dianusmatikoô EukleÐdeiou q rou R n. To sônolo ìlwn twn dunat n katast sewn (sugkentr sewn twn n qhmik n en sewn) sugkroteð èna uposônolo D tou q rou R n, dhlad D R n toopoðoonom zetai 9

24 Qamilt nia Dianusmatik PedÐa q roc twn f sewn. Oi rujmoð metabol c twn sugkentr sewn an mon da qrìnou t perigr fontai apì èna sôsthma sun jwn diaforik n exis sewn (SDE) pr thc t xhc thc morf c ẋ i (t) dx i(t) dt = F i (x 1 (t),...,x n (t)), i=1...n (2.1) ìpou me mða teleða p nw apì thn metablht ennooôme th parag gis thc wc proc to qrìno. exis seic autèc orðzoun èna dianusmatikì pedðo taqut twn, afoô antistoiqoôn se k je qronik stigm t èna di nusma taqôthtac sto shmeðo x 1,...,x n tou D. Oi F i, i =1...neÐnai en gènei mh grammikèc sunart seic twn x i kai orðzontai pantoô sto D. EÐnai arket omalèc (dhlad toul qiston t xhc C 1 ) ste gia k je arqik sunj kh (x 1 (0),x 2 (0),...,x n (0)) = (α 1,α 2,...,α n ) D, to sôsthma SDE (2.1) èqei monadik lôsh h opoða onom zetai troqi tou dunamikoô sust matoc x i (t) =S i (t, α i ), i =1...n, t 0 kai perigr fei thn exèlixh twn qhmik n sugkentr sewn sto qrìno. Ta dunamik sust mata diakrðnontai se diathrhtik kai mh diathrhtik an loga me to an diathroôn ìqi stoiqei deic ìgkouc ston q ro f sewn D kat thn exèlix touc. (2.1), jewroôme thn posìthta ΔV =(Δx 1 )(Δx 2 )...(Δx n ) (2.2) Gia na diapist soume se poia kathgorða an kei to dunamikì mac sôsthma d n dt ΔV =(ΔV ) ẋ i =(ΔV )( x F ) (2.3) i i=1 kai an isqôei se k je shmeðo tou q rou f sewn D Oi F =0 (2.4) sumperaðnoume ìti to dianusmatikì pedðo F eðnai diathrhtikì, alli c to F lègetai mh diathrhtikì. 2.2 Qamilt nia Dianusmatik PedÐa Ta dunamik sust mata diakrðnontai epðshc se autìnoma, sta opoða o qrìnoc t den emfanðzetai mesa stic diaforikèc exis seic thc kðnhshc kai sta mh autìnoma sta opoða o qrìnoc emfanðzetai mesa Orismìc 'Ena autìnomo Qamilt nio dianusmatikì pedðo eðnai èna dunamikì sôsthma n =2N metablht n pou perigr fetai pl rwc apì mða pragmatik sun rthsh H twn legìmenwn genikeumènwn jèsewn q =

25 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 11 (q 1,...,q N ) kai genikeumènwn (suzug n) orm n p =(p 1,...,p N ) H : R N R N R, H= H(q,p). H sun rthsh H onom zetai sun rthsh Hamilton Qamilt nia sun rthsh kai oi exis seic kðnhshc pou perigr foun tic metablhtèc q i kai p i tou sust matoc eðnai gnwstèc wc exis seic Hamilton q i = H p i, ṗ i = H q i (2.5) gia k je i =1...N. Oi exis seic (2.5) mporoôn na grafoôn kai wc èna dianusmatikì pedðo taqut twn thc morf c η =Ω H(η) ìpou η = [η 1,...,η 2N ] T, η a = q a (a N) kai η a = p a N (N<a 2N) kai [ = η 1,..., ] T. η 2N O Ω eðnai o 2N 2N pðnakac [ 0 N I N I N 0 N ], 0 N eðnai o mhdenikìc N N pðnakac kai I N eðnai o monadiaðoc N N pðnakac. Apì thn morf twn exis sewn tou Hamilton (2.5) eôkola sumperaðnoume ìti h Qamilt nia sun rthsh H = H(q,p) ikanopoieð dh dt = 2N i=1 { } H ṗ i + H q i p i q i =0 (2.6) kai epomènwc ìti apoteleð èna olokl rwma ( stajer thc kðnhshc) tou sust matoc. An, ektìc tou I 1 = H(q, p), mporoôme na prosdiorðsoume akìma N 1 oloklhr mata thckðnhshc I i = I i (q,p) (2.7) me di i dt =0, i=2, 3,..., N ta opoða eðnai metaxô touc sunarthsiak c anex rthta kai brðskontai se enèlixh, dhlad h agkôlh Poisson touc an dôo eðnai Ðsh me to mhdèn [I i,i j ]=0, i,j =1, 2,...,N, tìte to sôsthma lègetai pl rwc oloklhr simo. Sthn perðptwsh aut, sômfwna me to gnwstì je rhma twn Liouville kai Arnol d, ìlec oi troqièc tou sust matoc eðnai organwmènec, dhlad periodikèc sqedìn periodikèc kai keðntai se N di statouc analloðwtouc tìrouc pou katalamb noun ( dia-

26 Qamilt nia Dianusmatik PedÐa full noun =foliate) ìlo to q ro f sewn. AntÐjeta, sta mh oloklhr sima Qamilt nia dunamik sust mata up rqoun, ektìc apì tic organwmènec, kai qaotikèc kin seic gia tic opoðec ja mil soume ekten c parak tw Lagkranzian kai Qamilt nia Dunamik Gia na jemeli soume kalôtera ta Qamilt nia sust mata pou melet me sthn paroôsa diatrib kai th sqèsh touc me probl mata thc Klasik c Mhqanik c, arqðzoume jewr ntac th gnwst wc Lagkranzian sun rthsh L : R N R N R L(q, q) = T ( q) U(q), (2.8) ìpou q =(q 1,...,q N ) kai q =( q 1,..., q N ) eðnai h dianusmatik jèsh kai taqôthta antðstoiqa ìlwn twn bajm n eleujerðac, T ( q) = 1 N 2 i=1 m i q i 2 eðnai h kinhtik enèrgeia, m i eðnai h m za tou i bajmoô eleujerðac kai U(q) eðnai h dunamik enèrgeia. Sunep c, oi exis seic Euler Lagrange gia k je suntetagmènh q i,dðnontai apì to sôsthma diaforik n exis sewn [48][GOLDSTEIN, ter Haar] ( ) d L = L, i =1...N. (2.9) dt q i q i Me dedomènh thn Lagkranzian sun rthsh L, orðzoume thn met bash apì tic metablhtèc (q, q) stic (q, p) thc H mèsw tou metasqhmatismoô Legendre L : R N R ( N R N R N ) L(q, q) = (q,p) = q 1,...,q N, L,..., L. (2.10) q 1 q N Hantistreyimìthta tou wc nw metasqhmatismoô (2.10) exart tai mesa apì thn Lagkranzian sun rthsh L. Apì to je rhma topik c antistrof c [61] gnwrðzoume ìti an h orðzousa tou IakwbianoÔ pðnaka DL(α) eðnai di forh tou mhdenìc α R N R N,tìte o metasqhmatismìc Legendre eðnai amfidiaforomorfismìc se ìlo to pedðo orismoô tou. O Iakwbianìc pðnakac DL(α) tou metasqhmatismoô L eðnai [ ] I N 0 N J L =, (2.11) C N H N ìpou I N otautotikìc N N pðnakac, 0 N o mhdenikìc N N pðnakac, C N ènac N N pðnakac kai H N o N N pðnakac D2 q L(q, q). Epomènwc, h antistreyimìthta tou metasqhmatismoô Legendre L exart tai mesa apì to e n h orðzousa tou IakwbianoÔ pðnaka J L eðnai di forh tou mhdenìc. Autì shmaðnei ìti exart tai mesa apì thn Essian thc Lagkranzian c sun rthshc L, dhlad apì thn orðzousa tou pðnaka H N.

27 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 13 O metasqhmatismìc Legendre ìmwc, den eðnai p nta amfidiaforomorfismìc! Autì sumbaðnei ìtan parousi zetai krðsimoc tìpoc Σ(L) ={(q, q) R N R N / D 2 q L(q, q) =0} opìte h idiìthta thc mh antistreyimìtht c odhgeð sthn anaz thsh trìpwn epèktashc tou metasqhmatismoô p nw ston krðsimo autì tìpo. Mia pl rhc kai ekten c parousðash thc epèktashc aut c dìjhke prìsfata sta [69, 70, 71]. Shmei noume ed, ìti sta probl mata thc paroôsac diatrib c o metasqhmatismìc Legendre orðzetai kanonik sto R N R N Σ(L). MporoÔme, ètsi, na orðsoume genik thn Qamilt nia sun rthsh H mèsw tou metasqhmatismoô Legendre L wc H : R N R N R R N H(q, p, t) = q i p i L(q, q,t). (2.12) i=1 UpologÐzontac to diaforikì thc Qamilt niac sun rthshc H, èqoume dh(q, p, t) = N i=1 H q i dq i + N H dp i + H dt. (2.13) p i t i=1 Apì thn llh meri, to diaforikì thc H gr fetai epðshc ( N ) dh(q, p, t) = d q i p i L(q, q,t) = N i=1 i=1 ( p i L ) d q i + q i N q i dp i i=1 N i=1 ( d dt ( )) L q i dq i L dt, (2.14) t qrhsimopoi ntac tic sqèseic (2.13) kai (2.12). Gia na eðnai ta dexi mèlh twn (2.13) kai (2.14) Ðsa prèpei kai arkeð ta p i na ikanopoioôn th sqèsh pou mazð me th (2.8) dðnoun p i = L q i, i =1...N. L(q, q,t) = T ( q) U(q) = 1 2 N m i q i 2 U(q) i=1 L q i = m i q i p i, i =1...N sundèontac ètsi tic taqôthtec q i me tic ormèc tou Qamilt niou formalismoô.

28 Qamilt nia Dianusmatik PedÐa 'Eqontac ètsi mhdenðsei to pr to jroisma sta dexi thc (2.14) exis noume touc upìloipouc ìrouc twn sqèsewn (2.13) kai (2.14) kai paðrnoume tic gnwstèc exis seic thc Qamilt niac dunamik c q i = H p i, ṗ i = H q i (2.15) gia k je i =1...N kaj c kai thn exðswsh L t = H t. Oi metablhtèc q i kai p i eðnai oi gnwstèc wc genikeumènec jèseic kai ormèc, antðstoiqa. Oi exis seic (2.15) eðnai oi Qamilt niec exis seic thckðnhshc AgkÔlec Poisson Mia shmantik ènnoia twn dunamik n susthm twn eðnai h agkôlh Poisson, h opoða ston EukleÐdeio q ro R N orðzetai wc [u, v] = N ( u v v ) u q k p k q k p k k=1 ìpou u kai v eðnai sunart seic twn genikeumènwn suntetagmènwn q k kai p k. Oi exis seic thc kðnhshc mporoôn na grafoôn upì th morf agkul n Poisson dialègontac thn u wc suntetagmènh jèshc kai thn v wc thn Qamilt nia sun rthsh H, opìte èqoume [q i,h] = N ( qi H H ) q i q k p k q k p k k=1 = H p i, i =1...N. kai parìmoia gia thn [p i,h]. 'Etsi paðrnoume kai p li tic gnwstèc Qamilt niec exis seic (2.15) thc prohgoômenhc paragr fou grammènec t ra sthn morf q i = [q i,h], i =1...N, ṗ i = [p i,h], i =1...N. Duo shmantikèc idiìthtec twn agkul n Poisson eðnai h antimetajetik kai h tautìthta tou Jacobi. H pr th eðnai [u, v] = [v,u]

29 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 15 kai h deôterh eðnai [[u, v],w]+[[w, u],v]+[[u, w],u]=0. Qrhsimopoi ntac t ra tic Qamilt niec exis seic, h olik par gwgoc wc proc ton qrìno mðac tuqaðac sun rthshc χ = χ(q, p, t) twn q,p gr fetai sth morf dχ N dt = ( χ H H ) χ + χ =[χ, H]+ χ q i p i q i p i t t. (2.16) i=1 An h χ den exart tai mesa apì ton qrìno tìte χ t =0. E n epiplèon, h agkôlh Poisson [χ, H] mhdenðzetai, lème ìti h sun rthsh χ eðnai olokl rwma stajer thc kðnhshc. 2.3 Oloklhrwtikèc KampÔlec sto Q ro F sewn Dunamik n Susthm twn Me dedomènh, loipìn, thn arqik kat stash enìc dunamikoô sust matoc, ìpwc anafèrame sthn par grafo 2.1, stìqoc mac eðnai na kataskeu soume thn lôsh twn exis sewn kðnhshc sto q ro twn f sewn mèsw thc sun rthshc S =(S 1,...,S n ). H sun rthsh aut prosdiorðzei th zhtoômenh lôsh wc mða troqi oloklhrwtik kampôlh tou sust matoc h opoða dièrqetai apì to shmeðo α =(α 1,...,α n ), me n =2N. P c mporoôme ìmwc na upologðsoume tic kampôlec autèc? An to sôsthma twn exis sewn SDE (2.1) (2.5) eðnai pl rwc oloklhr simo tìte endèqetai na mporoôme na broôme tic lôseic analutik! Dustuq c ìmwc, ta perissìtera dunamik sust mata eðnai mh oloklhr sima kai diajètoun lôseic pou eðnai exairetik polôplokec, ste na mhn eðnai dunatìn naperigrafoôn olik apì kamða apì tic gnwstèc sunart seic (periodikèc, ekjetikèc, rhtèc, k.t.l). 'Etsi, gia mða pl rh kai endeleq melèth twn troqi n enìc dunamikoô sust matoc anagkazìmaste polô suqn na katafôgoume se arijmhtikèc mejìdouc kai teqnikèc, ìpwc autèc pou ja perigr youme sth sunèqeia. Oi mèjodoi autèc efarmìzontai qwrðc duskolða stic perioqèc ìpou h kðnhsh eðnai organwmènh, ìpwc p.q. sthn perðptwsh twn sqedìn periodik n troqi n pou keðntai stouc N di statouc tìrouc enìc Qamilt niou sust matoc. 'Otan ìmwc prìkeitai gia qaotikèc troqièc, qrei zetai na eðmaste polô prosektikoð me ta sumper - smata pou ja exag goume apì thn parakoloôjhs touc. Lìgw thc exairetik euaðsjhthc ex rthshc twn qaotik n lôsewn apì tic arqikèc sunj kec, eðnai dedomèno ìti ta sf lmata twn upologism n mac stic perioqèc autèc aux noun ekjetik. Apì autì sunep getai ìti eðnai adônaton na parakolouj soume mða sugkekrimènh troqi gia èna meg lo qronikì di sthma, afoô kat thn olokl rwsh metaphdoôme suneq c se diaforetikèc qaotikèc troqièc. To gegonìc ìmwc ìti ìlec autèc oi troqièc exereunoôn omoiìmorfa thn Ðdia qaotik perioq, mac epitrèpei na katal xoume se axiìpista sumper smata ìson afor stic koinèc statistikèc idiìthtec tou sunìlou twn qaotik n troqi n thc

30 Oloklhrwtikèc KampÔlec sto Q ro F sewn Dunamik n Susthm twn perioq c pou melet me Apeikìnish Poincaré kai Epif neiec Tom n Qamilt niwn Susthm twn H ènnoia thc epif neiac tom n Poincaré eðnai mða apì tic basikèc gia thn katanìhsh thc dunamik c twn Qamilt niwn susthm twn. Gia par deigma, se èna autìnomo Qamilt nio sôsthma duo bajm n eleujerðac, o q roc f sewn eðnai 4 di statoc, me genikeumènec sunist sec jèsewn q 1, q 2 kai orm n p 1, p 2 antðstoiqa. Epilègontac èna epðpedo Σ P sto q ro f sewn to opoðo tèmnei egk rsia dhlad upì mh mhdenik gwnða tic troqièc tou sust matoc, melet me tic epanalambanìmenec tomèc twn troqi n me to epðpedo autì (bl. sq ma 2.1). Ta shmeða pou mac endiafèroun eðnai aut pou dhmiourgoôntai ìtan mða troqi tèmnei to epðpedo Σ P apì dexi proc ta arister ( antistrìfwc) epeid, stouc dôo bajmoôc eleujerðac, kajèna apì aut antistoiqeð se mða kai monadik troqi tou Qamilt niou sust matoc. Sq ma 2.1: Exèlixh mðac troqi c ston q ro f sewn kai diadoqikèc tomèc thc me thn epif neia tom n Poincaré Σ P. Mia idiaðtera qr simh epilog thc epif neiac Σ P eðnai ekeðnh pou lamb netai gia mða sugkekrimènh tim thc Qamilt niac sun rthshc H = H 0 jètontac mða apì tic metablhtèc Ðsh me stajer tim p.q. q 2 =0(bl. sq ma 2.1). LÔnontac tìte thn exðswsh H(q 1, 0,p 1,p 2 )=H 0 wc proc thn metablht p 2 p 2 = p 2 (q 1,p 1 ; H 0 ) (2.17) odhgoômaste ston orismì enìc epipèdou (q 1,p 1 ) pou tèmnetai egk rsia apì tic troqièc tou sust matoc. An epiplèon hkðnhsh eðnai fragmènh, tìte to epðpedo diapern tai epanalambanìmena apì tic troqièc tou sust matoc. Sth sunèqeia, apeikonðzontac sto Σ P tic tomèc twn troqi n gia pollèc arqikèc sunj kec, mporoôme na parag goume mða sunolik eikìna thc dunamik c twn lôsewn ston 4 di stato q ro f sewn tou probl matoc.

31 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 17 H ènnoia thc epif neiac tom n Poincaré pou eisag game pio p nw genikeôetai kai se Qamilt nia sust mata me perissìterouc apì N = 2 bajmoôc eleujerðac. Gia autìnoma Qamilt nia sust mata N bajm n eleujerðac mða isoenergeiak epif neia H = H 0 sto q ro f sewn èqei di stash 2N 1. E n jèsoume epiplèon q N = staj. kai upologðsoume thn genikeumènh sunist sa p N apì thn exðswsh H = H 0 kataskeu zoume mða 2N 2 di stath epif neia tom n me suntetagmènec q 1,...,q N 1,p 1,...,p N 1 h opoða tèmnetai egk rsia apì tic troqièc tou sust matoc. H diafor me thn perðptwsh N = 2eÐnai ìti t ra k je shmeðo thc epif neiac tom n Poincaré den antistoiqeð plèon se mða monadik troqi, all sthn probol thc se èna epðpedo 2N 2 diast sewn. E n, sthn perðptwsh enìc Qamilt niou sust matoc N =2bajm n eleujerðac, up rqei deôterh stajer thc kðnhshc I(q 1,q 2,p 1,p 2 )=I 0 = staj. R (2.18) anex rthth thc H kai se enèlixh me aut n, dhlad [H, I] =0,tìte oi sqèseic H(q 1,q 2,p 1,p 2 )=H 0 kai (2.28) mporoôn na sunduastoôn se mða exðswsh apaleðfontac to p 2 p 1 = p 1 (q 1,q 2 ; H 0,I 0 ). (2.19) Epomènwc, gia k je tim twn H 0 kai I 0, oi diadoqikèc tomèc thc troqi c me thn epif neia tom n Poincaré keðntai se mða monadik omal kampôlh, h opoða dðnetai apì th sqèsh (2.19) me q 2 =0. Me ton trìpo autì mporoôme na exet soume thn Ôparxh stajer n thc kðnhshc sta sust mata aut, melet ntac tic tomèc twn troqi n me kat llhlh epif neia tom n Poincaré pou ja epilèxoume. An faneð apì tic tomèc autèc ìti h kðnhsh keðtai p nta p nw se omalèc kampôlec, tìte up rqei sobarì endeqìmeno to sôsthm mac na eðnai pl rwc oloklhr simo. Tèloc, axðzei na shmei soume ìti èna Qamilt nio sôsthma eðnai diathrhtikì afoô ikanopoieð th sunj kh F =0diat rhshc ìgkwn sto q ro twn f sewn. Autì apodeiknôetai eôkola an jewr soume wc dianusmatikì pedðo Tìte, F =( H p 1,..., H p N, H q 1,..., H q N ). (2.20) F = N i=1 q i ( H p i ) + N i=1 ( H ) =0 (2.21) p i q i qrhsimopoi ntac thn upìjesh ìti h Qamilt nia sun rthsh H eðnai dôo forèc suneq c paragwgðsimh. 2.4 Oloklhrwsimìthta kai h JewrÐa KAM 'Opwc dh anafèrame, h Ôparxh N anex rthtwn, monìtimwn kai en enelðxei stajer n thc kðnhshc sunep getai thn oloklhrwsimìthta enìc Qamilt niou sust matoc. H ènnoia aut sundèetai epðshc me th dunatìtht mac na epilôoume analutik tic diaforikèc exis seic tou probl matoc. Bèbaia, h ènnoia thc olokl rwshc kai thc epðlushc den tautðzontai: H oloklhrwsimìthta apoteleð anagkaða

32 KÐnhsh p nw se Tìrouc Oloklhr simwn Qamilt niwn Dunamik n Susthm twn sunj kh gia thn epilusimìthta h opoða den eðnai aparaðthta kai ikan. H epilusimìthta twn diaforik n exis sewn tou Hamilton shmaðnei praktik ìti èqoume thn dunatìthta na problèyoume to mèllon thc exèlixhc tou dunamikoô sust matoc, gia ìso qrìno epijumoôme. Autì mporeð na gðnei p ntote se oloklhr sima sust mata, ìpou oi troqièc keðntai se analloðwtouc tìrouc kai mða mikr metabol twn arqik n sunjhk n odhgeð se mða to polô grammik apom krunsh geitonik n troqi n. Akìma kai gia mh oloklhr sima Qamilt nia sust mata, an aut proèrqontai apì mikrèc diataraqèc oloklhr simwn susthm twn, h jewrða KAM mac exasfalðzei ìti oi perissìterec troqièc ja exakolouj soun na eðnai sqedìn periodikèc kai na keðntai se analloðwtouc tìrouc [54]. TÐ gðnetai ìmwc ìtan to Qamilt nio sôsthma pou melet me apèqei arket apì èna oloklhr simo? 'Opwc eðnai gnwstì, sthn perðptwsh aut emfanðzontai sto q ro f sewn meg lhc klðmakac perioqèc ìpou h kðnhsh eðnai qaotik, me thn ènnoia ìti mikrèc metabolèc twn arqik n sunjhk n odhgoôn se troqièc pou apoklðnoun ekjetik metaxô touc. Akìma kai tìte ìmwc, ìpwc ja doôme se poll shmeða thc diatrib c, kont se aplèc periodikèc lôseic tou sust matoc, ìtan autèc eðnai eustajeðc, h kðnhsh organ netai kai p li. O lìgoc eðnai ìti kai sthn perðptwsh aut, wc apotèlesma efarmog c thc jewrðac KAM, oi perissìterec troqièc exelðssontai p nw se tìrouc kanonik c, sqedìn periodik c tal ntwshc, toul qiston se mða mikr perioq gôrw apì thn apl periodik troqi. 2.5 KÐnhsh p nw se Tìrouc Oloklhr simwn Qamilt niwn Dunamik n Susthm twn Ac jewr soume, gia par deigma, èna klasikì talantwt duo bajm n eleujerðac, me mða autìnomh Qamilt nia sun rthsh H. An h H eðnai oloklhr simh, tìte mporeð na ekfrasteð se metablhtèc dr shc gwnðac J 1,J 2,θ 1,θ 2 wc sun rthsh mìno twn dr sewn H(J 1,J 2 )=E, ìpou E eðnai h stajer enèrgeia tou sust matoc, kai J 1,J 2 stajerèc thc kðnhshc. Mèsw aut n h kðnhsh sto q ro f sewn periorðzetai apì tic tèsseric stic dôo diast seic, ìpou h gwniak kðnhsh eðnai grammik, eis gontac mða suqnìthta gia k je bajmì eleujerðac θ 1 = ω 1 t + θ 10, θ 2 = ω 2 t + θ 20, kai odhg ntac ètsi se lôseic twn opoðwn h ex rthsh apì tic gwnðec eðnai periodik me perðodo 2π. 'Opwc prokôptei apì to je rhma Liouville Arnol d sthn perðptwsh aut hkðnhsh gðnetai p nw se epif neia tìrwn sto q ro f sewn, pou tèmnoun mða epif neia Poincaré p 1,q 1 ( p 2,q 2 ) kat m koc kleist n kampul n. Tìte h dr sh J 1 parametrikopoieð to embadìn thc kampôlhc en h gwnða θ 1 ( θ 2 ) perigr fei thn kðnhsh twn diadoqik n shmeðwn thc troqi c se mða tètoia epif neia, ìpwc faðnetai

33 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 19 kai sto sq ma 2.2. Gia stajerèc timèc twn J 1 kai J 2, afoô ω 1 = ω 1 (J) kai ω 2 = ω 2 (J), olìgoc α = ω 1 ω 2 eðnai epðshc stajerìc. Gia α = r/s me r, s metaxô touc pr touc akèraiouc arijmoôc, oi duo suqnìthtec eðnai akèraia pollapl sia mðac koin c ω =2π/T, kai h kðnhsh ekfulðzetai se mða periodik troqi mðac monodi stathc kampôlhc, periìdou T, h opoða kleðnei Ôstera apì r peristrofèc thc gwnðac θ 1 kai s thc gwnðac θ 2. An ìmwc, o lìgoc α eðnai rrhtoc h troqi den kleðnei potè kalôptontac telik pl rwc ton tìro. H ènnoia thc kðnhshc p nw se tìrouc eðnai idiaðtera qr simh giatð mporeð na genikeujeð se sust mata me perissìterouc apì duo bajmoôc eleujerðac. K je stajer thc kðnhshc mei nei th di stash tou q rou f sewn thc troqi c kat mða, ètsi ste gia èna sôsthma me N bajmoôc eleujerðac kai me N stajerèc thc kðnhshc, h kðnhsh ston 2N di stato q ro pragmatopoieðtai se mða N di stath epif neia h opoða perigr fetai apì N dr seic kai N gwnðec. Sq ma 2.2: KÐnhsh sto q ro f sewn enìc shmeðou gia èna oloklhr simo sôsthma me duo bajmoôc eleujerðac. (a) HkÐnhsh brðsketai p nw se èna tìro J 1 = staj., J 2 = staj.. (b) Tomècthctroqi c me mða epif neia tom n θ 2 = staj. Ôstera apì èna meg lo arijmì tètoiwn tom n. 2.6 Ekjètec Lyapunov Dunamik n Susthm twn Jewrhtik Prosèggish Oi ekjètec Lyapunov paðzoun polô shmantikì rìlo sth jewrða twn Qamilt niwn susthm twn all kai twn dunamik n susthm twn genikìtera. ApoteloÔn èna idiaðtera qr simo majhmatikì ergaleðo

34 Ekjètec Lyapunov Dunamik n Susthm twn pou èqei th dunatìthta na posotikopoieð ton bajmì qaotik c sumperifor c mðac troqi c. Me apl lìgia, oi ekjètec Lyapunov mðac dosmènhc troqi c prosdiorðzoun to mèso ìro thc ekjetik c apom krunshc geitonik n troqi n kat thn exèlixh tou qrìnou. O upologismìc autìc thc qaotik c dunamik c sto q ro f sewn mèsw thc apìklishc geitonik n troqi n parousi sjhke pr ta sto [45] kai melet jhke peraitèrw apì touc Zaslavski kai Chirikov (1972) [98], Froeschlé kai Scheidecker (1973) [37], kai Ford (1975) [33] all kai polloôc llouc. H jewrða twn ekjet n Lyapunov (1907) jemeli jhke apì ton Oseledec (1968) [63] en h sôndesh metaxô twn ekjet n aut n kai thc ekjetik c apìklishc dìjhke pr ta apì touc Benettin et al. (1976) [10] kai ton Pesin (1977) [67]. LÐgo argìtera, mða idiaðtera eôqrhsth arijmhtik diadikasða gia ton upologismì twn ekjet n Lyapunov anaptôqjhke apì touc Benettin et al. to 1980 [8, 9]. SÔmfwna me touc Benettin et al. [8, 9] oi ekjètec Lyapunov gia mða ro x(t) pou par getai apì èna autìnomo sôsthma SDE pr thc t xhc d x(t) dt = V ( x(t)) (2.22) se ènan M di stato EukleÐdeio q ro, x(t) R M, orðzontai wc ex c: JewroÔme mða lôsh, troqi anafor c twn (2.22), x(t) kai mða geitonik thc, x (t) me arqikèc sunj kec x 0 kai x 0 +Δ x 0, antðstoiqa, ìpwc sto sq ma 2.3 jewr ntac to d( x 0, 0) = Δ x 0 polô mikrì se sqèsh me to x 0, wc proc thn EukleÐdeia nìrma. Sq ma 2.3: O orismìc tou mègistou ekjèth Lyapunov. Duo arqik geitonik shmeða x 0 kai x 0 +Δ x 0 diaqwrðzontai ekjetik kaj c o qrìnoc aux nei. O rujmìc aôxhshc tou mètrou tou dianôsmatoc w(t) prosdiorðzetai apì ton mègisto ekjèth Lyapunov.

35 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 21 Oi troqièc autèc exelðssontai ston qrìno èqontac wc apìstash metaxô touc d( x 0,t)= Δ x( x 0,t) = x(t) x (t). Antikajist ntac t ra sthn (2.22) to x(t) me x(t)+ w, ìpou w Δ x =(Δx 1, Δx 2,...,Δx M ) kai grammikopoi ntac gia w(t) x(t), èqoume d w dt = J( x(t)) w, (2.23) ìpou J V/ x eðnai o Iakwbianìc pðnakac tou dianusmatikoô pedðou V ( x). H sqèsh (2.23) onom - zetai exðswsh metabol n (variational equation) tou sust matoc SDE (2.22). OrÐzoume t ra ton rujmì ekjetik c apìklishc duo arqik geitonik n troqi n ston q ro f sewn tou dunamikoô sust matoc wc to ìrio ( ) 1 σ( x 0, w) = lim ln d( x 0,t) t t d( x 0, 0). MporeÐ na deiqjeð ìti o arijmìc σ up rqei, gia genik epilog tou w, (me w x 0 ) kai eðnai peperasmènoc [66]. Epiplèon, up rqei mða M di stath b sh dianusm twn e i pou par goun to w tètoia ste gia diaforetikèc epilogèc tou w, o arijmìc σ na paðrnei mða apì tic timèc (genik diakritèc) σ i (x 0 )=σ( x 0,e i ), i =1...M tic opoðec onom zoume ekjètec Lyapunov. Oi ekjètec autoð mporoôn na diataqjoôn kat tètoio trìpo ste σ 1 σ 2... σ M kai eðnai anex rthtoi apì thn epilog thc metrik c tou q rou f sewn. EÐnai fanerì ìti mða dianusmatik ro èqei tìsouc ekjètec Lyapunov ìso eðnai kai to pl joc twn metablht n tou q rou f sewn tou dunamikoô sust matoc. AxÐzei na parathr soume ed ìti kat m koc k je troqi c, to di nusma w aux nei p nta grammik sto qrìno epeid h taqôthta x(t) eðnai mða akrib c lôsh twn exis sewn metabol n (2.23). Gia to lìgo autì e n èna apì ta e i lhfjeð kat th dieôjunsh thc Ðdiac thc troqi c to antðstoiqo σ i =0. Gia mða Qamilt nia ro ìpou x =(q, p), to dianusmatikì pedðo V eðnai V ( x) = ( H q, H ) p

36 Ekjètec Lyapunov Dunamik n Susthm twn en oi qarakthristikoð ekjètec Lyapunov èqoun thn eidik summetrða σ i = σ 2N i+1, i =1...M ìpou M =2N kai N eðnai to pl joc twn bajm n eleujerðac tou Qamilt niou sust matoc. Epomènwc, gia mða diathrhtik ro, ìpwc aut pou proèrqetai apì Qamilt nia sun rthsh, blèpoume eôkola ìti to jroisma twn ekjet n Lyapunov eðnai mhdèn M σ i ( x 0 )=0, i=1 en gia èna mh diathrhtikì sôsthma me ap leiec ìgkwn sto q ro twn f sewn, autì to jroisma eðnai arnhtikì. Me th bo jeia twn qarakthristik n ekjet n Lyapunov mporoôme t ra na orðsoume thn ènnoia thc qaotik c troqi c wc ex c: Qaotik ja lègetai mða troqi ìtan aujaðreta kont se k je shmeðo thc up rqei èna puknì pl joc geitonik n troqi n oi opoðec apomakrônontai ekjetik apì aut n kaj c o qrìnoc aux nei. To q oc qarakthrðzetai, epomènwc, apì ènan toul qiston qarakthristikì ekjèth Lyapunov megalôtero tou mhdenìc. Mèqri t ra asqolhj kame me touc ekjètec Lyapunov twn dianusm twn w, oi opoðoi lègontai kai ekjètec Lyapunov pr thc t xhc. O Oseledec (1968) genðkeuse aut thn idèa gia na perigr yei to mèso ìro thc ekjetik c an ptuxhc twn p di statwn ìgkwn sto q ro f sewn, (p M) pou sqhmatðzontai apì p tètoia dianôsmata w 1,..., w p. Qrhsimopoi ntac to sumbolismì tou exwterikoô ginomènou V p = w 1 w 2... w p gia to di nusma V p enìc p di statou parallhlepipèdou tou opoðou oi pleurèc eðnai ta dianôsmata w 1,..., w p, kai jewr ntac ìti aut eðnai p ntote grammik c anex rthta, wc probolèc p nw stic p astajeðc idiodieujônseic thc troqi c orðzoume mèsw thc sqèshc σ (p) (x 0,V p ) = lim t ( 1 t ) ln V p ( x 0,t) V p ( x 0, 0) (2.24) ton legìmeno ekjèth Lyapunov t xhc p. O Oseledec (1968) [63] kai Benettin et al. (1980) [8, 9] èdeixan ìti to σ (p) dðnetai wc to jroisma twn p ekjet n Lyapunov t xhc 1. 'Opwc èqoume σ( x 0, w) = σ 1 ( x 0 ) gia sqedìn ìla ta dianôsmata w, ètsi kai ed brðskoume ìti σ(p) eðnai to jroisma twn p megalôterwn ekjet n Lyapunov σ (p) = σ (p) 1 = σ 1 + σ σ p (2.25) gia ìla sqedìn ta arqik V p. H sqèsh (2.25) qrhsimopoieðtai kai gia ton arijmhtikì upologismì

37 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 23 twn ekjet n Lyapunov. Gia p = M, èqoumeto mèso ìro ekjetikoô rujmoô aôxhshc tou ìgkou tou q rou f sewn wc σ (M) = M σ i ( x 0 ). i= Arijmhtik Prosèggish Akolouj ntac touc Benettin et al. (1980) [8, 9], ja perigr youme t ra p c mporoôme na upologðsoume arijmhtik ìlouc touc ekjètec Lyapunov enìc M di statou dunamikoô sust matoc. EÐnai fanerì ì,ti k je prosp jeia na upologðsoume touc ekjètec autoôc σ 1,σ 2,... k.t.l. xeqwrist, dialègontac to arqikì efaptìmeno di nusma w kat m koc twn e 1,e 2,... k.t.l ja apotôqei exaitðac thc topik c dunamik c h opoða ja to eujugrammðsei me to di nusma e 1 thc plèon astajoôc idiodieôjunshc. AntÐjeta, autì pou k noume eðnai na dialèxoume mða arqik om da p sto pl joc orjokanonik n dianusm twn kai na upologðsoume arijmhtik ton p di stato ìgko V p (t) oopoðoc orðzetai apì ta dianôsmata aut. Oi ekjètec Lyapunov σ (p) i t xhc p brðskontai Ôstera apì th sqèsh (2.24). K - nontac autì gia p =1...M, qrhsimopoioôme th sqèsh (2.25) gia na broôme ìlouc touc ekjètec Lyapunov σ 1,σ 2,... 'Omwc mða nèa duskolða emfanðzetai. Kaj c ta efaptìmena dianôsmata exelðssontai, h gwnða metaxô duo opoiond pote dianusm twn gðnete polô mikr dhmiourg ntac probl mata akrðbeiac gia touc arijmhtikoôc upologismoôc. Epomènwc, gia na to apofôgoume autì prèpei se k je qronikì b ma t, na antikajistoôme ta dianôsmata aut me mða nèa om da orjokanonik n dianusm twn. Aut ta nèa dianôsmata prèpei na epilegoôn ètsi ste na par goun ton Ðdio upìqwro ìpwc kai ta prohgoômena. H parap nw diadikasða mporeð na qrhsimopoihjeð gia na upologðzei thn exèlixh ìlwn twn p di statwn ìgkwn upologðzontac thn exèlixh mìno twn M dianusm twn kai k nontac tautìqrona orjokanonikopoðhsh kat Gram Schmidt. Autì epitugq netai wc ex c: 'Estw w k 1 (0) to efaptìmeno di nusma sto shmeðo x(0) thc troqi c kai w k 1 (t) to efaptìmeno di nusma sto shmeðo x(kt). Qrhsimopoi ntac autì, upologðzoume pr ta gia k je qronikì b ma t tic posìthtec w (1) k d (1) k = w (1) k 1 (t) (0) = w(1) k 1 (t) d (1) k 'Epeita, upologðzoume diadoqik, gia j =2...M tic posìthtec j 1 u (j) k 1 (t) = w(j) k 1 (t) w (j) k d (j) k = u (j) k 1 (t), (0) = u(j) k 1 (t) d (j) k. i=1 [ w (i) k. (0) w(j) k 1 (t)] w(i) k (0),

38 H Mèjodoc tou Mikrìterou DeÐkth Eujugr mmishc (SALI) Kat th di rkeia tou (k 1) ostoô qronikoô diast matoc, o ìgkoc V p aux nei kat ènan ìro d (1) k d(2) k...d(p) k. H sqèsh (2.24) tìte dðnei ( ) σ (p) 1 N ( 1 = lim ln d (1) t Nt i=1 i d (2) i )...d (p) i. Afair ntac to σ (p 1) 1 apì to σ (p) 1 kai qrhsimopoi ntac th sqèsh (2.25), èqoume ton p ostì ekjèth Lyapunov ( ) 1 N ( σ p = lim ln t Nt i=1 Prèpei na tonðsoume ed ìti den up rqei ek twn protèrwn k poia sunj kh pou na prosdiorðzei ton arijmì twn epanal yewn pou apaitoôntai gia na exasfalðsoume th sôgklish twn ekjet n Lyapunov. Epomènwc, autì pou sunhjðzetai eðnai na sumplhr nontai ta arijmhtik apotelèsmata twn ekjet n Lyapunov kai me llec teqnikèc elègqou thc dunamik c, ìpwc gia par deigma me epif neiec tom n Poincaré, me thn mèjodo tou Mikrìterou DeÐkth Eujugr mmishc (SALI) (bl. epìmenh par grafo) k.lp. kaj c kai thn grafik par stash twn Ðdiwn twn troqi n ìtan autì eðnai efiktì (se qamhlodi stata sust mata), ste na apokalufjeð an prìkeitai gia kanonik qaotik troqi se k je perðptwsh. d (p) i ). 2.7 H Mèjodoc tou Mikrìterou DeÐkth Eujugr mmishc (SALI) H mèjodoc tou Mikrìterou DeÐkth Eujugr mmishc (Smaller ALignment Index kat suntomða SALI) apoteleð mða apl, apotelesmatik kai eôkola ulopoi simh arijmhtik mèjodo pou dðnei ap nthsh sto er thma tou prosdiorismoô thc qaotik c organwmènhc fôshc mðac dosmènhc troqi c enìc Qamilt niou dunamikoô sust matoc aujaðretou pl jouc bajm n eleujerðac. H mèjodoc aut parousi sjhke gia pr th for sto rjro [77] kai èqei dh efarmosjeð me epituqða gia ton diaqwrismì organwmènhc kai qaotik c kðnhshc se Qamilt nia sust mata kaj c kai se sumplektikèc apeikonðseic diafìrwn diast sewn [2, 3, 16, 27, 64, 78, 79, 80, 81, 82, 86, 87]. O SALI eðnai ènac deðkthc o opoðoc teðnei ekjetik sto mhdèn sthn perðptwsh twn qaotik n troqi n, en talant netai gôrw apì mh mhdenikèc timèc ìtan prìkeitai gia organwmènec troqièc Qamilt niwn susthm twn kai N di statwn sumplektik n apeikonðsewn me N > 2. Sthn perðptwsh twn 2 di statwn apeikonðsewn, to SALI teðnei sto mhdèn gia tic qaotikèc all kai gia tic organwmènec troqièc me diaforetikì ìmwc rujmì pt shc, o opoðoc epitrèpei kai sthn perðptwsh aut ton diaqwrismì metaxô twn duo peript sewn [77]: Eidikìtera, to SALI teðnei sto mhdèn akolouj ntac ènan ekjetikì nìmo gia tic qaotikèc troqièc en pèftei sto mhdèn akolouj ntac èna nìmo dônamhc ( 1/t) stic organwmènec troqièc. Ed ja periorisjoôme ed sthn perigraf thc sumperifor c tou SALI sthn perðptwsh twn Qamilt niwn dunamik n susthm twn. Gia ton lìgo autì, jewroôme ton 2N di stato q ro f sewn

39 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 25 enìc autìnomou Qamilt niou sust matoc H H(q 1 (t),...,q N (t),p 1 (t),...,p N (t)) = E (2.26) ìpou q i (t), i =1,...,N eðnai oi kanonikèc suntetagmènec jèshc, p i (t), i =1,...,N eðnaioikanonikèc suzugeðc ormèc kai E eðnai h olik enèrgeia tou sust matoc. H qronik exèlixh mðac troqi c tou sust matoc, x(t) =(q(t),p(t)), me arqik sunj kh x(t 0 )=(q 1 (t 0 ),...,q N (t 0 ),p 1 (t 0 ),...,p N (t 0 )) orðzetai wc h lôsh tou sust matoc twn 2N pr thc t xhc diaforik n exis sewn thc kðnhshc dq i (t) dt = H p i (t), dp i(t) = H,i=1,...,N (2.27) dt q i (t) pou prosdiorðzetai apì thn Qamilt nia sun rthsh (2.26). Gia na orðsoume ton Mikrìtero DeÐkth Eujugr mmishc SALI qrhsimopoioôme tic exis seic metabol n pou sunant same kai prohgoumènwc sthn jewrða twn ekjet n Lyapunov. Oi exis seic autèc eðnai oi antðstoiqec grammikopoihmènec exis seic twn exis sewn kðnhshc tou sust matoc diaforik n exis sewn (2.26) kai (2.17), gôrw apì mða troqi anafor c twn (2.26), (2.17) kai orðzontai apì th sqèsh d υ i (t) dt = J ( x(t)) υ i (t), i =1,...,2N (2.28) ìpou J ( x(t)) eðnai o Iakwbianìc pðnakac tou dexioô mèlouc tou sust matoc (2.27) upologismènoc sthn troqi x(t) =(q 1 (t),...,q N (t),p 1 (t),...,p N (t)). Ta dianôsmata υ i (t) =(υ i,1 (t),...,υ i,2n (t)), i = 1,...,2N eðnai gnwst wc dianôsmata apìklishc apì thn parap nw troqi. Sth sunèqeia, epilègoume duo apì aut ta dianôsmata apìklishc, υ k (t) kai υ l (t) ìpou 1 k, l 2N,k =l kai orðzoume touc duo deðktec Eujugr mmishc (ALI) t t 0 wc ALI (t) = υ k (t) υ k (t) υ l(t) υ l (t), ALI +(t) = υ k (t) υ k (t) + υ l(t) υ l (t) (2.29) ìpou dhl nei th sunhjismènh EukleÐdeia nìrma ston R 2N. O Mikrìteroc DeÐkthc Eujugr mmishc (SALI) orðzetai tìte wc SALI(t) min { ALI (t), ALI + (t) }, t t 0 (2.30) ìpou t 0 eðnai h arqik qronik stigm thc exèlixhc [77], [78]. 'Otan o deðkthc ALI (t) 0, autì shmaðnei ìti ta duo dianôsmata apìklishc, υ k (t) kai υ l (t), teðnoun na gðnoun suggrammik kai par llhla epeid h eswterik touc gwnða teðnei sto mhdèn kai epomènwc ALI + (t) 2, en ìtan ALI + (t) 0 ta duo dianôsmata apìklishc teðnoun na gðnoun suggrammik kai antipar llhla epeid h eswterik touc gwnða eðnai t ra Ðsh me π kai epomènwc

40 H Mèjodoc tou Genikeumènou DeÐkth Eujugr mmishc (GALI) ALI (t) 2. E n h troqi upì melèth x(t) =(q 1 (t),...,q N (t),p 1 (t),...,p N (t)) eðnai qaotik ta dianôsmata apìklishc eujugrammðzontai me thn plèon astaj idiodieôjunsh tou efaptìmenou q rou kai ètsi prokôptei apì th sqèsh (2.30) lim SALI(t) =min{0, 2} =0. t Sthn perðptwsh ìmwc, pou h troqi anafor c x(t) = (q 1 (t),...,q N (t),p 1 (t),...,p N (t)) eðnai organwmènh tìte lim SALI(t) = 0 t kai o SALI talant netai gôrw apì mða tim α (0, 2], epeid kat pr to lìgo ta dianôsmata apìklishc teðnoun na gðnoun efaptìmena ston tìro ston opoðo keðtai h troqi, en kat deôtero apokleðetai genik na eujugrammistoôn afoô oi sunist sec touc exelðssontai p nw ston tìro se dieujônseic pou kajorðzontai apì ta N anex rthta dianusmatik pedða twn N asumptwtik n oloklhrwm twn thc kðnhshc [79]. Aut akrib c h diaforetik sumperifor tou SALI stic organwmènec kai qaotikèc troqièc ton kajist mða polô apl kai axiìpisth mèjodo prosdiorismoô t xhc kai q ouc se Qamilt nia sust mata. EÐnai epðshc safèc ìti h epilog twn arqik n dianusm twn apìklishc υ k (t 0 ) kai υ l (t 0 ) eðnai aujaðreth kai den ephre zei thn isqô thc mejìdou. Autì epibebai netai peraitèrw kai apì ta apotelèsmata twn rjrwn [77, 79, 80, 82]. Tèloc, h mèjodoc tou SALI mporeð na efarmosjeð se sust mata me aujaðreta meg lo arijmì bajm n eleujerðac, sta opoða den eðnai dunatìn na diakrðnoume metaxô kanonik c kai qaotik c kðnhshc qrhsimopoi ntac thn mèjodo twn tom n Poincaré k poia llh apeikìnish twn troqi n tou sust matoc. 2.8 H Mèjodoc tou Genikeumènou DeÐkth Eujugr mmishc (GALI) H basik idèa sthn opoða sthrðzetai h epituqða thc mejìdou tou SALI kai h opoða thn diaqwrðzei apì ton upologismì twn ekjet n Lyapunov eðnai h qrhsimopoðhsh enìc epiplèon dianôsmatoc apìklishc se sqèsh me thn troqi anafor c. Pr gmati, jewr ntac th sqèsh metaxô duo dianusm twn apìklishc, eðmaste se jèsh na xeper soume thn duskolða thc arg c sôgklishc twn ekjet n Lyapunov se mhdenikèc mh timèc kaj c t. Gia na upologðsoume epomènwc to SALI, akoloujoôme tautìqrona thn qronik exèlixh thc troqi c anafor c mazð me ekeðnh duo dianusm twn apìklishc me arqikèc sunj kec w 1 (0), w 2 (0). AfoÔ endiaferìmaste mìno gia tic dieujônseic twn dianusm twn apìklishc, ta kanonikopoioôme, se k je qronikì b ma kai diathroôme to mètro touc Ðso me 1, jètontac ŵ i (t) = w i(t), i =1, 2 (2.31) w i (t)

41 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 27 ìpou dhl nei thn EukleÐdeia nìrma kai to sômbolo ( ) p nw apì k poio di nusma dhl nei ìti èqei mètro Ðso me 1. To SALI tìte orðzetai wc SALI(t) =min{ ŵ 1 (t)+ŵ 2 (t), ŵ 1 (t) ŵ 2 (t) }, (2.32) ìpou ìpwc anafèrame pio p nw SALI(t) [0, 2]. H sqèsh SALI = 0 dhl nei ìti ta duo dianôsmata apìklishc èqoun eujugrammisjeð dhlad eðnai Ðsa antðjeta metaxô touc, kai epomènwc eðnai grammik c exarthmèna. EÐnai shmantikì na parathr soume, ed, ìti to na anazhtoôme to el qisto twn duo jetik n posot twn sth sqèsh (2.32) eðnai ousiastik isodônamo me to na upologðzoume to ginìmeno touc P (t) = ŵ 1 (t)+ŵ 2 (t) ŵ 1 (t) ŵ 2 (t), (2.33) se k je qronikì b ma t. Pr gmati, e n to el qisto aut n twn duo posot twn eðnai to mhdèn (ìpwc sthn perðptwsh mðac qaotik c troqi c), to Ðdio ja isqôei kai gia thn tim thc sun rthshc P (t). Apì thn llh meri, e n h P (t) den eðnai 0, ja eðnai an logh me mða stajer gôrw apì thn opoða ta el qisto ja talant netai (ìpwc sthn perðptwsh twn organwmènwn troqi n). Autì upodeiknôei ìti, antð na upologðzoume to SALI(t) apì th sqèsh (2.32), mporoôme na upologðzoume to exwterikì ginìmeno ( wedge product ) (bl. Par rthma 6.4) twn duo dianusm twn apìklishc ŵ 1 ŵ 2 gia ta opoða isqôei h sqèsh ŵ 1 ŵ 2 = ŵ 1 ŵ 2 ŵ 1 +ŵ 2 2. (2.34) h opoða parist to embadìn tou parallhlogr mmou pou sqhmatðzetai apì aut ta duo dianôsmata. H apìdeixh thc sqèshc (2.34) paratðjetai sto Par rthma 6.5. Pr gmati, to exwterikì autì ginìmeno mporeð na d sei polô perissìterec qr simec plhroforðec, afoô genikeôetai ste na anaparist ton ìgko enìc parallhlepipèdou pou sqhmatðzetai apì ta dianôsmata ŵ 1, ŵ 2,...,ŵ k, 2 k 2N, jewroômena wc apoklðseic apì mða troqi enìc Qamilt niou sust matoc N bajm n eleujerðac, mðac 2N di stathc sumplektik c apeikìnishc. 'Enac apì touc kôriouc skopoôc aut c thc didaktorik c diatrib c eðnai h melèth mðac tètoiac genðkeushc kai h apok luyh shmantik n poiotik n kai posotik n plhrofori n sqetik me thn topik kai olik dunamik Qamilt niwn susthm twn poll n bajm n eleujerðac. Prin proqwr soume ìmwc sthn perigraf thc genðkeushc aut c, ac anakefalai soume ìla ìsa gnwrðzoume gia tic idiìthtec thc mejìdou tou SALI gia thn perðptwsh twn duo dianusm twn apìklishc ŵ 1, ŵ 2 : 1. Sthn perðptwsh twn qaotik n troqi n, ta dianôsmata apìklishc ŵ 1, ŵ 2 telik eujugrammðzontai me thn dieôjunsh tou mègistou ekjèth Lyapunov, kai to SALI(t) teðnei ekjetik sto mhdèn. MÐa analutik ex ghsh thc sumperifor c aut c ja parousiasjeð se epìmenh par grafo, ìpou ja deðxoume ìti isqôei SALI(t) e (σ 1 σ 2 )t (2.35) me σ 1 kai σ 2 touc duo megalôterouc ekjètec Lyapunov tou sust matoc, σ 1 >σ 2.

42 H Mèjodoc tou Genikeumènou DeÐkth Eujugr mmishc (GALI) 2. Sthn perðptwsh organwmènhc kðnhshc, h troqi ektulðssetai p nw se èna tìro kai ta dianôsmata ŵ 1, ŵ 2 telik teðnoun proc ton antðstoiqo efaptìmeno q ro, akolouj ntac ton nìmo t 1, èqontac en gènei diaforetikèc dieujônseic, ste o SALI telik talant netai gôrw apì mh mhdenikèc timèc. Aut h sumperifor ofeðletai sto gegonìc ìti gia tic organwmènec troqièc to mètro enìc dianôsmatoc apìklishc aux nei grammik sto qrìno kat m koc thc dianusmatik c ro c. Epomènwc, h diadikasða kanonikopoðhshc epifèrei mða meðwsh tou megèjouc twn suntetagmènwn pou eðnai k jetec ston tìro me ènan rujmì an logo tou t 1 kai epomènwc ta dianôsmata ŵ 1 kai ŵ 2 pèftoun telik ston efaptìmeno q ro tou tìrou. AxÐzei na shmei soume ìti sthn perðptwsh twn didi statwn apeikonðsewn o tìroc ekfulðzetai se mða analloðwth kampôlh thc opoðac o efaptìmenoc q roc eðnai monodi statoc. Epomènwc, sthn perðptwsh aut, ta duo monadiaða dianôsmata telik gðnontai grammik c exarthmèna kai to SALI teðnei sto mhdèn akolouj ntac ènan nìmo dônamhc 1/t. Autì eðnai, fusik, diaforetikì apì thn ekjetik pt sh tou SALI stic qaotikèc troqièc kai epomènwc o deðkthc mporeð na diaqwrðsei tic duo peript seic akìma kai se didi statec apeikonðseic [77]. To gegonìc ìmwc paramènei ìti h sumperifor tou SALI akìma kai gia organwmènec troqièc exart tai mesa apì thn di stash tou efaptìmenou q rou thc troqi c anafor c. EÐnai, epomènwc, endiafèron naanarwthjoôme an autìc o deðkthc mporeð na genikeujeð, ètsi ste diaforetikoð nìmoi dônamhc na mporoôn na qarakthrðsoun organwmènh kðnhsh se perissìterec diast seic. MÐa tètoia genðkeush apoteleð epðshc ènan apì touc basikoôc stìqouc aut c thc diatrib c. Ac k noume ed mða akìma parat rhsh pou afor sth sumperifor tou SALI gia tic qaotikèc troqièc. Apì th sqèsh (2.35), prokôptei èna er thma: P c ja sumperiferìtan o deðkthc sthn perðptwsh mðac qaotik c troqi c gia thn opoða oi duo mègistoi ekjètec Lyapunov σ 1 kai σ 2 eðnai Ðsoi sqedìn Ðsoi? Parìlo pou autì mporeð na mhn sumbaðnei suqn sta Qamilt nia sust mata, tètoiec peript seic mporoôn na brejoôn sthn bibliografða (kaj c kai sthn paroôsa diatrib )! Eidikìtera sto rjro [3], polô kont se mða astaj periodik troqi enìc Qamilt niou sust matoc 15 bajm n eleujerðac, oi duo mègistoi ekjètec Lyapunov eðnai sqedìn Ðsoi me proseggistikèc timèc σ 1 σ EÐnai fanerì ìti h qaotik fôsh aut c thc sugkekrimènhc perðptwshc troqi c den mporeð na apokalufjeð gr gora apì thn mèjodo tou SALI. Qreiazìmaste loipìn mða bajôterh melèth thc topik c dunamik c gia thn taqôterh diereônhsh parìmoiwn peript sewn, h opoða na jerapeôei ta meionekt mata kai na belti nei ta pleonekt mata tou SALI. Gia par deigma, e n mporoôsame na orðsoume èna deðkth o opoðoc na exart tai apì polloôc ekjètec Lyapunov, autì ja mporoôse na epitaqônei shmantik ton diaqwrismì thc qaotik c kðnhshc. Par llhla, ènac deðkthc pou fjðnei me diaforetikoôc nìmouc dônamhc, sômfwna me thn di stash tou efaptìmenou q rou thc troqi c, ja mac bohjoôse na epitôqoume mða kalôterh perigraf thc dunamik c akìma kai se peript seic ìpou h kðnhsh eðnai sqedìn organwmènh (dhlad stic legìmenec sticky ) perioqèc, merik c oloklhr simh upèr oloklhr simh (super integrable).

43 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c Orismìc tou Genikeumènou DeÐkth Eujugr mmishc (GALI) JewroÔme èna autìnomo Qamilt nio sôsthma N bajm n eleujerðac me Qamilt nia sun rthsh H(q 1,q 2,...,q N,p 1,p 2,...,p N )=h = staj. (2.36) ìpou q i kai p i, i =1, 2,...,N eðnai oi genikeumènec jèseic kai suzugeðc ormèc antðstoiqa. MÐa troqi tou sust matoc orðzetai apì to di nusma x(t) =(q 1 (t),q 2 (t),...,q N (t),p 1 (t),p 2 (t),...,p N (t)), me x i = q i, x i+n = p i, i =1, 2,...,N. H qronik exèlixh thc troqi c aut c dðnetai apì tic exis seic kðnhshc tou Hamilton ( ) d x dt = V( x) H = p, H, (2.37) q en h qronik exèlixh enìc arqikoô dianôsmatoc apìklishc w(0) = (dx 1 (0),dx 2 (0),...,dx 2N (0)) apì thn en lìgw lôsh, x(t) =( q(t), p(t)), ikanopoieð tic exis seic metabol n d w dt = M( x(t)) w, (2.38) ìpou M = V/ x eðnai o Iakwbianìc pðnakac thc V. 'Opwc eðdame pio p nw, o SALI eðnai ènac deðkthc ikanìc na elègqei pìte duo dianôsmata apìklishc ŵ 1, ŵ 2 (pou èqoun mètro Ðso me 1), gðnontai grammik c exarthmèna, eujugrammizìmena proc thn Ðdia dieôjunsh kat thn p rodo tou qrìnou. H grammik ex rthsh twn duo aut n dianusm twn apìklishc profan c isodunameð me ton mhdenismì tou embadoô thc perioq c tou parallhlogr mmou pou èqei wc pleurèc ta duo dianôsmata. GenikeÔontac, ja akolouj soume thn exèlixh k kanonikopoihmènwn dianusm twn apìklishc ŵ 1, ŵ 2,..., ŵ k, me 2 k 2N, kai ja prosdiorðsoume pìte aut telik ja gðnoun grammik c exarthmèna, elègqontac an o ìgkoc tou parallhlepipèdou pou èqei aut ta dianôsmata wc pleurèc teðnei sto mhdèn. Autìc o ìgkoc ja upologisjeð mèsw tou mètrou tou exwterikoô ginomènou ( wedge product) aut n twn dianusm twn (bl. par grafo kai Par rthma 6.4 gia ton orismì tou exwterikoô ginomènou). 'Ola ta kanonikopoihmèna dianôsmata apìklishc ŵ i, i =1, 2,...,2N, an koun ston 2N di stato efaptìmeno q ro thc Qamilt niac ro c. Qrhsimopoi ntac wc b sh tou q rou autoô to sônhjec sônolo orjokanonik n dianusm twn ê 1 =(1, 0, 0,...,0), ê 2 =(0, 1, 0,...,0),...,ê 2N =(0, 0, 0,...,1) (2.39) k je di nusma apìklishc ŵ i mporeð na grafeð wc grammikìc sunduasmìc aut n ŵ i = 2N j=1 w ij ê j, i =1, 2,...,k (2.40)

44 H Mèjodoc tou Genikeumènou DeÐkth Eujugr mmishc (GALI) ìpou w ij eðnai pragmatikoð arijmoð pou ikanopoioôn thn sqèsh 2N wij 2 j=1 =1. (2.41) Epomènwc, gr fontac thn (2.40) sth morf ŵ 1 ŵ 2.. = w 11 w 12 w 12N w 21 w 22 w 22N ê 1 ê 2.. (2.42) ŵ k w k1 w k2 w k 2N ê 2N kai qrhsimopoi ntac thn exðswsh (6.44) tou parart matoc 6.4, to exwterikì ginìmeno twn k dianusm twn apìklishc ekfr zetai apì to jroisma ŵ 1 ŵ 2 ŵ k = 1 i 1 <i 2 < <i k 2N w 1i1 w 1i2 w 1ik w 2i1 w 2i2 w 2ik ê i1 ê i2 ê ik. (2.43)... w ki1 w ki2 w kik An dôo toul qiston apìtakanonikopoihmèna dianôsmata apìklishc ŵ i, i =1, 2,...,keÐnai grammik c exarthmèna, ìlec oi k k orðzousec pou emfanðzontai sthn exðswsh (2.43) ja gðnoun mhdenikèc epib llontac ètsi ton antðstoiqo ìgko na mhdenisjeð. IsodÔnama h posìthta ŵ 1 ŵ 2 ŵ k = 1 i 1 <i 2 < <i k 2N 2 w 1i1 w 1i2 w 1ik w 2i1 w 2i2 w 2ik... w ki1 w ki2 w kik 1/2 (2.44) thn opoða ja onom zoume mètro tou exwterikoô ginomènou, ja gðnei epðshc mhdèn. Epomènwc, orðzoume wc Genikeumèno DeÐkth Eujugr mmishc Generalized Alignment Index (GALI) t xhc k thn posìthta GALI k (t) = ŵ 1 (t) ŵ 2 (t) ŵ k (t). (2.45) Gia na upologðsoume to GALI k, qrei zetai na akolouj soume thn exèlixh mðac troqi c me arqikèc sunj kec x(0), lônontac tic exis seic (2.27), en gia thn exèlixh twn k arqik grammik anex rthtwn dianusm twn apìklishc w i, i =1, 2,...,k qrhsimopoioôme tic exis seic metabol n (2.38). Se k je qronikì b ma, kanonikopoioôme ìla ta dianôsmata apìklishc ste na èqoun mètro 1 kai upologðzoume to GALI k wc to mètro twn exwterik n touc ginomènwn mèsw thc exðswshc (2.44). Sunep c, e n to GALI k (t) teðnei sto mhdèn, autì shmaðnei ìti o ìgkoc tou parallhlepipèdou pou

45 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 31 èqei wc pleurèc ta dianôsmata ŵ i epðshc surrikn netai sto mhdèn, kaj c toul qiston èna apì ta dianôsmata apìklishc gðnetai grammik c exarthmèno apì ta upìloipa. Apì thn llh meri, e n to GALI k (t) paramènei makru apì to mhdèn, kaj c o qrìnoc t megal nei aujaðreta, autì upodhl nei th grammik anexarthsða twn dianusm twn apìklishc kai thn Ôparxh enìc antðstoiqou parallhlepipèdou, tou opoðou o ìgkoc eðnai di foroc tou mhdenìc gia ìlouc touc qrìnouc t Jewrhtik Apotelèsmata Ekjetik Pt sh tou GALI stic Qaotikèc Troqièc Prin melet soume th dunamik sthn perioq miac qaotik c troqi c enìc Qamilt niou sust matoc me N bajmoôc eleujerðac, ja qreiasjeð na jumhjoôme merikèc gnwstèc idiìthtec twn ekjet n Lyapunov, akolouj ntac aut pou anafèrame sthn par grafo 2.6 [54, 26]. 'Opwc exhg same ekeð h mèsh ekjetik apìklish σ ( x(0), w) apì mða troqi anafor c me arqik sunj kh x(0) dðnetai apì ton tôpo 1 σ ( x(0), w) = lim t t ln w(t) w(0). (2.46) Epiplèon, up rqei mða 2N di stath b sh {û 1, û 2,...,û 2N } tou efaptìmenou q rou thc Qamilt niac ro c tètoia ste σ ( x(0), w) na paðrnei mða apì tic 2N (pijan c mh diakritèc) timèc σ i ( x(0)) = σ ( x(0), û i ), i =1, 2,...,2N (2.47) oi opoðec eðnai oi qarakthristikoð ekjètec Lyapunov, taxinomhmènoi kat to mègejìc touc σ 1 σ 2... σ 2N. (2.48) Oi idiìthtec autèc gðnontai eôkola katanohtèc an h troqi anafor c eðnai mða astaj c periodik lôsh me perðodo T. Sthn perðptwsh aut, o pðnakac M twn exis sewn metabol n (2.38) eðnai ènac suneq c, T periodikìc 2N 2N pðnakac kai h lôsh twn exis sewn aut n mporeð na grafeð sth morf w(t) =Φ(t) w(0), (2.49) ìpou Φ(t) eðnai o legìmenoc jemeli dhc pðnakac tou sust matoc [91, 63, 13, 65], tètoioc ste Φ(0) = I, (o 2N 2N tautotikìc pðnakac). SÔmfwna me th jewrða Floquet h sumperifor tou dianôsmatoc apìklishc w(t) kajorðzetai apì tic idiotimèc λ i tou monìdromou pðnaka Φ(T ), taxinomhmènec wc λ 1 λ 2 λ 2N. An sumbolðsoume û i, i =1, 2,...,2N ta antðstoiqa idiodianôsmata, Tìte me w(0) = û i èqoume en apì th sqèsh (2.46) paðrnoume w(nt )=λ n i ûi, i =1, 2,...,2N (2.50) 1 σ ( x(0), û i ) = lim n nt ln λn i = ln λ i T, i =1, 2,...,2N. (2.51)

46 H Mèjodoc tou Genikeumènou DeÐkth Eujugr mmishc (GALI) Epiplèon, e n gr youme 2N w(0) = c i û i, (2.52) i=1 prokôptei apì thn (2.50) ìti h exèlixh twn arqik n dianusm twn apìklishc w(0) se qrìnouc t = nt dðnetai apì to jroisma 2N w(nt )= c i e σ int û i, (2.53) i=1 Gia mða mh periodik troqi ìmwc den mporoôme na orðsoume idiotimèc kai idiodianôsmata ìpwc ta parap nw. Parìla aut, o Oseledec [63] apèdeixe thn Ôparxh dianusm twn b shc {û 1, û 2,...,û 2N } kai ekjet n Lyapunov gia mh periodikèc troqièc. Autì exhgeðtai apì to ìti oi periodikèc troqièc eðnai puknèc ston q ro f sewn enìc Qamilt niou sust matoc kai epomènwc mða periodik troqi aujaðreta meg lhc periìdou mporeð p nta na brejeð kont se opoiad pote mh periodik troqi. 'Etsi, h qronik exèlixh enìc dianôsmatoc apìklishc mporeð p li na proseggisjeð apì mða exðswsh thc morf c (2.53), w(t) = 2N c i e d itû i, (2.54) i=1 ìpou c i, d i eðnai pragmatikoð arijmoð pou exart ntai apì ta shmeða tou q rou f sewn apì ta opoða dièrqetai h troqi anafor c. Epomènwc, oi posìthtec d i, i =1, 2,...,2N mporoôn na jewrhjoôn wc topikoð ekjètec Lyapunov èqontac ìrio gia t touc olikoôc ekjètec σ i, i =1, 2,...,2N. Akìma kai se k poia eidik perðptwsh ìpou ta dianôsmata û i, i =1, 2,...,2N eðnai gnwst ek twn protèrwn, ètsi ste k poioc na mporoôse na jèsei w(0) = û i, oi xonec autoð metab llontai kat th qronik exèlixh twn dianusm twn apìklishc kai odhgoômaste kai p li ston upologismì tou megalôterou ekjèth Lyapunov σ 1 apì thn exðswsh L 1 (t) = 1 t ln w(t) w(0), ètsi ste σ 1 = lim t L 1 (t), (2.55) ìpou w(0), w(t) eðnai dianôsmata apìklishc apì mða dosmènh troqi, se qrìnouc t =0kai t > 0 antðstoiqa [8, 9]. Ac diereun soume loipìn, pr ta th dunamik sthn perioq mðac qaotik c troqi c enìc Qamilt niou sust matoc (2.36) me N bajmoôc eleujerðac. 'Estw L 1 L 2 L 2N oi topikoð ekjètec Lyapunov oi opoðoi talant nontai gôrw apì tic qronikèc mèsec timèc σ 1 σ 2 σ 2N, oi opoðec eðnai oi olikoð ekjètec Lyapunov sthn perioq thc qaotik c troqi c. EÐnai gnwstì ìti ta Qamilt nia sust mata eðnai genik mh oloklhr sima kai ìti diajètoun ekjètec Lyapunov sthn qaotik perioq oi opoðoi eðnai pragmatikoð arijmoð kai omadopoihmènoi se zeug ria antðjetou pros mou me duo apì autoôc na eðnai Ðsoi me to mhdèn [54]. Epomènwc, èqoume σ i = σ 2N i+1 gia i =1, 2,...,N kai σ 1 σ 2 σ N 1 σ N = σ N+1 =0 σ N+2 σ 2N. Upojètontac ìti ta L i, i =1, 2,...,2N paôoun na talant nontai shmantik gôrw apì th mèsh tim touc kai ìti

47 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 33 h prosèggish L i σ i isqôei, h exèlixh k je arqikoô dianôsmatoc apìklishc w i mporeð na grafeð wc w i (t) = 2N c i j e σ jt û j, (2.56) j=1 ìpou c i j eðnai pragmatikoð arijmoð kai û j ta stigmiaða monadiaða idiodianôsmata pou antistoiqoôn sta σ j. Aut ta idiodianôsmata eðnai genik grammik c anex rthta. TonÐzoume ed ìti ta c i j kai û j exart ntai, fusik, apì thn sugkekrimènec jèseic ston q ro f sewn apì tic opoðec dièrqetai h troqi. Upojètontac t ra ìti σ 1 >σ 2 paðrnoume mða ektðmhsh pr thc t xhc tou EukleÐdeiou mètrou twn dianusm twn apìklishc, gia arket meg louc qrìnouc, pou dðnetai apì th sqèsh w i (t) c i 1 e σ 1t. (2.57) Sunep c, o pðnakac C (bl. Par rthma (6.43)) twn suntelest n twn k kanonikopoihmènwn dianusm - twn apìklishc ŵ i (t) = w i (t)/ w i (t), i =1, 2,...,k me 2 k 2N, qrhsimopoi ntac wc b sh tou dianusmatikoô q rou ta {û 1, û 2,...,û 2N } gðnetai C(t) =[c ij ]= s 1 c 1 2 c 1 1 e (σ 1 σ 2 )t c 1 3 c 1 1 e (σ 1 σ 3 )t s 2 c 2 2 c 2 1 e (σ 1 σ 2 )t c 2 3 c 2 1 e (σ 1 σ 3 )t..... s k c k 2 c k 1 e (σ 1 σ 2 )t c k 3 c k 1 e (σ 1 σ 3 )t me s i =sign(c i 1 ) kai i =1, 2,...,k, j =1, 2,...,2N kai, epomènwc, èqoume c 1 2N c 1 1 e (σ 1 σ 2N )t c 2 2N c 2 1 e (σ 1 σ 2N )t. c k 2N c k 1 e (σ 1 σ 2N )t, (2.58) [ ŵ 1 ŵ 2... ŵ k ] T = C [ û 1 û 2... û 2N ] T (2.59) me ( T ) dhl noume ton an strofo tou pðnaka. To exwterikì ginìmeno twn k kanonikopoihmènwn dianusm twn apìklishc upologðzetai lìgw thc exðswshc (2.43) apì thn èkfrash ŵ 1 (t) ŵ 2 (t) ŵ k (t) = 1 i 1 <i 2 < <i k 2N c 1i1 c 1i2 c 1ik c 2i1 c 2i2 c 2ik... û i1 û i2 û ik. (2.60)... c ki1 c ki2 c kik

48 H Mèjodoc tou Genikeumènou DeÐkth Eujugr mmishc (GALI) AxÐzei na shmei soume ed ìti h posìthta S k = 1 i 1 <i 2 < <i k 2N c 1i1 c 1i2 c 1ik c 2i1 c 2i2 c 2ik c ki1 c ki2 c kik 2 1/2 (2.61) den eðnai Ðdia me to mètro (2.44) twn k dianusm twn ŵ 1 (t) ŵ 2 (t) ŵ k (t) kaj c to exwterikì ginìmeno sth exðswsh (2.60) den ekfr zetai wc proc thn Ðdia b sh (2.39). Ja mporoôse epomènwc, k poioc na jewr sei ton metasqhmatismì [ ] T [ û 1 û 2... û 2N = Tc ê 1 ê 2... ê 2N ] T, (2.62) metaxô twn duo b sewn, me T c na dhl nei ton pðnaka metasqhmatismoô. Bèbaia, ìtan anaferìmaste se exwterikì ginìmeno 2N dianusm twn apìklishc eôkola mporoôme na deðxoume ìti isqôei ŵ 1 ŵ 2 ŵ 2N = S 2N dett c. (2.63) E n, ìmwc, jewr soume exwterikì ginìmeno me ligìtera apì 2N dianôsmata apìklishc, to mètro (2.44) kai h posìthta S k (2.61) den sundèontai plèon me aplèc sqèseic ìpwc h (2.63). Parìla aut ja proqwr soume th melèth mac qrhsimopoi ntac thn (2.61) antð thc (2.44), kaj c den anamènoume ìti mða tètoia allag b shc ephre zei shmantik thn dunamik tropopoieð ta sumper smat mac gia touc ex c lìgouc: Pr ta ap' ìla, kai oi duo posìthtec mhdenðzontai ìtan toul qiston duo apì ta dianôsmata apìklishc eðnai grammik c exarthmèna, exaitðac tou gegonìtoc ìti ìlec oi orðzousec pou emfanðzontai stic exis seic (2.44) kai (2.61) mhdenðzontai. Epiplèon, o pðnakac metasqhmatismoô T c den eðnai idiomìrfoc kaj c ta sônola {û i } kai {ê i }, i =1, 2,...,2N suneqðzoun na eðnai orjokanonikèc b seic tou dianusmatikoô q rou. 'Ara, melet ntac analutik thn qronik exèlixh thc S k mèsw thc (2.61), anamènoume na èqoume akribeðc proseggðseic thc sumperifor c twn GALI k (2.45) gia tic qaotikèc troqièc. HisqÔc aut c thc prosèggishc èqei elegqjeð kai pistopoihjeð arijmhtik apì ta apotelèsmata thc paragr fou Ac doôme t ra pwc mporoôme na ulopoi soume thn wc nw diadikasða gia na melet soume thn topik dunamik mðac troqi c anafor c: Oi orðzousec pou emfanðzontai ston orismì tou S k (bl. ex. (2.61)) mporoôn na diairejoôn se duo kathgorðec an loga me to an perièqoun ìqi thn pr th st lh tou pðnaka C. Qrhsimopoi ntac klasikèc idiìthtec twn orizous n, parathroôme ìti autèc pou

49 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 35 perièqoun thn pr th st lh dðnoun c s 1 j 1 1 σ j1 )t 1 c 1 1 e (σ c s 2 j 1 1 σ j1 )t 2 c D 1,j1,j 2,...,j k 1 = 2 1 e (σ.... c s k j 1 1 σ j1 )t k c k 1 e (σ c s 1 c 1 j 1 j 1 c 1 1 k 1 c 1 1 c s 2 c 2 j 1 j 2 c = 2 1 k 1 c c s k c k j 1 j k c k 1 k 1 c k 1 c 1 j k 1 c 1 1 e (σ 1 σ jk 1 )t c 2 j k 1 c 2 1 e (σ 1 σ jk 1 )t.. c k j k 1 c k 1 e (σ 1 σ jk 1 )t = [ ] e (σ 1 σ j1 )+(σ 1 σ j2 )+ +(σ 1 σ jk 1 ) t me 1 <j 1 <j 2 <... < j k 1 2N. Epomènwc, h qronik exèlixh twn D 1,j1,j 2,...,j k 1 kurðwc apì ton ekjetikì nìmo (2.64) prosdiorðzetai [ ] D 1,j1,j 2,...,j k 1 e (σ 1 σ j1 )+(σ 1 σ j2 )+ +(σ 1 σ jk 1 ) t. (2.65) Parìmoia, sumperaðnoume ìti oi orðzousec pou den perièqoun thn pr th st lh tou pðnaka C (2.58) èqoun thn morf c 1 j 1 D j1,j 2,...,j k = c k j 1 c 1 j c 1 1 j 2 c 1 1 c 1 1 c 2 j c 2 1 j 2 c = 2 1 c c k j c k 1 j 1 c k 1 c k 1 1 σ j1 )t c 1 1 e (σ c 2 j 1 1 σ j1 )t c 2 1 e (σ. c k 1 e (σ 1 σ j1 )t c 1 j k c 1 1 c 2 j k c c k j k 1 c k 1 c 1 j 2 1 σ j2 )t c 1 1 e (σ c 2 j 2 1 σ j2 )t c 2 1 e (σ. c k j 2 c k 1 e (σ 1 σ j2 )t c 1 j k 1 σ jk )t c 1 1 e (σ c 2 j k 1 σ jk )t c 2 1 e (σ. c k j k c k 1 e (σ 1 σ jk )t = [ ] e (σ 1 σ j1 )+(σ 1 σ j2 )+ +(σ 1 σ jk 1 )+(σ 1 σ jk ) t (2.66) me 1 <j 1 <j 2 <... < j k 1 <j k 2N. Epomènwc, oi timèc aut n twn orizous n teðnoun epðshc sto mhdèn akolouj ntac ton ekjetikì nìmo [ ] D j1,j 2,...,j k e (σ 1 σ j1 )+(σ 1 σ j2 )+ +(σ 1 σ jk 1 )+(σ 1 σ jk ) t. (2.67) Profan c, apì ìlec tic k k orðzousec pou emfanðzontai ston orismì tou S k, (2.61), ekeðnec pou mei nontai pio arg sto qrìno eðnai autèc pou perièqoun thn pr th st lh tou pðnaka C sthn (2.58),

50 H Mèjodoc tou Genikeumènou DeÐkth Eujugr mmishc (GALI) dhlad D 1,2,3,...,k e [(σ 1 σ 2 )+(σ 1 σ 3 )+ +(σ 1 σ k )]t. (2.68) 'Olec oi llec orðzousec (2.65) teðnoun sto mhdèn pio gr gora apì ìti oi orðzousec D 1,2,3,...,k a- foô oi posìthtec sta ekjetik touc eðnai megalôterec Ðsec me ton ekjèth thc (2.68). Epomènwc, sumperaðnoume ìti o rujmìc meðwshc tou S k kuriarqeðtai apì thn (2.68), dðnontac thn prosèggish S k (t) e [(σ 1 σ 2 )+(σ 1 σ 3 )+ +(σ 1 σ k )]t. (2.69) Epiplèon, afoô to mètro (2.44) twn k dianusm twn ŵ 1 ŵ 2 ŵ k anamènetai na exelðssetai parìmoia me thn S k, sumperaðnoume ìti to GALI k teðnei sto mhdèn me ton Ðdio trìpo, dhlad GALI k (t) e [(σ 1 σ 2 )+(σ 1 σ 3 )+ +(σ 1 σ k )]t. (2.70) ParathroÔme ìti gia k =2odeÐkthc GALI n (t) eðnai isodônamoc me to SALI pou perigr yame sthn par Sthn perðptwsh aut o tôpoc (2.70) an getai ston (2.35), h apìdeixh tou opoðou èqei dh dojeð sth dhmosðeush [82]. Shmei noume tèloc ìti sthn prohgoômenh an lush upojèsame ìti σ 1 >σ 2 ètsi ste to mètro tou k je dianôsmatoc apìklishc na mporeð na proseggisjeð ikanopoihtik apì thn exðswsh (2.57). E n oi pr toi m ekjètec Lyapunov, me1 <m<k,eðnai Ðsoi, polô kont oi timèc metaxô touc, dhlad σ 1 σ 2 σ m hexðswsh (2.70) gðnetai GALI k (t) e [(σ 1 σ m+1 )+(σ 1 σ m+2 )+ +(σ 1 σ k )]t, (2.71) h opoða kai p li perigr fei mða ekjetik pt sh. Parìla aut, gia k m<n to GALI k den teðnei sto mhdèn kaj c up rqei mða toul qiston orðzousa tou pðnaka C h opoða den mhdenðzetai. Sthn perðptwsh aut, fusik, prèpei na aux soume ton arijmì twn dianusm twn apìklishc ste na epitôqoume telik mða ekjetik pt sh twn GALI k. H eidik kat stash ìpou ìloi oi ekjètec Lyapunov σ i =0 antistoiqoôn se èna oloklhr simo sôsthma, sto opoðo ìlec oi troqièc eðnai organwmènec perigr fetai amèswc parak tw O Upologismìc tou GALI gia tic Organwmènec Troqièc 'Opwc eðnai gnwstì, oi organwmènec troqièc enìc Qamilt niou sust matoc N bajm n eleujerðac (2.36) genik keðntai p nw se ènan N di stato tìro. SÔmfwna me thn jewrða KAM, èna puknì sônolo tètoiwn tìrwn up rqei gôrw apì eustajeðc periodikèc troqièc kai mporeð me akrðbeia na perigrafeð apì N tupik (formal) oloklhr mata thc kðnhshc se enèlixh, ètsi ste to sôsthma na emfanðzetai topik oloklhr simo. Autì shmaðnei ìti mporoôme na ektelèsoume ènan topikì metasqhmatismì se metablhtèc dr shc gwnðac, jewr ntac wc dr seic J 1,J 2,...,J N tic timèc twn N

51 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 37 tupik n oloklhrwm twn, ètsi ste oi exis seic Hamilton thc kðnhshc, na p roun topik thn morf J i = 0 θ i = ω i (J 1,J 2,...,J N ) i =1, 2,...,N. (2.72) Oi exis seic autèc eôkola oloklhr nontai kai dðnoun J i (t) = J i0 θ i (t) = θ i0 + ω i (J 10,J 20,...,J N0 ) t i =1, 2,...,N, (2.73) ìpou J i0, θ i0, i =1, 2,...,N eðnai oi arqikèc sunj kec. OrÐzontac wc ξ i, η i, i =1, 2,...,N mikrèc apoklðseic twn J i kai θ i antðstoiqa apì tic timèc touc p nw ston tìro, gr foume tic exis seic metabol n tou sust matoc (2.72), sth morf ξ i = 0 η i = N j=1 ω ij ξ j i =1, 2,...,N, (2.74) ìpou ω ij = ω i J j J0 i, j =1, 2,...,N, (2.75) kai J0 =(J 10,J 20,...,J N0 )=staj., anaparist to N di stato di nusma arqik n dr sewn. H lôsh twn exis sewn aut n eðnai ξ i (t) = ξ i (0) [ N ] η i (t) = η i (0) + j=1 ω ijξ j (0) t i =1, 2,...,N. (2.76) Apì tic (2.76) blèpoume ìti èna arqikì di nusma apìklishc w(0) me suntetagmènec ξ i (0), i = 1, 2,...,N stic metablhtèc dr shc kai η i (0), i =1, 2,...,N stic metablhtèc gwnðac, dhlad w(0) = (ξ 1 (0),ξ 2 (0),...,ξ N (0),η 1 (0),η 2 (0),...,η N (0)), exelðssetai ston qrìno me tètoio trìpo ste oi suntetagmènec dr shc na paramènoun stajerèc, en oi suntetagmènec gwnðac aux nontai grammik ston qrìno. Aut h sumperifor dhl nei mða sqedìn grammik aôxhsh tou mètrou tou dianôsmatoc apìklishc. Gia na to doôme autì, ac upojèsoume arqik ìti to di nusma apìklishc w(0) èqei mètro mon da, dhlad N N ξ i (0) 2 + η i (0) 2 =1 (2.77) i=1 i=1 en h qronik exèlixh tou mètrou tou dðnetai apì thn N N N N w(t) = 1+ ω ij ξ j (0) t η i (0) ω ij ξ j (0) t i=1 j=1 i=1 j=1 1/2, (2.78)

52 H Mèjodoc tou Genikeumènou DeÐkth Eujugr mmishc (GALI) ste to kanonikopoihmèno di nusma apìklishc ŵ(t) gr fetai 1 N N ŵ(t) = ξ 1 (0),...,ξ N (0),η 1 (0) + ω 1j ξ j (0) t,...,η N (0) + ω Nj ξ j (0) t. w(t) j=1 j=1 (2.79) AfoÔ to mètro (2.78) enìc dianôsmatoc apìklishc, gia arket meg lo qrìno t, aux nei grammik me ton qrìno t, to kanonikopoihmèno di nusma apìklishc (2.79) teðnei proc ton efaptìmeno q ro tou tìrou, afoô oi suntetagmènec tou pou eðnai k jetec ston tìro (dhlad oi suntetagmènec kat m koc twn dieujônsewn twn dr sewn) mei nontai me rujmì t 1. Aut h sumperifor èqei epibebaiwjeð arijmhtik sthn perðptwsh enìc organwmènou Qamilt niou sust matoc duo bajm n eleujerðac sto rjro [79]. Qrhsimopoi ntac wc b sh tou 2N di stastou q rou f sewn ta 2N monadiaða dianôsmata {ˆv 1, ˆv 2,...,ˆv 2N }, ètsi ste ta pr ta N apì aut, ˆv 1, ˆv 2,...,ˆv N na antistoiqoôn stic N metablhtèc dr shc kai ta upìloipa, ˆv N+1, ˆv N+2,...,ˆv 2N stic N suzugeðc metablhtèc gwnðac, k je tètoio monadiaðo di nusma apìklishc ŵ i, i =1, 2,... mporeð na grafeð wc ( ) 1 N N N ŵ i (t) = ξj i w(t) (0) ˆv j + ηj i (0) + ω kj ξj i (0)t ˆv N+j. (2.80) j=1 j=1 TonÐzoume ed ìti oi posìthtec ω ij, i, j =1, 2...,N, sthn (2.75), exart ntai mìno apì thn sugkekrimènh troqi anafor c kai ìqi apì thn epilog twn dianusm twn apìklishc. AxÐzei epðshc, na shmei soume ìti h b sh û i, i =1, 2,...,2N exart tai apì to sugkekrimèno tìro ston opoðohtroqi exelðssetai kai sqetðzetai me thn sun jh b sh dianusm twn ê i, i =1, 2,...,2N thc exðswshc (2.39), mèsw enìc mh idiìmorfou metasqhmatismoô, parìmoiou me autìn thc exðswshc (2.62), [ ] T [ ˆv 1 ˆv 2... ˆv 2N = To k=1 ê 1 ê 2... ê 2N ] T (2.81) ìpou to T o sumbolðzei ton pðnaka metasqhmatismoô. 'Etsi, hb sh{ê 1, ê 2,...,ê 2N } qrhsimopoieðtai gia na perigr yei thn exèlixh enìc dianôsmatoc apìklishc se sqèsh me tic arqikèc suntetagmènec q i, p i i =1, 2,...,N tou Qamilt niou sust matoc (2.36), en h b sh {ˆv 1, ˆv 2,...,ˆv 2N } qrhsimopoieðtai gia na perigr yei thn Ðdia exèlixh, ìtan jewr soume to arqikì sôsthma stic metablhtèc dr shc gwnðac, ètsi ste oi exis seic thc kðnhshc na dðnontai apì tic sqèseic (2.72). Sto shmeðo autì parathroôme to ex c: An to arqikì di nusma apìklishc brðsketai dh ston efaptìmeno q ro tou tìrou, ja parameðnei stajerì gia ìlo to qrìno exèlixhc! Pr gmati, paðrnontac wc arqikèc sunj kec autoô tou dianôsmatoc tic ξ i (0) = 0, i =1, 2,...,N, (2.82)

53 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 39 me N η i (0) 2 =1, (2.83) i=1 sumperaðnoume apì tic exis seic (2.76)ìti ξ i (t) =0, η i (t) =η i (0) (2.84) ra to di nusma apìklishc paramènei to Ðdio èqontac mètro p nta Ðso me èna. Eidikìtera, èna tètoio di nusma èqei th morf ŵ(t) =(0, 0,...,0,η 1 (0),η 2 (0),...,η N (0)). (2.85) Ac melet soume t ra thn perðptwsh twn k, en gènei, grammik anex rthtwn monadiaðwn dianusm - twn apìklishc {ŵ 1, ŵ 2,...,ŵ k } me 2 k 2N. Qrhsimopoi ntac wc dianusmatik b sh to sônolo {ˆv 1, ˆv 2,...,ˆv 2N } paðrnoume [ ] T [ ] T ŵ 1 ŵ 2... ŵ k = D ˆv 1 ˆv 2... ˆv 2N. (2.86) An arqik, kanèna di nusma apìklishc den brðsketai ston efaptìmeno q ro tou tìrou, o pðnakac D èqei th morf D =[d ij ]= 1 k m=1 w m(t) ξ1 1(0) ξ1 N (0) η1 1 (0) + N m=1 ω 1mξm(0)t 1 ηn 1 (0) + N m=1 ω Nmξm(0)t 1 ξ1 2(0) ξ2 N (0) η2 1 (0) + N m=1 ω 1mξm(0)t 2 ηn 2 (0) + N m=1 ω Nmξm(0)t ξ1 k(0) ξk N (0) ηk 1 (0) + N m=1 ω 1mξm k (0)t ηk N (0) +, (2.87) N m=1 ω Nmξm k (0)t ìpou i =1, 2,...,k kai j =1, 2,...,2N. Anatrèqontac t ra sthn prohgoômen mac an lush, bl. ((2.77) (2.80)), parathroôme ìti to mètro tou dianôsmatoc w i (t) gia meg louc qrìnouc, aux nei grammik me ton qrìno t wc M i (t) = w i (t) t (2.88) kai, epomènwc, orðzontac me ξ 0,k i kai η k i tic k 1 st lec ξi 1 (0) ξ 0,k ξ i = i 2(0).., ηk i = ξ k i (0) ηi 1(0) ηi 2(0).., (2.89) η k i (0)

54 H Mèjodoc tou Genikeumènou DeÐkth Eujugr mmishc (GALI) o pðnakac D thc (2.87) an getai ston akìloujo tôpo D(t) = 1 [ k i=1 M i(t) ξ 0,k 1... ξ 0,k N η k 1 + N i=1 ω 1iξ 0,k i t... η k N + N = i=1 ω Niξ 0,k i t ] = 1 k i=1 M i(t) D0,k (t). (2.90) Ac upojèsoume t ra ìti epilègoume na topojet soume arqik m grammik c anex rthta dianôsmata apìklishc, me m k, ston efaptìmeno q ro tou tìrou kai èstw ìti aut eðnai ta pr ta m dianôsmata apìklishc sthn exðswsh (2.86). SÔmfwna me ton parap nw sumbolismì autì uponoeð, ìti ta ξ i dianôsmata sthn (2.90) èqoun thn morf ξ m,k i = ξ m+1 i (0) ξ m+2 i (0). ξ k i (0) (2.91) ìpou o pr toc nw deðkthc, m, anafèretai sto pl joc twn pr twn suntetagmènwn pou eðnai Ðsec me to mhdèn. Epomènwc, o pðnakac D thc (2.90) sthn perðptwsh aut dðnei 1 [ D(t) = k m i=1 M m+i(t) ξ m,k 1... ξ m,k N η k 1 + N i=1 ω 1iξ m,k i t... η k N + N i=1 ω Niξ m,k i t ] = 1 = k m i=1 M m+i(t) Dm,k (t), (2.92) ìpou o pr toc nw deðkthc thc D m,k (t) stic exis seic (2.90) kai (2.92) èqei an logh shmasða ìpwc sthn ξ m,k i. Qrhsimopoi ntac xan thn exðswsh (2.60), gr foume to exwterikì ginìmeno twn k kanonikopoihmènwn dianusm twn apìklishc wc ŵ 1 (t) ŵ 2 (t) ŵ k (t) = 1 i 1 <i 2 < <i k 2N d 1i1 d 1i2 d 1ik d 2i1 d 2i2 d 2ik... û i1 û i2 û ik. (2.93)... d ki1 d ki2 d kik

55 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 41 eis gontac thn an logh posìthta S k = 1 i 1 <i 2 < <i k 2N d 1i1 d 1i2 d 1ik d 2i1 d 2i2 d 2ik d ki1 d ki2 d kik 2 1/2. (2.94) ìpwc sthn perðptwsh twn qaotik n troqi n, (2.60) kai (2.61) antðstoiqa. 'Opwc èqoume dh exhg sei, ta k dianôsmata apìklishc telik teðnoun proc ton N di stato efaptìmeno q ro tou tìrou ston opoðo h troqi exelðssetai. Fusik, e n k poia apì aut brðskontai dh p nw ston efaptìmeno q ro, gia qrìno t =0, ja parameðnoun gia p nta seautìn kai ètsi sthn telik touc kat stash, ta dianôsmata apìklishc ja èqoun suntetagmènec mìno ston N di stato q ro pou par getai apì ta ˆv N+1, ˆv N+2,...,ˆv 2N. T ra, an xekin soume me opoiad pote 2 k N dianôsmata apìklishc, den up rqei kanènac lìgoc aut na gðnoun grammik c exarthmèna, ra to exwterikì touc ginìmeno ja eðnai di foro tou mhdenìc, odhg ntac ètsi ta S k kai GALI k se mh mhdenikèc timèc. An ìmwc xekin soume me N < k 2N dianôsmata apìklishc, k poia apì aut anagkastik ja gðnoun grammik c exarthmèna. Epomènwc, sthn perðptwsh aut, to exwterikì touc ginìmeno kaj c kai ta S k kai GALI k ja gðnoun ìla mhdèn. Apì ìla aut sumperaðnoume ìti qrei zetai na exet soume leptomer c thn sumperifor twn S k. AfoÔ, en gènei, dialègoume tuqaða ta arqik dianôsmata apìklishc (epimènontac mon qa sto ìti aut eðnai grammik c anex rthta), to pio sônhjec eðnai kanèna apì ta dianôsmata aut na mhn eðnai efaptìmeno ston tìro. Parìla aut, epeid den eðmaste sðgouroi ìti autì isqôei p nta, ja upojèsoume ìti 0 < m N apì ta dianôsmata apìklishc brðskontai arqik ston efaptìmeno q ro tou tìrou. Gia 2 k N, autì den diaforopoieð ta pr gmata, kaj c to GALI k teðnei se mða mh mhdenik stajer. 'Omwc, gia N<k 2N, to GALI k teðnei sto mhdèn akolouj ntac mða pt sh nìmou dônamhc kai to gegonìc ìti m dianôsmata eðnai dh ston efaptìmeno q ro, gia t =0, mporeð na ephre sei shmantik thn pt sh aut tou deðkth. Stic peript seic autèc epomènwc, h sumperifor tou GALI qrei zetai na analujeð xeqwrist : A) H PerÐptwsh twn m =0Efaptìmenwn Arqik n Dianusm twn Apìklishc Ac upojèsoume pr ta ìti kanèna di nusma apìklishc den eðnai arqik efaptìmeno ston tìro. Sthn perðptwsh aut, o pðnakac D, tou opoðou ta stoiqeða emfanðzontai ston orismì thc posìthtac S k, èqoun thn morf pou dðnetai apì thn exðswsh (2.90). 'Etsi, ìlec oi orðzousec pou emfanðzontai ston orismì thc posìthtac S k èqoun wc koinì par gonta thn posìthta 1/ k i=1 M i(t), pou, exaitðac thc (2.88), mei netai sto mhdèn sômfwna me ton nìmo dônamhc 1 k i=1 M i(t) 1 t k. (2.95)

56 H Mèjodoc tou Genikeumènou DeÐkth Eujugr mmishc (GALI) Gia na prosdiorðsoume t ra thn akrib qronik exèlixh thc S k, anazhtoôme tic pio gr gora auxanìmenec orðzousec apì ìlec tic dunatèc k k upoorðzousec tou pðnaka D 0,k sthn (2.90), kaj c aux nei o qrìnoc t. Ac xekin soume me k mikrìtero apì thn di stash tou efaptìmenou q rou tou tìrou, dhlad 2 k N. Oi grhgorìtera auxanìmenec posìthtec sthn perðptwsh aut eðnai N!/(k!(N k)!) orðzousec, oi k st lec twn opoðwn èqoun epileqjeð an mesa apì tic teleutaðec N st lec tou pðnaka D 0,k, dhlad Δ 0,k j 1,j 2,...,j k = η k j 1 + N i=1 ω j 1 iξ 0,k i t η k j 2 + N i=1 ω j 2 iξ 0,k i t η k j k + N i=1 ω j k iξ 0,k i t, (2.96) me 1 j 1 <j 2 <... < j k N. Qrhsimopoi ntac klasikèc idiìthtec twn orizous n, eôkola parathroôme ìti h qronik exèlixh twn Δ 0,k j 1,j 2,...,j k prosdiorðzetai kurðwc apì thn sumperifor orizous n tou tôpou ω j1 m 1 ξ 0,k m 1 t ω j2 m 2 ξ 0,k m 2 t ω jk m k ξ 0,k m k t = t k k ω ji m i ξ 0,k i=1 m 1 ξ 0,k m 2 ξ 0,k m k t k, (2.97) ìpou m i {1, 2,...,N}, i =1, 2,...,k, me m i =m j, gia ìla ta i =j. Epomènwc, apì thn (2.95) kai thn (2.97) sumperaðnoume ìti h suneisfor twn orizous n pou sqetðzontai me thn Δ 0,k j 1,j 2,...,j k sthn sumperifor twn S k eðnai na prosjèsoun stajeroôc ìrouc sthn (2.92). 'Olec oi llec orðzousec pou emfanðzontai ston orismì twn S k, pou den eðnai thc morf c twn Δ0,k j 1,j 2,...,j k, perièqoun toul qiston mða apì tic pr tec N st lec tou pðnaka D 0,k kai eis goun sth sqèsh (2.92) ìrouc pou megal noun me èna rujmì qamhlìtero apì t k, kai oi opoðoi telik den èqoun kamða epðptwsh sthn sumperifor twn GALI k (t). Gia na to doôme autì, ac jewr soume mða eidik orðzousa tou tôpou Δ 0,k m = ξ 0,k 1 ξ 0,k m η k 1 + N i=1 ω 1iξ 0,k i t η k k m + N i=1 ω k miξ 0,k i t, (2.98) pou perièqei tic pr tec m st lec tou pðnaka D 0,k, oi opoðec sqetðzontai me tic suntetagmènec dr shc tou sust matoc, kai tic pr tec k m st lec twn metablht n gwnðac pou sqetðzontai me tic st lec tou pðnaka D 0,k,me1 <m k. Oi pr tec m st lec tou Δ 0,k m eðnai qronik anex rthtec. Qrhsimopoi ntac epaneilhmmèna mða klasik idiìthta twn orizous n, blèpoume eôkola ìti h qronik exèlixh twn Δ 0,k m orðzetai kurðwc apì thn qronik exèlixh twn orizous n tou tôpou ξ 0,k 1 ξ 0,k 2 ξ 0,k m ω 1i 1 ξ 0,k i 1 t ω 2i2 ξ 0,k i 2 t ω k mik m ξ 0,k i k m t t k m, (2.99) me i j {m +1,m +2,...,N}, j =1, 2,...,k m kai i j = i l, gia ìla ta j = l. Epomènwc, h suneisfor orizous n autoô tou tôpou sto Δ 0,k m eðnai ìroi an logoi proc to t k m /t k =1/t m (1 <m k), teðnontac sto mhdèn kaj c o qrìnoc t aux nei. AfoÔ loipìn oi k k orðzousec pou emfanðzontai ston orismì tou S k perilamb noun kai ìrouc thc morf c (2.96), pou aux noun wc tk all kai ìrouc thc morf c (2.98), pou aux noun wc t k m, h sunolik sumperifor twn S k ja orðzetai apì tic orðzousec pou aux noun wc t k, kai oi opoðec ìtan sunduasjoôn me th sqèsh (2.95) dðnoun to

57 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 43 shmantikì apotèlesma GALI k (t) staj. gia 2 k N. (2.100) Sthn sunèqeia, pern me sthn perðptwsh twn k dianusm twn apìklishc me N < k 2N. grhgorìtera auxanìmenec orðzousec eðnai kai p li autèc pou perièqoun tic teleutaðec N st lec tou pðnaka D 0,k Δ 0,k j 1,j 2,...,j k N,1,2,...,N = ξ 0,k j 1 ξ 0,k j k N η k 1 + N i=1 ω 1iξ 0,k i t η k N + N, Oi i=1 ω Niξ 0,k i t (2.101) me 1 j 1 <j 2 <... < j k N N. Oi pr tec k N st lec tou Δ 0,k j 1,j 2,...,j k N,1,2,...,N epilègontai an mesa stic pr tec N st lec tou D 0,k oi opoðec eðnai qronik anex rthtec. 'Etsi, up rqoun N!/((k N)!(2N k)!) orðzousec tou tôpou (2.101), oi opoðec mporoôn na grafoôn wc èna jroisma aploôsterwn k k orizous n, h k je mða apì tic opoðec perièqei sthn jèsh twn teleutaðwn N sthl n η k i, i =1, 2,...,N kai/ st lec thc morf c ω jiξ 0,k i t me i, j =1, 2,...,N. Den paðrnoume up' ìyin mac autèc pou to ξ 0,k i, i =1, 2,..., N emfanðzetai perissìtero apì mða for, afoô sthn perðptwsh aut oi antðstoiqec orðzousec eðnai Ðsec me to mhdèn. An mesa stic upìloipec orðzousec, oi grhgorìtera auxanìmenec eðnai autèc pou perièqoun ìso to dunatìn perissìterec st lec an logec me to t. AfoÔ o qrìnoc t eðnai p nta pollaplasiasmènoc me ξ 0,k i, kai oi st lec autèc katèqoun tic pr tec k N jèseic twn Δ 0,k j 1,j 2,...,j k N,1,2,...,N,oqrìnoc t emfanðzetai to polô N (k N) =2N k forèc. Diaforetik h orðzousa pou ja perièqei thn Ðdia ξ 0,k i st lh toul qiston duo forèc ja eðnai Ðsh me to mhdèn. Oi upìloipec k (2N k) (k N) =k N st lec perièqoun mìno ta η k i kai k je mða apì autèc emfanðzetai to polô mða for. Epomènwc, h qronik exèlixh twn Δ 0,k j 1,j 2,...,j k N,1,2,...,N kajorðzetai kurðwc apì orðzousec thc morf c ξ 0,k j 1 ξ 0,k j k N η 0,k i 1 η 0,k i k N ω ik N+1 m 1 ξ 0,k m 1 t ω in m 2N k ξ 0,k i 2N k t t 2N k, (2.102) me i l {1, 2,...,N}, l = 1, 2,...,N, i l = i j, gia ìla ta l = j kai m l {1, 2,...,N}, l = 1, 2,...,2N k, m l {j 1,j 2,...,j k N }, m l =m j, gia ìla ta l =j. 'Etsi, orðzousec thc morf c (2.101) suneisfèroun sthn qronik exèlixh twn S k eis gontac ìrouc an logouc proc to t2n k /t k = 1/t 2(k N). 'Olec oi llec orðzousec pou emfanðzontai ston orismì tou S k, kai pou den èqoun thn morf Δ 0,k j 1,j 2,...,j k N,1,2,...,N,eis goun ìrouc pou teðnoun sto mhdèn grhgorìtera apì 1/t2(k N) afoô autèc perièqoun perissìterec apì k N forèc anex rthtec st lec thc morf c ξ 0,k i, i =1, 2,...,N. Epomènwc, h S k kai kat sunèpeia kai to GALI k teðnei sto mhdèn akolouj ntac èna nìmo dônamhc thc morf c GALI k (t) 1 t 2(k N) gia N k 2N. (2.103) B) H PerÐptwsh twn m>0 Efaptìmenwn Arqik n Dianusm twn Apìklishc Ac jewr soume tèloc thn sumperifor tou GALI k ìtan m dianôsmata apìklishc, me m k kai m N, brðskontai arqik ston efaptìmeno q ro tou tìrou. Sthn perðptwsh aut, o pðnakac D,

58 JewrÐa Monìdromwn Pin kwn Dunamik n Susthm twn tou opoðou ta stoiqeða emfanðzontai ston orismì tou S k, èqoun thn morf pou dðnetai apì th sqèsh (2.92). Epomènwc, ìlec oi orðzousec pou emfanðzontai ston orismì tou S k èqoun wc koinì par gonta thn posìthta 1/ k m i=1 M m+i(t), h opoða mei netai sto mhdèn akolouj ntac to nìmo dônamhc 1 i=1 M m+i(t) 1. (2.104) tk m k m Epiqeirhmatolog ntac me ton Ðdio trìpo ìpwc kai sthn perðptwsh tou m =0parap nw, sumperaðnoume ìti, sthn perðptwsh ìpou 2 k N oi grhgorìtera auxanìmenec k k orðzousec pou prokôptoun apì ton pðnaka D m,k eðnai thc morf c η k i 1 η k i 2 η k i m ω im+1 n 1 ξ 0,k n 1 t ω im+2 n 2 ξ 0,k n 2 t ω ik n k m ξ 0,k n k m t t k m, (2.105) me i l {1, 2,...,N}, l =1, 2,...,k me i l =i j gia l =j, kain l {1, 2,...,N}, l =1, 2,...,k m me n l =n j,gial =j. Epomènwc, sumperaðnoume ìti h sumperifor twn S k, kai kat' epèktash twn GALI k orðzetai apì thn sumperifor twn orizous n pou èqoun thn morf (2.105) oi opoðec, sunduazìmenec me thn (2.104) dðnoun GALI k (t) staj. gia 2 k N. (2.106) H perðptwsh ìmwc twn N < k 2N dianusm twn apìklishc me m>0 arqik efaptìmena dianôsmata, dðnei arket diaforetikì apotèlesma. Akolouj ntac entel c an loga epiqeir mata ìpwc sthn perðptwsh tou m =0, brðskoume ìti, e n m<k N, to GALI k exelðssetai an loga me t 2N k /t k m =1/t 2(k N) m. Apì thn llh meri, e n m k N, mporoôme na deðxoume ìti h taqôtera auxanìmenh orðzousa eðnai an logh me ton nìmo t N m. Sthn perðptwsh aut, to S k kai GALI k exelðssontai ston qrìno akolouj ntac ènan arket diaforetikì nìmo dônamhc t N m /t k m = 1/t k N. Perilhptik loipìn, parathroôme ìti ta GALI k gia tic organwmènec troqièc paramènoun ousiastik stajer ìtan k N, en teðnoun sto mhdèn gia k>nakolouj ntac èna nìmo dônamhc o opoðoc exart tai apì ton arijmì m (m N kai m k) twn dianusm twn apìklishc pou eðnai arqik efaptìmena ston tìro. Sumperasmatik, èqoume deðxei ìti GALI k (t) staj. 1 t 2(k N) m 1 t k N an 2 k N an N<k 2N kai 0 m<k N an N<k 2N kai m k N. (2.107) 2.9 JewrÐa Monìdromwn Pin kwn Dunamik n Susthm twn Sthn par grafo aut ja anaferjoôme perilhptik sth jewrða grammik n dunamik n susthm twn me periodikoôc suntelestèc kai eidikìtera stic lôseic touc mèsw twn monìdromwn pin kwn, dðnontac èmfash stic idiotimèc touc kaj c kai stic antðstoiqec idiìthtec pou autèc plhroôn. O shmantikìteroc lìgoc thc melèthc aut c eðnai ìti oi idiotimèc twn monìdromwn pin kwn kajorðzoun me sugkekrimèno

59 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 45 trìpo thn eust jeia thn ast jeia periodik n lôsewn mh grammik n Qamilt niwn susthm twn, apì ta opoða proèrqontai ta en lìgw periodik grammik sust mata mèsw thc diadikasðac thc grammikopoðhshc. Ta sumper smata pou ja prokôyoun apì thn an lush aut ja qrhsimopoihjoôn gia thn melèth kai exagwg qr simwn sumperasm twn gia thn eust jeia shmantik n periodik n lôsewn tou monodi statou plègmatoc poll n bajm n eleujerðac Fermi, Pasta kai Ulam (FPU) kai tou Qamilt niou dunamikoô sust matoc pou sundèetai me to fainìmeno Bose Einstein Condensation (BEC) pou ja melethjoôn diexodik sto Kef laio 4 thc diatrib c. ArqÐzoume thn perigraf mac exet zontac to sôsthma twn grammik n diaforik n exis sewn J ξ(t) =A(t)ξ(t) (2.108) ìpou h teleða dhl nei ìpwc p nta parag gish wc proc ton qrìno kai ξ(t) eðnai èna di nusma 2n suntetagmènwn. O A(t) eðnai ènac summetrikìc T periodikìc 2n 2n pðnakac en o J sumbolðzei ton 2n 2n pðnaka ( ) 0 n I n J = I n 0 n (2.109) me 0 n ton mhdenikì n n pðnaka kai I n ton monadiaðo n n pðnaka. To sôsthma (2.108) proèrqetai apì thn grammikopoðhsh twn exis sewn kðnhshc enìc Qamilt niou sust matoc sthn perioq mðac sugkekrimènhc periodik c lôshc tou, me perðodo T kai jèloume na exag goume sumper smata wc proc thn eust jeia thc lôshc aut c, kaj c metab lletai h enèrgeia k poia llh par metroc tou sust matoc. Den eðnai m lista dôskolo na deðxoume ìti to (2.108) eðnai kai autì Qamilt nio sôsthma tou opoðou oi exis seic par gontai apì mða Qamilt nia sun rthsh tetragwnik c morf c n H 2 = a ij (t)ξ i ξ j (2.110) i,j=1 ìpou ta a ij (t) eðnai T periodikèc sunart seic tou qrìnou kai apoteloôn ta stoiqeða tou pðnaka A(t). O polô shmantikìc pðnakac J thc (2.109) plhroð tic parak tw idiìthtec J 1 = J = J T (2.111) J 2 = I 2n (2.112) ìpou J T eðnai o an strofoc pðnakac tou J. 'Opwc ja doôme pio k tw, o J an kei sthn polô shmantik kathgorða twn sumplektik n pin kwn.

60 JewrÐa Monìdromwn Pin kwn Dunamik n Susthm twn O Monìdromoc PÐnakac kai h OrÐzous tou To sôsthma (2.108) gr fetai, epomènwc, isodônama wc ξ(t) = (J 1 A)ξ(t) (2.113) ξ(t) = P (t)ξ(t), P(t) =P (t + T ) (2.114) ìpou P (t) =J 1 A(t) = JA(t). Epeid, o pðnakac A(t) eðnai summetrikìc pðnakac, apodeiknôetai eôkola ìti to Ðqnoc Trace[P (t)] = 0. To sôsthma (2.114) eðnai grammikì kai epomènwc, h genik tou lôsh ekfr zetai wc grammikìc sunduasmìc n grammik c anex rthtwn lôsewn tou. Oi n autèc lôseic jewroômenec wc st lec dhmiourgoôn ènan n n pðnaka X(t), o opoðoc onom zetai jemeli dhc pðnakac lôsewn tou parap nw sust matoc (2.114). Hpio apl apì ìlec tic dunatèc peript seic gia ton pðnaka X(t) eðnai na isqôei X(0) = I n, dhlad wc st lec tou jemeli dh pðnaka X(0) sto qrìno t =0epilègoume thn orjokanonik b sh dianusm twn tou R n. Me th bo jeia tou pðnaka X(t), h genik lôsh ξ(t) tou sust matoc (2.114) gr fetai sthn morf ξ(t) =X(t)ξ(0), (2.115) ìpou ξ(0) eðnai oi arqikèc sunj kec. Epomènwc, ènac tuqaðoc jemeli dhc pðnakac lôsewn Z(t) tou sust matoc (2.114) gr fetai wc Z(t) =X(t)Z(0) (2.116) ìpou to Z(0) perièqei tic arqikèc sunj kec. MÐa shmantik idiìthta pou ikanopoieð k je jemeli dhc pðnakac lôsewn X(t) thc exðswshc (2.114) eðnai [52] t det[x(t)] = det[x(0)]e 0 Trace[P(t)]dt. (2.117) E n bèbaia isqôei Trace[P(t)] = 0, h orðzousa tou jemeli dh pðnaka lôsewn X(t) eðnai anex rthth tou qrìnou afoô det[x(t)] = det[x(0)] (2.118) ìpwc sumbaðnei me thn Qamilt nia perðptwsh pou exet zoume ed. Epomènwc, o jemeli dhc pðnakac lôsewn X(t) tou grammikoô sust matoc (2.114) ikanopoieð th sqèsh det[x(t)] = det[x(0)] = 1, t 0 (2.119) lìgw thc (2.117) kai afoô X(0) = I n kai Trace[P (t)] = 0. Dhlad, h orðzousa tou jemeli dh pðnaka lôsewn tou sust matoc (2.114) eðnai stajer kai Ðsh me èna kai to shmantikìtero, eðnai anex rthth tou qrìnou. Epomènwc, isqôei ìti det[x(t )] = 1 kai gia t = T ìpou T eðnai h perðodoc tou pðnaka P (t). O pðnakac X(T ) eðnai polô shmantikìc gia th jewrða periodik n grammik n susthm twn kai onom zetai monìdromoc pðnakac. HonomasÐa aut proèrqetai apì to gegonìc ìti e n jewr soume thn

61 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 47 genik lôsh ξ(t) tou sust matoc (2.114) pou antistoiqeð sthn arqik sunj kh ξ(0) kai anazht soume thn lôsh gia t = νt,tìte prokôptei ìti aut dðnetai apì th sqèsh ξ(νt)=[x(t )] ν ξ(0) (2.120) epeid apodeiknôetai eôkola ìti isqôei X(νT)=[X(T )] ν (2.121) ìpou T eðnai h perðodoc tou pðnaka P (t). Gia na to deðxoume autì, ergazìmaste wc ex c: AfoÔ o pðnakac P (t) eðnai T periodikìc èqoume P (t) =P (t + T ). Apì thn llh meri, o jemeli dhc pðnakac lôsewn X(t) epalhjeôei mða sqèsh thc morf c Ẋ(t) =P (t)x(t) lìgw twn sqèsewn (2.114) kai (2.115). 'Ara, isqôei Ẋ(t + T )=P(t + T )X(t + T ) (2.122) dhlad o pðnakac X(t + T ) eðnai jemeli dhc pðnakac lôsewn tou sust matoc (2.114). Autì shmaðnei lìgw thc (2.116) ìti X(t + T )=X(t)X(T). (2.123) E n jèsoume t ra sthn (2.123) t = T èqoume X(2T )=[X(T )] 2 (2.124) opìte epagwgik gia t =2T,...,νT apodeiknôetai ìti X(νT)=[X(T )] ν, ν N. (2.125) Oi idiotimèc tou Monìdromou PÐnaka Sthn par grafo aut, ja anaferjoôme eidikìtera, stic idiotimèc tou monìdromou pðnaka X(T ), kaj c, ìpwc ja doôme sth sunèqeia, autèc kajorðzoun thn eust jeia ast jeia periodik n troqi n Qamilt niwn susthm twn gôrw apì tic opoðec oi grammikopoihmènec exis seic thc kðnhshc èqoun th morf (2.114). IdiaÐtero endiafèron gia mac èqei h sumperifor twn idiotim n aut n kaj c metab llontai di forec par metroi tou sust matoc. Prin proqwr soume ìmwc, sthn melèth twn idiotim n twn monìdromwn pin kwn, ja d soume pr ta ton orismì enìc sumplektikoô pðnaka. Orismìc: Sumplektikìc onom zetai k je 2n 2n pðnakac X gia ton opoðo isqôei X T JX = J (2.126)

62 JewrÐa Monìdromwn Pin kwn Dunamik n Susthm twn ìpou ( ) 0 n I n J =. (2.127) I n 0 n Eidikìtera, an jèsoume X = J, apì th sqèsh (2.126) kai me th bo jeia twn idiot twn tou J, (2.111) kai (2.112) eôkola prokôptei ìti o 2n 2n pðnakac J eðnai epðshc sumplektikìc. Epiplèon, apì thn (2.126) kai tic idiìthtec tou J prokôptei ìti J 1 X T JX = I J 1 X T J = X 1. (2.128) H teleutaða sqèsh (2.128) dhl nei ìti oi pðnakec X T kai X 1 eðnai ìmoioi kai epomènwc ìti o X T eðnai diagwniopoi simoc sômfwna me gnwstì je rhma thc Grammik c 'Algebrac, afoô oi pðnakec J kai X eðnai antistrèyimoi. Apì to gegonìc ìti oi pðnakec X T kai X 1 eðnai ìmoioi prokôptei ìti èqoun kai tic Ðdiec idiotimèc kai epeid oi idiotimèc tou X T eðnai Ðdiec me tic idiotimèc tou X oi idiotimèc tou X 1 eðnai Ðdiec me autèc tou pðnaka X. Apì ta parap nw prokôptei ìti oi idiotimèc λ i,i =1,...,2n tou jemeli douc pðnaka lôsewn X(t) tou sust matoc (2.114) ikanopoioôn th sqèsh: Gia k je idiotim λ i tou jemeli douc pðnaka lôsewn X(t) up rqei h antðstoiqh idiotim λ 2n i = λ 1 i. To Ðdio isqôei kai gia tic idiotimèc tou monìdromou pðnaka X(T ). Apì thn llh meri, o jemeli dhc pðnakac lôsewn tou sust matoc (2.114) X(t) eðnai pragmatikìc kai to Ðdio isqôei gia ton monìdromo pðnaka X(T ). Epomènwc, to qarakthristikì polu numì tou, pou proèrqetai apì thn qarakthristik exðswsh X(T ) λi =0 (2.129) èqei pragmatikoôc suntelestèc kai wc ek toôtou oi idiotimèc λ eðte eðnai pragmatikèc eðte taxinomoôntai kat suzug migadik zeôgh, dhlad gia k je migadik idiotim λ ja up rqei kai h suzug c migadik thc idiotim λ. SunoyÐzontac ta parap nw sumperaðnoume ìti oi idiotimèc λ tou grammikoô Qamilt niou sust matoc (2.114) topojetoôntai sto migadikì epðpedo me touc ex c 4 dunatoôc trìpouc: 1oc. E n up rqei mða pragmatik idiotim λ =1tìte up rqei anagkastik kai h antðstrofìc thc λ 1 =1. To Ðdio isqôei kai gia thn idiotim λ = 1. Autì shmaðnei ìti oi idiotimèc 1 1 eðnai p ntote (toul qiston) diplèc. 2oc. E n k poia apì tic idiotimèc λ i eðnai pragmatik kai λ i > 1 tìte up rqei kai h antðstrofh thc λ 1 i = 1 λ i < 1 me λ 1 i > 0. EpÐshc, e n λ i eðnai pragmatik kai λ i < 1 tìte up rqei kai h λ 1 i = 1 λ i > 1 me λ i < 0 (bl. sq ma 2.4). 3oc. E n up rqei mða migadik idiotim λ i C me λ i =1(λ i = e ıφ,ı 2 = 1) tìte up rqei kai h suzug c migadik thc λ i me λ i =1( λ i = e ıφ ) tètoiec ste λ i λi =1, dhlad eðnai summetrikèc wc proc ton pragmatikì xona kai p nw ston monadiaðo kôklo (bl. sq ma 2.5).

63 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 49 Sq ma 2.4: Oi pragmatikèc idiotimèc me mètro λ i > 1 topojetoôntai ston orizìntio xona tou migadikoô epipèdou entìc kai ektìc tou monadiaðou kôklou kat zeôgh: (a) Gia λ i > 1 up rqei kai 0 <λ 1 i < 1 kai (b) gia λ i < 1 up rqei kai h 1 <λ 1 i < 0. Sq ma 2.5: Gia k je migadik idiotim λ i C me λ i =1(λ i = e ıφ,ı 2 = 1) up rqei kai h suzug c thc λ i me λ i =1( λ i = e ıφ ) p nw ston monadiaðo kôklo ètsi ste λ i λi =1. 4oc. E n up rqei mða migadik idiotim λ i = ρe ıφ,ρ R,ρ = 1(èstw ρ>1) tìte up rqoun oi ex c 3 idiotimèc: (a ) λ j = 1 ρ eıφ, (b ) λ k = ρe ıφ, (g ) λ l = 1 ρ e ıφ oi opoðec ikanopoioôn tic idiìthtec λ i λ l =1kai λ j λ k =1(di taxh kat antðstrofa zeôgh) kaj c epðshc kai thn idiìthta λ i = λ k kai λ j = λ l (di taxh kat suzug migadik zeôgh) (bl. sq ma 2.6). Tèloc, eðnai dunatìn oiidiotimèc λ i, λ i kai λ i,λ j,λ k,λ l antðstoiqa na eðnai pollaplèc me thn Ðdia ìmwc pollaplìthta.

64 JewrÐa Monìdromwn Pin kwn Dunamik n Susthm twn Sq ma 2.6: Gia k je migadik idiotim λ i = ρe ıφ,ρ R me ρ = 1(èstw ρ>1) up rqoun kai oi idiotimèc λ j = 1 ρ eıφ, λ k = ρe ıφ kai λ l = 1 ρ e ıφ oi opoðec eðnai diatetagmènec kat antðstrofa kai suzug migadik zeôgh Eust jeia Grammik n Qamilt niwn Susthm twn To pr to b ma gia thn melèth thc eust jeiac twn lôsewn grammik n Qamilt niwn susthm twn, eðnai na katano soume to rìlo tou monìdromou pðnaka X(T ), gia ton prosdiorismì thc exèlixhc tou sust matoc (2.114) ston qrìno, ìpou P (t) pragmatikìc periodikìc pðnakac me perðodo T, dhlad P (t) =P (t + T ). 'Estw, ìti o monìdromoc pðnakac X(T ) èqei n diakritèc idiotimèc λ 1,...,λ n. Autì shmaðnei ìti sômfwna me gnwstì je rhma thc Grammik c 'Algebrac diagwniopoieðtai afoô up rqei n n antistrèyimoc pðnakac W ste na isqôei W 1 X(T )W = D (2.130) me λ λ D = λ n (2.131) ìpou oi st lec tou W eðnai ta n diakrit idiodianôsmata pouantistoiqoôn stic n diakritèc idiotimèc λ 1,...,λ n tou monìdromou pðnaka X(T ). Kat sunèpeia afoô o n n pðnakac X diagwniopoieðtai gia k je ν N isqôei h sqèsh [X(T )] ν = WD ν W 1. (2.132) kai epomènwc me qr sh twn (2.130) kai (2.132) h sqèsh (2.120) gðnetai ξ(νt) = [X(T )] ν ξ(0) W 1 ξ(νt) = W 1 [X(T )] ν ξ(0) W 1 ξ(νt) = D ν (W 1 ξ(0)). (2.133)

65 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 51 E n sthn teleutaða sqèsh (2.133) jèsoume η = W 1 ξ èqoume telik η(νt)=d ν η(0) (2.134) ìpou λ ν D ν 0 λ = ν (2.135) λ ν n Apì th sqèsh (2.134) prokôptei mesa ìti oi idiotimèc λ i,i =1,...,n tou monìdromou pðnaka X(T ) kajorðzoun thn eust jeia tou sust matoc (2.120) afoô h exèlixh tou dianôsmatoc ξ = Wη sto qrìno prosdiorðzetai apì tic dun meic twn idiotim n aut n. H lôsh ξ(νt) epomènwc lègetai eustaj c an kai mìno an ìlec oi idiotimèc λ i,i =1,...,n tou monìdromou pðnaka X(T ) èqoun mètro mikrìtero Ðso me th mon da, dhlad brðskontai mèsa p nw ston monadiaðo kôklo tou migadikoô epipèdou. Alli c, h lôsh qarakthrðzetai astaj c, afoô arkeð mða idiotim λ i me λ i > 1 gia na odhg sei se aujaðreta auxanìmeno mètro tou dianôsmatoc ξ(t) kaj c aux nei o qrìnoc t. An t ra o pðnakac X(T ) èqei mða dipl idiotim (λ 1 = λ 2 ) kai den diagwniopoieðtai, tìte o metasqhmatismìc (2.130) metasqhmatðzei ton pðnaka X(T ) se ènan nèo pðnaka D o opoðoc èqei thn kanonik morf Jordan, dhlad λ λ D = 0 0 λ (2.136) λ n Sthn perðptwsh aut, apodeiknôetai eôkola me majhmatik epagwg wc proc ν, ìti λ ν 1 νλ ν λ ν (D ) ν = 0 0 λ ν (2.137) λ ν n kai epomènwc, prokôptei kai p li ìti h eust jeia twn lôsewn exart tai apì th jèsh twn idiotim n tou monìdromou pðnaka wc proc ton monadiaðo kôklo. Sthn perðptwsh tou (2.136) faðnetai apì thn (2.137) ìti akìma kai an λ i =1mporoÔme na odhghjoôme se ast jeia. Apì thn llh meri, an ìlec oi idiotimèc λ i tou pðnaka D èqoun mètro mikrìtero thc mon dac, h lôsh eðnai eustaj c kai sthn perðptwsh aut. Sth sunèqeia ja apodeðxoume to parak tw shmantikì je rhma [97]:

66 JewrÐa Monìdromwn Pin kwn Dunamik n Susthm twn Je rhma: An to grammikì sôsthma (2.114) me periodikì pðnaka P (t) =P (t + T ), èqei lôsh pou ikanopoieð th sqèsh ξ(t + T )=λξ(t) (2.138) tìte to λ eðnai idiotim tou monìdromou pðnaka X(T ). Apìdeixh: JewroÔme ìti up rqoun arqikèc sunj kec tètoiec ste na ikanopoieðtai h sqèsh (2.138). Tìte, e n jèsoume t =0sth sqèsh aut èqoume ξ(t )=λξ(0). (2.139) 'Opwc ìmwc dh gnwrðzoume apì th sqèsh (2.115), gia t = T isqôei ξ(t )=X(T )ξ(0). (2.140) Sundu zontac tic dôo teleutaðec sqèseic paðrnoume (X(T ) λi)ξ(0) = 0 (2.141) apì ìpou sumperaðnoume ìti oi wc nw arqikèc sunj kec ξ(0), (bl. (2.138)), dðnontai apì thn lôsh tou grammikoô omogenoôc sust matoc (2.141), to opoðo èqei mh mhdenik lôsh an kai mìno an det (X(T ) λi) =0, (2.142) ra an h sqèsh (2.138) isqôei to λ eðnai mða apì tic idiotimèc tou monìdromou pðnaka X(T ). 'Ena llo epðshc shmantikì je rhma pou sundu zetai me to prohgoômeno kai apoteleð mèroc thc jewrðac Floquet gia th melèth twn lôsewn grammik n susthm twn me periodikoôc suntelestèc eðnai to ex c: Je rhma: E n up rqoun arqikèc sunj kec pou ikanopoioôn th sqèsh (2.139), tìte isqôei kai h sqèsh (2.138) gia k je tim tou t. Apìdeixh: Apì th sqèsh (2.115) gia tuqaðo t èqoume ξ(t) = X(t)ξ(0) ξ(t + T ) = X(t + T )ξ(0). (2.143)

67 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 53 ExaitÐac thc (2.123) ìmwc kai twn (2.139), (2.140) isqôei ξ(t + T ) = X(t + T )ξ(0) ξ(t + T ) = X(t)X(T )ξ(0) ξ(t + T ) = X(t)ξ(T ) ξ(t + T ) = X(t)λξ(0) ξ(t + T ) = λx(t)ξ(0) ξ(t + T ) = λξ(t). (2.144) Apì ta wc nw jewr mata sumperaðnoume ìti lôseic pou ikanopoioôn th sqèsh (2.138) up rqoun kai antistoiqoôn se arqikèc sunj kec oi opoðec eðnai ta idiodianôsmata tou monìdromou pðnaka X(T ), en h stajer λ sthn (2.138) antiproswpeôei tic antðstoiqec idiotimèc. Sunep c, up rqoun tìsec anex rthtec lôseic pou ikanopoioôn th sqèsh (2.138) ìsa eðnai kai ta anex rthta idiodianôsmata tou monìdromou pðnaka X(T ). Epiplèon, sômfwna me th jewrða Floquet h sun rthsh ξ(t) =f(t)e αt (2.145) eðnai genik lôsh thc exðswshc (2.138) ìpou α = 1 T ln λ kai f(t) =f(t+t ) (T periodik sun rthsh). H par metroc α onom zetai kai qarakthristikìc ekjèthc Floquet. Epomènwc, oi lôseic tou sust matoc (2.114) èqoun thn morf (2.145). Tèloc, se k je mða apì tic n aplèc idiotimèc λ i,i=1,...,n antistoiqeð kai mða lôsh thc morf c (2.145) opìte h genik lôsh tou sust matoc (2.114) ekfr zetai wc grammikìc sunduasmìc n lôsewn thc morf c (2.145) en up rqoun n grammik c anex rthtec tètoiec lôseic oi arqikèc sunj kec twn opoðwn ξ(0) = f(0) eðnai ta idiodianôsmata pou antistoiqoôn sthn idiotim λ, dhlad ston qarakthristikì ekjèth α. 'Ara, h genik lôsh gr fetai wc grammikìc sunduasmìc lôsewn thc morf c (2.145) ξ(t) =c 1 f 1 (t)e a 1t +...,c n f n (t)e ant (2.146) ìpou α i = 1 T ln λ i,i=1,...,n. H lôsh aut eðnai fragmènh ìtan isqôei Re(α i ) 0,i=1,...,n. Profan c, an α = iω = 0sthn (2.145) kai ta ω kai Ω = 2π/T eðnai rht c anex rthta, oi lôseic eðnai sqedìn periodikèc, en an ω/ω =m 1 /m 2 h (2.145) ekfr zei periodikèc talant seic me perðodo to el qisto koinì pollapl sio twn T kai T =2π/ω. Up rqoun ìmwc kai periodikèc lôseic me perðodo akrib c Ðsh me T? Gia na to exet soume autì, upojètoume ìti to sôsthma (2.114) èqei mða periodik lôsh ξ(t) = ξ(t+t ) me arqik sunj kh ξ(0) = 0. AfoÔ ξ(t) =ξ(t+t ) e n jèsoume t =0paÐrnoume ξ(0) = ξ(t ).

68 JewrÐa Monìdromwn Pin kwn Dunamik n Susthm twn Apì th sqèsh (2.115) gia t = T prokôptei ξ(t )=X(T )ξ(0) (2.147) kai epomènwc (X(T ) I)ξ(0) = 0 (2.148) 'Ara, sômfwna me ta jewr mata kai 2.9.2, to (2.114) èqei T periodik lôsh an kai mìno an o monìdromoc pðnakac X(T ) èqei idiotim Ðsh me th mon da. Akolouj ntac t ra ton antðstrofo sullogismì prokôptei ìti isqôei kai to antðstrofo. Epistrèfontac t ra sto jèma thc eust jeiac grammik n Qamilt niwn susthm twn sumperaðnoume ìti an oi grammikopoihmènec lôseic enìc Qamilt niou sust matoc eðnai thc morf c (2.108) h lôsh ξ(t) gia tuqaðec arqikèc sunj kec ξ(0), den eðnai fragmènh kai onom zetai astaj c an mða toul qiston apì tic idiotimèc λ i,i = 1,...,n tou monìdromou pðnaka X(T ) èqei mètro di foro thc mon dac. Sthn perðptwsh aut h aôxhsh thc genik c lôshc ξ(t) ston qrìno eðnai ekjetik afoô up rqei ènac toul qiston ìroc thc morf c f k e αkt me α k > 0. 'Ara, gia na èqoume fragmènh lôsh (thn opoða apokaloôme kai eustaj ), ja prèpei anagkastik ìlec oi idiotimèc tou monìdromou pðnaka X(T ) na èqoun mètro Ðso me th mon da, dhlad na brðskontai p nw ston monadiaðo kôklo. Up rqei bèbaia kai h perðptwsh na èqoume λ i =1 λ i = 1 oi opoðec ìpwc deðxame eðnai kai diplèc idiotimèc opìte eðnai dunatìn na emfanistoôn ìroi thc morf c f 2 (t)+tf 1 (t). Autì sumbaðnei ìtan sthn dipl idiotim antistoiqeð èna mon qa idiodi nusma. H genik lôsh tìte fusik den eðnai fragmènh all h aôxhsh den eðnai ekjetik, all grammik. Epomènwc, to sumpèrasma pou prokôptei apì ìlh thn prohgoômenh an lush eðnai ìti h genik lôsh ξ(t) enìc grammikoô Qamilt niou sust matoc (2.108) gia tuqaða epilegmènec arqikèc sunj kec ξ(0) eðnai fragmènh gia t ìtan ìlec oi idiotimèc tou monìdromou pðnaka eðnai kat' arq n aplèc kai kat deôteron èqoun mètro Ðso me thn mon da, dhlad brðskontai p nw ston monadiaðo kôklo. E n up rqei mða idiotim me mètro Ðso me 1 1 tìte aut ja eðnai eðte dipl eðte pollapl kai sthn perðptwsh aôth eðnai dunatìn na emfanisjoôn ìroi oi opoðoi aux noun grammik ston qrìno kai tìte h genik lôsh den eðnai fragmènh. Parat rhsh: Oi ìroi eustaj c kai astaj c pou qrhsimopoi same gia th lôsh thc exðswshc (2.108) den eðnai oi plèon kat llhloi. Oi swstoð eðnai apl c fragmènh kai mh fragmènh antðstoiqa. Olìgoc pou to k name tan gia na upenjumðsoume ìti to fragmèno mh fragmèno twn lôsewn aut n sundèetai mesa me to an oi periodikèc troqièc tou mh grammikoô Qamilt niou sust matoc gôrw apì tic opoðec h (2.108) apoteleð th grammikopoihmènh exðswsh eðnai eustajeðc astajeðc me thn ènnoia pou ja perigr youme sta epìmena kef laia.

69 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c JewrÐa Krein Diataragmèna Grammik Qamilt nia Sust mata Sthn prohgoômenh par grafo melet same grammik Qamilt nia sust mata gia ta opoða exag game qr sima sumper smata ta opoða ja qrhsimopoi soume sthn sunèqeia gia thn an lush thc eust jeiac periodik n troqi n mh grammik n Qamilt niwn susthm twn. H an lush aut apaiteð th dunatìthta na parakoloujoôme th sumperifor twn idiotim n tou monìdromou pðnaka X(T ) kaj c metab llontai k poiec basikèc par metroi tou probl matoc. Kat tic metabolèc autèc, oi idiotimèc tou X(T ) all zoun jèsh sto migadikì pedðo kai endèqetai na odhg soun se allag twn idiot twn thc troqi c. Skopìc mac loipìn sthn par grafo aut eðnai h parousðash thc jewrðac tou Krein h opoða afor stic peript seic kat tic opoðec duo idiotimèc sugkroôontai kaj c kinoôntai p nw ston monadiaðo kôklo kai epomènwc mporoôn na odhg soun sth met bash apì eust jeia se ast jeia sto arqikì Qamilt nio sôsthma. Mèsw thc jewrðac aut c ja faneð ìti h sôgkroush dôo idiotim n ston monadiaðo kôklo eðnai ìntwc anagkaða sunj kh gia thn apostajeropoðhsh mðac periodik c troqi c enìc Qamilt niou sust matoc kaj c mða par metroc tou metab lletai qwrðc ìmwc autì na apoteleð kai ikan sunj kh. 'Etsi loipìn, jewroôme kai p li to grammikì Qamilt nio sôsthma (2.108) ìpou A = A 0 eðnai ènac summetrikìc T periodikìc 2n 2n pðnakac. Upojètoume epðshc ìti to sôsthmaautì eðnai kai eustajèc, dhlad ìti ìlec oi idiotimèc tou brðskontai p nw ston monadiaðo kôklo kai ìti eðnai aplèc me pl joc anex rthtwn idiodianusm twn Ðso me thn pollaplìthta thc idiotim c. Onom zoume autì to sôsthma me tic parap nw idiìthtec adiat rakto grammikì Qamilt nio sôsthma. Sthn sunèqeia epib lloume mða diataraq tètoia ste to nèo sôsthma pou ja prokôyei na eðnai kai p li èna Qamilt nio grammikì sôsthma. Eidikìtera, to diataragmèno Qamilt nio sôsthma èqei thn morf J ξ =(A 0 + ɛa 1 )ξ (2.149) ìpou o 2n 2n pðnakac A 1 eðnai ki autìc summetrikìc T periodikìc kai to ɛ 1 onom zetai par metroc thc diataraq c. Efìson to sôsthma (2.149) eðnai grammikì me periodikoôc suntelestèc ja èqei kai autì ton dikì tou monìdromo pðnaka X ɛ (T ) o opoðoc ja diafèrei lðgo apì ton monìdromo pðnaka X 0 (T ) tou antðstoiqou mh diataragmènou grammikoô Qamilt niou sust matoc (2.108). Wc ek toôtou, oi idiotimèc tou monìdromou pðnaka X ɛ (T ) tou diataragmènou sust matoc (2.149) ja eðnai lðgo metatopismènec p nw ston monadiaðo kôklo tou migadikoô epipèdou se sqèsh me tic antðstoiqec idiotimèc tou monìdromou pðnaka X 0 (T ). Epomènwc, an oi idiotimèc tou diataragmènou sust matoc gia ɛ 1 parameðnoun ston monadiaðo kôklo h eust jeia diathreðtai, diaforetik to sôsthma gðnetai astajèc. To shmantikì er thma loipìn pou tðjetai sto shmeðo autì eðnai: Gia poiec Qamilt niec diataraqèc, thc morf c (2.149) prokaleðtai ast jeia me thn ènnoia ìti oi lôseic tou sust matoc paôoun na eðnai fragmènec? Ac exet soume thn perðptwsh enìc grammikoô Qamilt niou sust matoc thc morf c J ξ = A(t, μ)ξ, (2.150)

70 JewrÐa Krein ìpou o 2n 2n pðnakac A(t, μ) eðnai ènac summetrikìc T periodikìc pðnakac pou exart tai apì mða par metro μ. 'Ara kai o monìdromoc pðnakac tou (2.150) exart tai apì thn Ðdia par metro μ, dhlad èqoume X(t, μ). Epomènwc, mporoôme qwrðc bl bh thc genikìthtac na jewr soume ìti gia k poia pragmatik tim μ 0 aut c thc paramètrou to grammikì Qamilt nio sôsthma (2.108) eðnai eustajèc. To krðsimo er thma eðnai: me poio trìpo metab llontac thn tim thc paramètrou eðnai dunatìn na metablhjeð h idiìthta thc eust jeiac tou arqikoô grammikoô Qamilt niou sust matoc (2.108)? Thn parap nw diataraq tou summetrikoô pðnaka A kai tic epipt seic thc wc proc thn eust jeia twn lôsewn mèsw metakðnhshc twn idiotim n mporoôme isodônama na thn doôme mèsw thc diataraq c tou monìdromou pðnaka apì X(T,0) gia μ =0sto X(T,μ) tou diataragmènou sust matoc gia μ 1. Pio sugkekrimèna, isqôoun oi ex c idiìthtec: I. Aplèc idiotimèc ston monadiaðo kôklo: Sthn perðptwsh aut h mình dunatìthta pou eðnai sunep c me tic idiìthtec tou monìdromou pðnaka thc paragr fou eðnai h metakðnhs touc ep nw ston monadiaðo kôklo (bl. sq ma 2.7). Sq ma 2.7: Aplèc idiotimèc p nw ston monadiaðo kôklo. II. Pollaplèc idiotimèc ston monadiaðo kôklo: Ed jewroôme dôo diplèc idiotimèc λ 1 = λ 2 kai λ 3 = λ 4 oi opoðec brðskontai arqik ston monadiaðo kôklo (bl. sq ma 2.8(a)). Diatar ssontac ton monìdromo pðnaka, autèc ja metakinhjoôn ep nw ston monadiaðo kôklo kai eðte ja parameðnoun kat thn diataraq p nw se autìn (eust jeia) (bl. sq ma 2.8(b)) eðte ja bgoun èxw apì autìn (ast jeia) (bl. sq ma 2.8(c)). H teleutaða perðptwsh onom zetai eidikìtera kai migadik ast jeia. III. Dipl idiotim Ðsh me 1 1: Ed jewroôme ìti èqoume mða dipl idiotim λ 1 = λ 2 =1 1 (bl. sq ma 2.9(a)). H askoômenh diataraq mporeð na tic metakin sei eðte p nw ston monadiaðo kôklo (eust jeia) (bl. sq ma 2.9(b)) eðte èxw apì autìn (ast jeia) (bl. sq ma 2.9(c)). Apì tic idiìthtec autèc prokôptei ìti mia mikr diataraq tou monìdromou pðnaka ìtan autìc èqei aplèc idiotimèc den mporeð na dhmiourg sei ast jeia sto grammikì Qamilt nio sôsthma (perðptwsh

71 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 57 Sq ma 2.8: DÔo diplèc idiotimèc λ 1 = λ 2 kai λ 3 = λ 4 oi opoðec brðskontai p nw ston monadiaðo kôklo. (b) Diatar ssontac ton monìdromo pðnaka, autèc eðte ja metakinoôntai p nw ston monadiaðo kôklo (eust jeia) eðte (c) exèrqontai apì autìn (migadik ast jeia). I.). AntÐjeta, ast jeia mporeð na dhmiourghjeð sthn perðptwsh pou aplèc idiotimèc sugkrousjoôn ep nw ston monadiaðo kôklo kaj c h par metroc metab lletai (perðptwsh II. kai III.) qwrðc ìmwc autì na eðnai aparaðthto. Sto er thma loipìn tou pìte mða sôgkroush idiotim n p nw ston monadiaðo kôklo odhgeð ìqi se ast jeia apant h jewrða Krein thn opoða ja anaptôxoume sth sunèqeia. Orismìc: 'Ena grammikì Qamilt nio sôsthma onom zetai isqur eustajèc ìtan den up rqei Qamilt nia diataraq pou na mporeð na to odhg sei se ast jeia. O orismìc autìc shmaðnei ìti gia èna grammikì Qamilt nio sôsthma (2.150) to opoðo eðnai isqur eustajèc, (dhlad o monìdromìc tou pðnakac èqei mìno aplèc idiotimèc p nw ston monadiaðo kôklo me pl joc anex rthtwn idiodianusm twn Ðso me thn pollaplìthta twn idiotim n), den up rqei kamða Qamilt nia diataraq μ 1 pou na to kajist astajèc. Bèbaia, eðnai dunatìn èna sôsthma na eðnai eustajèc qwrðc naeðnai isqur eustajèc. Autì shmaðnei ìti gia k poiec timèc thc paramètrou μ eðnai eustajèc, en gia k poiec llec den eðnai, epomènwc up rqei Qamilt nia diataraq pou to k nei astajèc. Sto shmeðo autì tðjetai to er thma an mporoôme na exasfalðsoume isqur eust jeia gia k poia diataraq. Qreiazìmaste, dhlad, èna krit rio mèsw tou opoðou na mporoôme na apofanjoôme an h sôgkroush dôo idiotim n p nw ston monadiaðo kôklo odhgeð se ast jeia ìqi. To krit rio autì sundèetai me to legìmeno eðdoc twn idiotim n kai prosdiorðzetai mèsw tou orismoô tou aorðstou

72 JewrÐa Krein Sq ma 2.9: (a) Dipl idiotim λ 1 = λ 2 =1. (b) Kat thn diataraq mporeð na metakinhjoôn eðte p nw ston monadiaðo kôklo (eust jeia) eðte (c) èxw apì autìn (ast jeia). AntÐstoiqa isqôoun kai gia dipl idiotim Ðsh me 1. eswterikoô ginomènou dôo dianusm twn: Orismìc: Aìristo eswterikì ginìmeno < x, y >dôo dianusm twn x kai y orðzetai h posìthta < x, y >= i(j x, y) (2.151) ( ) 0 I n ìpou o J eðnai o sumplektikìc 2n 2n pðnakac, x kai y eðnai dôo 2n 1 dianôsmata, I n 0 i 2 = 1 h fantastik mon da kai to sômbolo (, ) sumbolðzei to sunhjismèno eswterikì ginìmeno dôo dianusm twn. Ac upojèsoume t ra ìti o monìdromoc pðnakac X(T ) enìc diataragmènou grammikoô Qamilt niou sust matoc èqei mða idiotim λ me pollaplìthta m kai antðstoiqo idiodi nusma h, gia to opoðo isqôei ìti: I. < h, h>>0: H idiotim λ onom zetai jetik pr tou eðdouc. II. < h, h><0: H idiotim λ onom zetai arnhtik deutèrou eðdouc. III. < h, h>=0: H idiotim λ onom zetai miktoô eðdouc kai gia k poia h eðnai pr tou eðdouc en gia k poia lla eðnai deutèrou eðdouc exaitðac thc pollaplìtht c thc.

73 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 59 MporoÔme loipìn na diatup soume to krit rio thc isqur c eust jeiac twn Krein, Gelfand kai Lindskii [97] wc akoloôjwc: Krit rio: 'Ena grammikì Qamilt nio sôsthma eðnai isqur eustajèc an kai mìnon anìlec oi idiotimèc tou monìdromoô tou pðnaka brðskontai p nw ston monadiaðo kôklo kai eðnai eðte ìlec jetikèc eðte ìlec arnhtikèc, dhlad eðnai ìlec pr tou deutèrou eðdouc. SÔmfwna me thn jewrða Krein, h sôgkroush dôo apl n idiotim n tou Ðdiou eðdouc ston monadiaðo kôklo dhmiourgeð mða pollapl idiotim tou Ðdiou eðdouc kai h eust jeia diathreðtai, dhlad den up rqei Qamilt nia diataraq pou na odhgeð se ast jeia. An ìmwc sugkrousjoôn dôo aplèc idiotimèc diaforetikoô eðdouc tìte dhmiourgeðtai mða dipl idiotim miktoô eðdouc kai up rqei p nta mða Qamilt nia diataraq pou mporeð na dhmiourg sei ast jeia Statistik Mhqanik, EntropÐa kai Jermodunamikì 'Orio Eisagwg sthn Statistik Mhqanik Istorik Anadrom Apì ton 19 o ai na eðqe gðnei antilhptì sthn episthmonik koinìthta ìti oi diaforetikèc katast seic thc Ôlhc (stere, ugr, aèria) mporoôsan na perigrafoôn apì èna mikrì arijmì metablht n kai paramètrwn pou sundèontai metaxô touc me aploôc nìmouc kai anafèrontai se gewmetrikèc, dunamikèc kai jermikèc idiìthtec thc Ôlhc. 'Enac tètoioc nìmoc eðnai gia par deigma autìc twn idanik n aerðwn pou sundèei thn pðesh P,ton ìgko V kai thn apìluth jermokrasða T tou aerðou mèsw thc gnwst c sqèshc PV = nrt ìpou n eðnai o arijmìc twn mol (mole) tou aerðou kai R =8.31J/mol K eðnai h pagkìsmia stajer twn aerðwn (apìluth jermokrasða eðnai aut pou metr tai se bajmoôc Kelvin, me 0 o K thn kat stash apìluthc akinhsðac). Oi nìmoi autoð isqôoun bèbaia ìtan to sôsthma pou melet me brðsketai se kat stash isorropðac. An epitrèyoume se k poio apì ta megèjh aut na all xei (p.q. an diplasi soume xafnik ton ìgko V ston opoðo brðsketai èna aèrio) ja prèpei na anamènoume ìla ta lla na metablhjoôn me an logo trìpo ste na odhghjeð kai p li to sôsthma sthn isorropða. Oi nìmoi autoð thc legìmenhc jermodunamik c isorropðac, epalhjeôontai apì peiramatik dedomèna kai isqôoun ìtan èna sôsthma eðnai kleistì, dhlad den ufðstatai kamða epðdrash apì to perib llon pou na mporeð na all xei tic metablhtèc tou sust matoc ston qrìno. P c exelðssontai loipìn ta qarakthristik megèjh enìc sust matoc ìtan autì eðnai anoiktì? Oi melètec pou ekpìnhse o S. Carnot to 1824 p nw sthn dunatìthta paragwg c mhqanikoô èrgou apì mhqanèc pou leitourgoôsan me thn arq thc diafor c jermokrasðac metaxô enìc brast ra kai tou perib llontoc (mhqan Carnot) enèpneusan ton R. Clausius to 1865 na eisag gei mða apì tic pio shmantikèc paramètrouc pou perigr foun èna tètoio sôsthma: thn entropða tou. Pwc mporeð ìmwc na exhghjeð h sumperifor twn paramètrwn tou probl matoc ìtan autì brðsketai makr n thc isorropðac? Poioi nìmoi dièpoun thn met bash tou se mða nèa kat stash isorropðac? To gegonìc ìti h jermìthta pou ekpèmpei èna s ma eðnai mða morf enèrgeiac, pou mporeð na metatrapeð se mhqanikì èrgo to ìti

74 Statistik Mhqanik, EntropÐa kai Jermodunamikì 'Orio èna anoiktì sôsthma teðnei p nta proc mða ligìtero organwmènh kat stash megalôterhc entropðac faðnetai na eðnai nìmoi pou epalhjeôontai peiramatik. All giatð kai pìso genik isqôoun autèc oi parathr seic? MÐa ap nthsh sto er thma autì epiqeðrhsan na d soun oi P. Duhem kai E. Mach wc ex c: Eis gagan thn idèa ìti ìla ta wc nw dedomèna eðnai apotèlesma fainomenologik n nìmwn thc jermodunamik c oi opoðoi den qrei zontai peraitèrw jemelðwsh mèsw llwn pio basik n arq n thc fôshc. MÐa enallaktik prosèggish eðnai o isqurismìc ìti h jermik enèrgeia enìc s matoc eðnai èna eðdoc kinhtik c enèrgeiac apojhkeumènhc sta epimèrouc sustatik tou s matoc, kai epomènwc oi Nìmoi thc Jermodunamik c eðnai apìrroia llwn pio basik n nìmwn pou dièpoun thn kðnhsh twn swmatidðwn pou apartðzoun to s ma. Aut eðnai h kinhtik jewrða thc jermìthtac. Oi pr tec ergasðec p nw sthn kinhtik jewrða apì touc W. Herepath kai J. Waterston to 1845 agno jhkan, all h ergasða tou A. Krönig to 1856 metètreye thn kinhtik jewrða se èna zwntanì kl do thc Fusik c epist mhc. O J. C. Maxwell èkane mða shmantik prìodo sthn kateôjunsh aut eis gontac, mèsw apl n axiwm twn, ton perðfhmo nìmo tou gia thn katanom f(v) twn taqut twn v twn N morðwn enìc aerðou ìtan autì brðsketai se kat stash isorropðac ( ) 3 m 2 f(v) =4πN v 2 e mv2 2k B T (2.152) 2πk B T ìpou m eðnai h m za enìc morðou, k B = JK 1 eðnai h gnwst stajer tou Boltzmann kai T eðnai h apìluth jermokrasða tou aerðou. peraitèrw thn kinhtik jewrða aerðwn proteðnontac thn di shmh exðswsh Met ton Maxwell, o Boltzmann anèptuxe S = k B log 10 W (2.153) ìpou h entropða S enìc sust matoc eðnai to ginìmeno thc stajer c tou Boltzmann k B epð ton dekadikì log rijmo tou arijmoô W ìlwn twn dunat n katast sewn tou sust matoc. H perðfhmh exðswsh tou Boltzmann gia thn f(v) se kat stash isorropðac f/ t =0èqei wc lôsh thc ton nìmokatanom c taqut twn (2.152) tou Maxwell [99]. H jewrða tou Boltzmann sqetik me thn omal prosèggish enìc jermodunamikoô sust matoc sthn isorropða kaj c aux nei o qrìnoc t sun nthse pollèc antirr seic. Sugkekrimèna to je rhma epanalhptikìthtac (recurrence theorem) tou Poincaré gia fragmèna diathrhtik sust mata fainìtan na èrqetai se antðjesh me thn monotonik prosèggish proc thn isorropða pou apaiteð h Jermodunamik. SÔmfwna me to je rhma autì, an jewr soume èna kleistì sôsthma tou opoðou h enèrgeia diathreðtai stajer, tìte to sôsthma autì eðnai adônaton na isorrop sei afoô eðnai upoqrewmèno gia ìlec sqedìn tic arqikèc sunj kec na epistrèfei peirec forèc se katast seic aujaðreta kont sthn arqik dunamik kat stash apì thn opoða xekðnhse! O J. Loschmidt epðshc, epiqeirhmatolìghse ìti h mh antistreyimìthta thc Jermodunamik pou eðnai anagkaða gia na odhghjoôme sthn isorropða eðnai asômbath me thn antistreyimìthta tou qrìnou pou epib llei to analloðwto twn exis sewn thc kðnhshc upì thn allag tou t se t ( twn taqut twn v i se v i ) thc Klasik c Mhqanik c.

75 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 61 Oi Maxwell kai Boltzmann, epiqeirhmatolìghsan ìti h exèlixh proc thn kat stash isorropðac h opoða apaiteðtai apì thn jewrða touc mporeð na katanohjeð mèsw thc jewrðac twn pijanot twn. Sugkekrimèna, o Maxwell, eis gontac thn ènnoia enìc daðmona pou ja mporoôse na qeirisjeð tic mikroskopikèc katast seic enìc sust matoc, prìteine ìti o nìmoc thc aôxhshc thc entropðac isqôei mìno pijanojewrhtik. O Boltzmann prìteine epðshc mða pijanojewrhtik ex ghsh thc exðsws c tou gia thn perigraf thc prosèggishc proc thn isorropða h opoða ìmwc eis gage thn mh antistreyimìthta tou qrìnou mèsw mðac aujaðrethc statistik c je rhshc twn kroôsewn metaxô twn swmatidðwn. Oi jemeli deic diaforèc metaxô thc je rhshc thc fôshc mèsw thc Jermodunamik c kai thc Statistik c Mhqanik c parèmeinan gia èna ai na perðpou, mèqri th jemelðwsh thc jewrðac tou Q ouc sta tèlh tou 20 ou ai na. To Q oc rje na apodeðxei ìti stic perioqèc astajoôc kðnhshc enìc sust matoc h ap leia antistreyimìthtac tou qrìnou eðnai anapìfeukth afoô sundèetai mesa me thn adunamða peirhc akrðbeiac twn upologism n mac. Autì den shmaðnei bèbaia ìti p ntote teðnoume proc mða isorropða akinhsðac kai stasimìthtac! K je llo m lista. Ta qaotik sust mata emfanðzoun aôxhsh entropðac, mporeð ìmwc kai na odhg soun kai se auto org nwsh sunodeuìmenh apì topik meðwsh thc entropðac. Oi Maxwell kai Boltzmann eðqan dðkio, mèqric èna shmeðo ìmwc. H fôsh apodeðqjhke polô pio ploôsia kai h ènnoia thc isorropðac polô pio polôplokh kai dunamik apì ìti eðqan fantasteð! Statistik Mhqanik kai h Ergodik Upìjesh Sumperasmatik mporoôme na poôme ìti h pr th jemelðwsh tou kl dou thc Statistik c Mhqanik c enìc energeiak apomonwmènou sust matoc se kat stash isorropðac ègine apì touc Maxwell kai Boltzmann kai anaptôqjhke apì ton J. Gibbs me thn eisagwg thc ènnoiac tou mikrokanonikoô sunìlou (microcanonical ensemble). H ènnoia aut dhl nei èna sônolo susthm twn pou moir zontai èna perissìtera koin makroskopik qarakthristik, en k je èna apì aut brðsketai se mða monadik mikroskopik kat stash. Lègontac mikroskopik kat stash enìc Qamilt niou sust matoc ennooôme mða sugkekrimènh tou lôsh troqi pou dièrqetai apì mða dosmènh arqik sunj kh kai h opoða brðsketai gia k je t se mða isoenergeiak epif neia pou orðzetai apì th Qamilt nia sun rthsh. Ed, h katanom pijanot twn pou prosdiorðzei to sônolo twn mikroskopik n katast sewn eðnai sumbat me touc exwterikoôc periorismoôc pou epib llontai sto sôsthma. 'Etsi, qrhsimopoi ntac katanomèc pijanot twn eðnai dunatìn na upologisjoôn oi legìmenoi fasikoð mèsoi ìroi (mèsoi ìroi wc proc to microcanonical ensemble) sunart sewn pou perigr foun sugkekrimènec makroskopikèc idiìthtec enìc aerðou. GiatÐ ìmwc qrhsimopoioôme aut th sugkekrimènh katanom pijanot twn? P c sundèontai oi mèsoi ìroi pou upologðzoume me qarakthristik tou makroskopikoô sust matoc pou prokôptoun apì peiramatikèc metr seic? O Boltzmann jewroôse wc kat llhlh mèjodo gia th mètrhsh makroskopik n qarakthristik n touc mèsouc ìrouc posot twn upologismènwn apì tic mikroskopikèc katast seic. Kat labe ìti gia na to epitôqei autì èprepe na exhg sei th sqèsh metaxô twn fasik n mèswn ìrwn kai qronik n mèswn ìrwn thc exèlixhc tou sust matoc. Gia na gðnei autì ìmwc èprepe èna sôsthma pou xekinoôse

76 Statistik Mhqanik, EntropÐa kai Jermodunamikì 'Orio apì opoiad pote mikroskopik kat stash telik na dièrqetai aujaðreta kont apì ìlec tic pijanèc mikroskopikèc katast seic. Eidikìtera, èstw A mða makroskopik idiìthta kai α = α(x) h antðstoiqh mikroskopik thc mètrhsh, ìpou x =( q, p) mða lôsh tou sust matoc pou antiproswpeôei èna stoiqeðo tou sunìlou (ensemble). An ta stoiqeða tou sunìlou autoô eðnai diakrit tìte mporoôme na upologðsoume ton mèso ìro thc posìthtac A apì thn èkfrash <A>= 1 N (E) α(x i ) (2.154) N (E) ìpou x i eðnai h mikroskopik kat stash tou i ostoô mèlouc tou ensemble kai N (E) o arijmìc twn katast sewn aut n p nw sthn epif neia me enèrgeia E. An ìmwc to sônolo twn katast sewn den eðnai diakritì, tìte o fasikìc mèsoc ìroc thc posìthtac A upologðzetai apì to olokl rwma <A>= 1 V i=1 α(x)δ(x E)dx, (2.155) ìpou V o sunolikìc ìgkoc twn katast sewn thc en lìgw isoenergeiak c epif neiac. AntÐstoiqa, ja mporoôsame na upologðsoume ton qronikì mèso ìro tou A gia k je troqi x(t) thc isoenergeiak c epif neiac mèsw tou oloklhr matoc 1 T Ā = lim α(x(t))dt. (2.156) T T 0 Epomènwc, an mða tètoia troqi x(t) sumbeð na pern ei aujaðreta kont apì ìla sqedìn ta shmeða thc energeiak c epif neiac, oi dôo mèsoi ìroi <A>kai Ā ja tan Ðsoi! H isìthta aut metaxô twn fasik n mèswn ìrwn (wc proc to microcanonical ensemble) kai twn qronik n mèswn ìrwn eðnai gnwst wc ergodik upìjesh. H sqèsh <A>= Ā dhl nei pwc èna sôsthma eðnai ergodikì an se peiro qrìno plhsi zei ìlec sqedìn tic pijanèc mikrokatast seic pou eðnai diajèsimec se autì. Gia par deigma, sta Qamilt nia sust mata autì shmaðnei ìti ja plhsi sei sqedìn ìla ta shmeða thc isoenergeiak c uperepif neiac. Mèqri stigm c gia polô lðga dunamik sust mata èqei apodeiqjeð ìti eðnai ergodik epeid genik eðnai polô dôskolo na epalhjeujeð h sqèsh (2.156) gia èna opoiod pote Qamilt nio sôsthma. Gia to lìgo autì sun jwc h isìthta aut onom zetai Ergodik Upìjesh kai h isqôc thc uposthrðzetai kurðwc apì ton upologismì tou dexioô thc skèlouc, dhlad twn qronik n mèswn ìrwn. Gia th jemelðwsh thc bèbaia ja èprepe na deðxei kaneðc ìti to sôsthma dièrqetai apì k je dunat mikroskopik kat stash. Autì ìmwc den isqôei gia èna meg lo pl joc troqi n pou eðnai periodikèc kai epomènwc ex' orismoô den exereunoôn ìlo to fasikì q ro. H Majhmatik Epist mh thc Ergodik c JewrÐac pou anaptôqjhke apì ton J. von Neumann kai argìtera apì ton G. Birkhoff èdeixe ìti h ergodik upìjesh mporeð na isqôei gia ìlec (ektìc apì èna sônolo mètrou mhdenìc) katast seic e n to sônolo twn shmeðwn tou q rou f sewn tou sust matoc eðnai metrik mh anag gimo, dhlad an den mporeð na diaqwrisjeð se perissìtera apì èna mèrh, k je èna apì ta opoða na eðnai jetikoô mètrou

77 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 63 kai tètoio ste an to sôsthma xekin ei mèsa se autì na paramènei gia p nta entìc tou. Up rqoun ìmwc montèla tètoiwn susthm twn pou ikanopoioôn th sunj kh thc metrik c mh anagwgimìthtac? Autì pou apaiteð h sunj kh aut eðnai mða genik peripl nhsh twn troqi n ètsi ste autèc: (a) na mhn an koun se analloðwta sônola mh mhdenikoô mètrou kai (b) na mhn paramènoun periorismènec se uposônola tou q rou twn f sewn. H Ôparxh enìc oloklhr matoc gia par deigma ìpwc aut pou anafèrame se prohgoômenh par grafo, sðgoura parabi zei thn metrik mh anagwgimìthta. 'Eprepe na per soun poll qrìnia gia na apodeiqjeð telik apì ton Ya. Sinai, ìti up rqoun orismèna mh tetrimmèna montèla dunamik n susthm twn, ìpwc èna aèrio sklhr n sfair n se èna epðpedo me periodik diatetagmènouc diskoeideðc skedastèc èqoun thn austhr idiìthta thc metrik c mh anagwgimìthtac. Apì thn llh meri ìmwc, apotelèsmata apì th jewrða twn dunamik n susthm twn, ìpwc to gnwstì je rhma twn Kolmogorov Arnold Moser (KAM) deðqnei ìti polô perissìtera sust mata (ìpwc p.q. mìria enìc plègmatoc pou allhlepidroôn mèsw asjen n dun mewn) faðnetai ìti den diajètoun thn idiìthta thc ergodikìthtac. Aut eðnai akrib c kai ta sust mata pou ja mac apasqol soun sthn paroôsa diatrib. AforoÔn se probl mata thc Fusik c poll n bajm n eleujerðac N 1, o q roc f sewn twn opoðwn èqei meg lec perioqèc qaotik c kðnhshc all kai shmantik tm mata ìpou h kðnhsh eðnai sqedìn periodik kai organwmènh p nw se analloðwtouc tìrouc. 'Otan to N faðnetai ìti oi kanonikèc perioqèc telik exafanðzontai kai oi qaotikèc uperisqôoun odhg ntac ètsi se katast seic plhsièsterec sth Statistik Mhqanik ìpou isqôei h Ergodik Upìjesh. 'Enac apì touc stìqouc loipìn thc diatrib c eðnai na diereun sei me poio trìpo metabaðnoume apì thn nteterministik je rhsh thc Klasik c Mhqanik c sthn pijanojewrhtik prosèggish thc Jermodunamik c kaj c to N EntropÐa kai Jermodunamikì 'Orio O nìmoc diat rhshc thc enèrgeiac eðnai ènac apì touc jemeli deic nìmouc pou qrhsimopoieð h Klasik Mhqanik kai h Jewrhtik Fusik gia na exhg sei mða meg lh om da fainomènwn pou poikðloun apì thn moriak dunamik mèqri thn kðnhsh twn planht n tou HliakoÔ mac sust matoc. Hkatanìhsh ìmwc tou mhqanismoô metatrop c twn diafìrwn morf n enèrgeiac apì thn mða sthn llh apaiteð mða diaforetik prosèggish. Gia par deigma, h kðnhsh enìc traðnou epitugq netai mèsw thc metatrop c thc jermik c enèrgeiac pou emperièqetai sta kaôsim tou se mhqanik enèrgeia me thn bo jeia kat llhlhc diadikasðac. Akìma kai gia thn melèth thc apl c an meixhc dôo aerðwn, tic metab seic enìc sust matoc se kat stash isorropðac den arkeð h arq diat rhshc thc enèrgeiac gia na prosdiorðsoume ti ja sumbeð sto sôsthma mac analutik. Sto kaðrio kai polô shmantikì autì er thma prospajeð na d sei ap nthsh h Jermodunamik kai h ènnoia thc entropðac. 'Otan o Rudolf Clausius eis gage thn ènnoia thc entropðac to 1865 tan h epoq kat thn opoða mesouranoôse h qr sh twn atmomhqan n. Stìqoc tou tan na kajorðsei to mègisto posì thc enèrgeiac pou mporeð na apod sei wfèlimo èrgo se mða jermodunamik diadikasða. H entropða tou Clausius ìmwc eðnai mða eurôterh ènnoia pou sqetðzetai mesa me thn t xh kai ataxða se sust mata

78 Statistik Mhqanik, EntropÐa kai Jermodunamikì 'Orio poll n bajm n eleujerðac pou epidèqontai statistik perigraf, ìpwc p.q. sumbaðnei me ta idanik aèria kai thn kinhtik jewrða pou anafèrame sthn prohgoômenh par grafo. Sthn sunèqeia, o L. Boltzmann epekteðnontac tic idèec kai to skeptikì tou R. Clausius eis gei thn di shmh plèon èkfrash (2.153) gia thn entropða. H sqèsh aut parèqei èna mètro thc ataxðac h opoða teðnei na aux netai suneq c sto qrìno gia k je kleistì fusikì sôsthma sômfwna me to deôtero ds Nìmo thc Jermodunamik c: dt 0. O nìmoc autìc apoteleð akrogwniaðo lðjo thc Statistik c Mhqanik c kai bohj sthn an lush statistik n fainomènwn pou dièpoun tic katast seic thc Ôlhc apì th metafor enèrgeiac se moriak plègmata mèqri thn sumperifor polôplokwn qhmik n diergasi n kai th dunamik our niwn swm twn kai galaxi n. LÐga qrìnia argìtera ( ), o Majhmatikìc Fusikìc tou PanepisthmÐou Yale twn H.P.A J. W. Gibbs, epèkteine thn Statistik Mhqanik gia na perigr yei fainìmena t xhc kai ataxðac se mikroskopikì epðpedo. H an lush tou Gibbs perigr fei thn sumperifor enìc sust matoc b sei thc statistik c je rhshc thc kinhmatik c twn atìmwn kai morðwn pou to apoteloôn. Gia par deigma e n jewr soume èna aèrio kinoômeno se èna doqeðo,h statistik tou Gibbs perigr fei touc nìmouc pou qarakthrðzoun thn kðnhsh twn morðwn tou aerðou mèsa sto doqeðo. H plèon pijan kat stash sthn opoða mporeð na brejeð to sôsthma qarakthrðzetai apì thn megalôterh dunat moriak ataxða, dhlad to pio pijanì eðnai ta mìria tou aerðou na katalamb noun omoiìmorfa ìlo to diajèsimo q ro tou koutioô par na eðnai sugkentrwmèna se mða mikr perioq tou mon qa! Prosoq ìmwc: H teleutaða aut perðptwsh den eðnai adônato na sumbeð, apl c qarakthrðzetai apì mða idiaðtera mikr pijanìthta. Sthn dekaetða tou 1870 o Gibbs eis gage mða akìmh èkfrash gia na perigr yei thn jermodunamik entropða ( entropða Gibbs) S = k B p i log 10 p i (2.157) i ìpou h jroish perilamb nei ìlec tic dunatèc katast seic tou sust matoc pou sumbaðnoun me pijanìthta p i. E n oi katast seic autèc qarakthrðzontai apì thn Ðdia pijanìthta p i =1/w, tìte h exðswsh (2.157) metasqhmatðzetai se aut tou Boltzmann (2.153). Gia to lìgo autì, oi Boltzmann (2.153) kai (2.157) anafèrontai kai wc entropða Boltzmann Gibbs. H Jermodunamik apoteleð mða shmantik majhmatik jewrða h opoða perigr fei me epituqða makroskopik sust mata se kat stash isorropðac, basizìmenh p nw se èna el qisto arijmì axiwm twn pou lègontai nìmoi thc Jermodunamik c. Wc makroskopik sust mata jewroôme ekeðna pou perièqoun èna polô meg lo arijmì swmatidðwn N, (sun jwc thc t xhc tou arijmoô tou Avogadro, N A ) en o ìgkoc touc V eðnai epðshc polô meg loc se sqèsh me tic diast seic twn swmatidðwn, ste na mporeð na diathreðtai stajer h swmatidiak touc puknìthta ρ = N/V. Eidikìtera, sta diathrhtik dunamik sust mata kai epomènwc kai sta Qamilt nia me ta opoða asqoloômaste sthn paroôsa diatrib, to jermodunamikì ìrio orðzetai wc E kai N ètsi ste o lìgoc E/N = staj. ìpou E eðnai h olik stajer enèrgeia tou Qamilt niou sust matoc kai N to pl joc twn bajm n eleujerðac tou. 'Opwc eðdame ìmwc sthn par grafo 2.6, o bajmìc thc dunamik c ataxðac enìc dunamikoô sust matoc sundèetai kai me thn èktash thc qaotik c tou sumperifor c h opoða qarakthrðzetai apì to

79 Kef laio 2 : Qamilt nia Sust mata kai Mèjodoi EntopismoÔ Qaotik c Dunamik c 65 rujmì thc ekjetik c apìklishc geitonik n troqi n alli c me to mègejoc twn jetik n ekjet n Lyapunov. MporoÔme loipìn na qrhsimopoi soume aut th plhroforða gia na upologðsoume thn legìmenh entropða Kolmogorov Sinai (Kolmogorov Sinai entropy) gia fragmèna sust mata wc h KS = σ i (2.158) i:σ i >0 ìpou σ i > 0, oi jetikoð ekjètec Lyapunov thc dunamik c [66]. Sthn pr xh h (2.158) anafèretai se èna nw fr gma thc entropðac Kolmogorov Sinai, dhlad h KS i:σ i >0 σ i [30] en h isìthta apèdeixe o Pesin ìti isqôei ìtan to analloðwto mètroeðnai suneqèc kat m koc astaj n dieujônsewn [66], pr gma pou isqôei proseggistik se poll fusik sust mata Anaskìphsh tou KefalaÐou Sto pr to mèroc tou kefalaðou parousi same ta jewrhtik zht mata twn dunamik n susthm twn pou ja qreiasjoôn gia thn katanìhsh twn ereunhtik n apotelesm twn thc diatrib c pou parousi zontai sta epìmena 3 kef laia. Sugkekrimèna, d same ènan genikì orismì twn dunamik n susthm twn, mil same gia thn kathgorða twn Qamilt niwn susthm twn kai ta sundèsame mèsw tou metasqhmatismoô Legendre me thn jewrða thc Lagkranzian c dunamik c. Sth sunèqeia, anafèrame thn ènnoia twn oloklhrwtik n kampul n sto q ro f sewn enìc dunamikoô sust matoc kai mil same gia thn apeikìnish Poincaré pou eðnai idiaðtera qr simh se qamhlodi stata Qamilt nia sust mata. Epiplèon, perigr yame to jewrhtikì upìbajro thc ènnoiac thc oloklhrwsimìthtac Qamilt niwn dunamik n susthm twn kai d same èmfash stic shmantikèc sunèpeiec thc perðfhmhc jewrðac KAM. 'Olaaut mac epètreyan na mil soume gia thn kðnhsh p nw se tìrouc oloklhr simwn Qamilt niwn susthm twn a- naferìmenoi ousiastik stic hmiperiodikèc troqièc pou anaptôssontai gôrw apì eustajeðc periodikèc troqièc. Ston antðpoda thc organwmènhc kðnhshc up rqoun oi qaotikèc troqièc oi opoðec eðnai exairetik euaðsjhtec sthn epilog twn arqik n sunjhk n kai apomakrônontai me ekjetikoôc rujmoôc h mða apì thn llh. Genniètai, epomènwc, to er thma pwc xeqwrðzoume thn mða perðptwsh apì thn llh kurðwc ìtan prìkeitai gia Qamilt nia sust mata poll n bajm n eleujerðac ìpwc aut me ta o- poða ja asqolhjoôme sto 4 o kef laio. Wc ap nthsh sto er thma autì, parousi same jewrhtik apotelèsmata anaforik me mða polô diadedomènh kai klasik mèjodo upologismoô twn ekjet n Lyapunov pou qarakthrðzoun thn apìklish geitonik n troqi n. Proqwr ntac, anaptôxame thn jewrða kai thn efarmog mðac prìsfathc mejìdou di krishc org nwshc kai q ouc Qamilt niwn susthm twn pou basðzetai ston deðkth SALI kai eðnai polô pio gr gorh kai axiìpisth apì ton aplì upologismì tou mègistou ekjèth Lyapunov. SÔmfwna me thn mèjodo SALI akoloujoôme thn exèlixh thc troqi c kaj c kai dôo arqik grammik c anex rthtwn dianusm twn apìklishc. Aut h prosèggish qrhsimopoi jhke apì polloôc suggrafeðc kai apodeðqjhke epituq c, kaj c mporeð na diakrðnei th fôsh thc dunamik c grhgorìtera, kai pio apodotik sugkrinìmenh me thn klasik mèjodo tou upologismoô tou f smatoc twn ekjet n Lyapunov. Met, eisag game thn nèa mèjodo tou Genikeumènou DeÐkth

80 Anaskìphsh tou KefalaÐou Eujugr mmishc t xhc k (GALI k ) wc mesh genðkeush thc mejìdou SALI. H mèjodoc aut apoteleð epðshc, èna ergaleðo melèthc thc topik c kai olik c dunamik c diathrhtik n dunamik n susthm twn, ìpwc eðnai ta Qamilt nia sust mata N bajm n eleujerðac thc paroôsac diatrib c. Me aform loipìn, to gegonìc ìti to SALI eðnai an logo tou embadoô enìc parallhlogr mmou pou èqei wc pleurèc ta dôo kanonikopoihmèna dianôsmata apìklishc, orðsame ton deðkth GALI k wc ton ìgko enìc parallhlepipèdou pou èqei wc akmèc k>2arqik grammik c anex rthta monadiaða dianôsmata apìklishc. Sthn pr xh, to GALI k upologðzetai wc to mètro tou exwterikoô ginomènou twn k kanonikopoihmènwn dianusm twn apìklishc. Gia ton arijmhtikì upologismì twn deikt n GALI k, oloklhr noume thn troqi anafor c, akolouj ntac tautìqrona thn qronik exèlixh twn k dianusm twn apìklishc, epilôontac to (grammikì) sôsthma twn exis sewn metabol n wc proc thn troqi anafor c. Pìsa tètoia dianôsmata apìklishc prèpei na qrhsimopoi soume? Apì th stigm pou o q roc f sewn enìc Qamilt niou dunamikoô sust matoc eðnai 2N di statoc, to k prèpei na eðnai mikrìtero Ðso tou 2N, alli cto GALI k eðnai Ðso me to mhdèn apì thn arq. 'Omwc, akìma kai an dialèxoume ta dianôsmata apìklishc na eðnai arqik grammik c anex rthta, aut mporeð na gðnoun grammik c exarthmèna sthn exèlixh tou qrìnou. Sthn perðptwsh aut, o ìgkoc pou parist tai mèsw tou GALI k mhdenðzetai! Autì akrib c sumbaðnei gia ìla ta k>2an h troqi anafor c eðnai qaotik all kai ìtan h troqi eðnai organwmènh kai to k>n,akolouj ntac ìmwc diaforetikì rujmì pt shc (ìqi ekjetikì). Eidikìtera, anaptôxame thn jewrða ekeðnh pou prosdiorðzei ìti gia tic qaotikèc troqièc to GALI k teðnei ekjetik sto mhdèn akolouj ntac ènan rujmì pou exart tai apì tic timèc poll n ekjet n Lyapunov (bl. ex. (2.70)). Apì thn llh meri, sthn perðptwsh organwmènwn troqi n, to GALI k me 2 k N talant netai gôrw apì mh mhdenikèc timèc, en, gia N<k 2N, teðnei sto mhdèn akolouj ntac nìmo dônamhc (bl. ex. (2.107)). O ekjèthc tou nìmou dônamhc exart tai apì tic timèc twn k kai N, kaj c kai apì to pl joc m twn dianusm twn apìklishc pou èqoun arqik epileqjeð na eðnai efaptìmena ston tìro ston opoðo h troqi keðtai. Sth sunèqeia perigr yame to jèma thc eust jeiac twn periodik n troqi n Qamilt niwn susthm twn parousi zontac th jewrða twn monìdromwn pin kwn kai thn jewrða Krein pou thn sunodeôei. Mèsw aut n eðmaste se jèsh na apofasðsoume an mða periodik troqi eðnai eustaj c ìqi. Sto tèloc tou kefalaðou mil same gia thn Jermodunamik, th Statistik Mhqanik kai pwc anaptôqjhkan sto pèrasma twn qrìnwn. Eidikìtera, anaferj kame stic ènnoiec thc entropðac kai tou jermodunamikoô orðou pou ja mac fanoôn idiaðtera qr simec se epìmena kef laia thc diatrib c.

81 KEF ALAIO 3 Kanonik kai Qaotik Dunamik Qamilt niwn Susthm twn 2 kai 3 Bajm n EleujerÐac Sto kef laio autì parousi zoume prwtìtupa ereunhtik apotelèsmata thc diatrib c pou a- foroôn sthn kanonik kai qaotik dunamik Qamilt niwn susthm twn lðgwn bajm n eleujerðac. Sugkekrimèna, efarmìzoume gia pr th for sta sust mata aut tic mejìdouc entopismoô qaotik c dunamik c SALI kai GALI pou anaptôxame jewrhtik sto prohgoômeno kef laio, kai ex goume ètsi a- paraðthth gn sh kai empeirða pou ja qrhsimopoihjeð se epìmena kef laia, gia th melèth susthm twn poll n bajm n eleujerðac. Parousi zoume ta apotelèsmat mac gia thn sumperifor tou SALI sthn organwmènh kai qaotik dunamik kai ta sugkrðnoume leptomer c me llec gnwstèc mejìdouc thc diejnoôc bibliografðac. Katìpin, parousi zoume apotelèsmata apì thn efarmog thc neìterhc mejìdou tou Genikeumènou DeÐkth Eujugr mmishc GALI se mh oloklhr sima Qamilt nia sust mata 2 kai 3 bajm n eleujerðac. Ta parap nw apotelèsmata sunistoôn to mèroc thc diatrib c pou asqoleðtai me thn eust jeia kai qaotik dunamik Qamilt niwn susthm twn lðgwn bajm n eleujerðac thc Klasik c Mhqanik c. 3.1 H Sumperifor tou SALI gia tic Kanonikèc Troqièc 'Opwc eðdame sto Kef laio 2 kai eidikìtera sthn par. 2.7 o deðkthc SALI teðnei ekjetik sto mhdèn gia qaotikèc troqièc, en stic peript seic kanonik c kðnhshc talant netai gôrw apì èna mikrì jetikì arijmì. Sthn par grafo aut ja epiqeir soume na exhg soume giatð to SALI den gðnetai mhdèn sthn pe- 67

82 H Sumperifor tou SALI gia tic Kanonikèc Troqièc rðptwsh twn organwmènwn troqi n, melet ntac thn sumperifor twn dianusm twn apìklishc. 'Enac trìpoc na to petôqoume autì eðnai na qrhsimopoi soume mða mh tetrimènh oloklhr simh Qamilt nia thc opoðac oi troqièc eðnai fragmènec kai brðskontai p nw se k poion tìro, o opoðoc katalamb nei èna sugkritik meg lo mèroc tou q rou twn f sewn [54]. 'Ena oloklhr simo tètoio Qamilt nio sôsthma 2 bajm n eleujerðac èqei ektìc apì thn Qamilt nia H kai èna deôtero olokl rwma thc kðnhshc F anex rthto apì thn H kai se enèlixh me aut n, dhlad [H, F] =0, (3.1) ìpou [, ] dhl nei thn sun jh agkôlh Poisson (bl. par ). Se tètoia sust mata, h kðnhsh entopðzetai p nw sthn tom kai twn duo pollaplot twn H = h, F = f, (3.2) ìpou h, f eðnai oi stajerèc timèc twn duo oloklhrwm twn. Epeid prìkeitai gia Qamilt nio sôsthma o efaptìmenoc q roc thc kðnhshc par getai apì ta dianusmatik pedða f H =(H px,h py, H x, H y ), f F =(F px,f py, F x, F y ). (3.3) afoô kai h H kai h F ja mporoôsan isodônama na prosdiorðsoun thn kðnhsh mèsw exis sewn tou Hamilton [4]. Epomènwc, oi troqièc tou 4 di statou q rou f sewn kinoôntai se ènan 2 di stato upìqwro, se dieujônseic oi opoðec eðnai k jetec sta dianôsmata H =(H x,h y,h px,h py ), F =(F x,f y,f px,f py ), (3.4) me x, y tic genikeumènec jèseic tou sust matoc kai p x, p y tic antðstoiqec suzugeðc ormèc, en oi k tw deðktec dhl noun merik parag gish wc proc ton deðkth (p.q. H x H/ x). Ta dianôsmata f H, f F (kai epomènwc kai ta k jeta se aut H, F )eðnai grammik c anex rthta exaitðac thc sunarthsiak c anexarthsðac twn H, F se ìla ta shmeða tou tìrou. 'Etsi, ta monadiaða dianôsmata f H = f H f H, ff = f F f F mazð me H = H H, F = F F mporoôn na qrhsimopoihjoôn wc mða b sh tou 4 di statou q rou f sewn ston opoðo ta dianôsmata apìklishc exelðssontai. Aut h b sh eðnai en gènei mh orjog nia kaj c (3.5) H, F = f H, f F = H xf y + H y F y + H px F px + H py F py H F (3.6) den eðnai genik mhdèn. sunhjismèno eswterikì ginìmeno. Shmei noume ed ìti H = f H, F = ff kai, dhl nei to 'Etsi, qrhsimopoi ntac ta dianôsmata (3.5) wc mða b sh gia thn melèth exèlixhc enìc dianôsmatoc

83 Kef laio3 : Kanonik kai Qaotik Dunamik Qamilt niwn Susthm twn 2 kai 3 Bajm n EleujerÐac 69 apìklishc v 1, mporoôme na to gr youme v1 = a 1 fh + a 2 ff + a 3 H + a4 F (3.7) me a 1,a 2,a 3,a 4 R sunart seic tou qrìnou t. Sthn perðptwsh miac 2 di stathc diathrhtik c apeikìnishc, ìpou oi organwmènec troqièc keðntai p nw se analloðwtec kampôlec (1 di statoi tìroi), èqei deiqjeð analutik kai arijmhtik [94] ìti opoiad pote di nusma apìklishc (jewr ntac to wc grammikì sunduasmì twn dianusm twn f H, H qrhsimopoi ntac ton dikì mac sumbolismì), telik ja gðnei efaptìmeno sthn analloðwth kampôlh, teðnontac sthn efaptìmenh dieôjunsh me nìmo thc morf c n 1, ìpou n eðnai o arijmìc twn epanal yewn thc apeikìnishc. Parìmoia, sthn perðptwsh mðac oloklhr simhc Qamilt niac 2 bajm n eleujerðac ìpou oi troqièc keðntai se 2 di statouc tìrouc to di nusma apìklishc v 1 teðnei na pèsei ston efaptìmeno q ro tou tìrou, pou par getai apì thn f H, f F, enno ntac ìti sthn exðswsh (3.7) a 3 0, a 4 0, en ta a 1, a 2 eðnai, en gènei, di fora tou mhdenìc. Wc montèlo gia thn melèth thc sumperifor c aut c qrhsimopoioôme ed thn Qamilt nia sun rthsh tou probl matoc Van der Waals [21] H(x, y, p x,p y )= 1 2 (p2 x + p2 y ) E(x2 + y 2 )+A(x 6 + y 6 )+B(x 4 y 2 + x 2 y 4 ), (3.8) ìpou E, A, B eðnai pragmatikèc par metroi. Gia B =3A kai E R h Qamilt nia (3.8) eðnai pl rwc oloklhr simh kai èna deôtero olokl rwma thc kðnhshc dðnetai apì th sun rthsh stroform c [38] wc F (x, y, p x,p y )=(xp y yp x ) 2. (3.9) Stouc upologismoôc mac jewroôme A =0.25, B =3A =0.75 kai E = Gia diaforetik arqik dianôsmata apìklishc, upologðzoume thn qronik exèlixh twn suntelest n a 1, a 2, a 3, a 4 thc exðswshc (3.7). BrÐskoume se ìlec tic peript seic ìti ta a 1, a 2 paramènoun di fora tou mhdenìc, en ta a 3, a 4 teðnoun sto mhdèn. 'Ena sugkekrimèno par deigma parousi zetai sto sq ma 3.1. Prosarmìzontac ta dedomèna tou sq matoc 3.1(b) me eujeða gramm parathroôme se dipl logarijmik klðmaka ìti a 3, a 4 t 1. To apotèlesma autì dh exhg jhke jewrhtik sthn par , ìpou melet same thn sumperifor k dianusm twn apìklishc apì troqièc pou exelðssontai se tìrouc Qamilt niwn susthm twn N bajm n eleujerðac. Apì to sq ma 3.1 sumperaðnoume epomènwc ìti opoiad pote di nusma apìklishc v 1 teðnei na pèsei telik ston efaptìmeno q ro tou tìrou ston opoðo h troqi exelðssetai. Autìc o efaptìmenoc q roc par getai apì ta dianôsmata f H, f F, kai epomènwc opoid apote di nusma apìklishc telik ja gðnei grammik exarthmèno apì aut ta dianôsmata kai mìno. Kaj c den up rqei k poioc idiaðteroc lìgoc loipìn duo arqik diaforetik dianôsmata apìklishc na èqoun tic Ðdiec timèc twn paramètrwn a 1, a 2,to SALI (bl. Kef. 2, par. 2.5) ja talant netai en gènei gôrw apì timèc diaforetikèc tou mhdenìc. Autì eðnai fanerì sto sq ma 3.2(a) ìpou apeikonðzoume thn qronik exèlixh tou SALI gia mða troqi me arqikèc sunj kec x = 0.6, y =0, p x =0, p y = shmeiwmènh me maôro kôklo sthn tom Poincaré tou sust matoc tou sq matoc 3.2(b). Ta arqik dianôsmata apìklishc

84 H Sumperifor tou SALI gia tic Qaotikèc Troqièc Sq ma 3.1: H qronik exèlixh twn suntelest n a 1, a 2, a 3, a 4, gia to pr to arqikì di nusma apìklishc me a 1 =1, a 2 =1, a 3 =0, a 4 =1(sqèsh (3.7)). (a) a 1 (maôrh gramm ), a 2 (gkri gramm ). (b) a 3 (maôrh gramm ), a 4 (gkri gramm ) se dipl logarijmik klðmaka. H troqi thc Qamilt niac (3.8) pou qrhsimopoi jhke, èqei arqikèc sunj kec x = 0.6, y =0, p x =0, p y = Sto sq ma (b) apeikonðzoume epðshc tic kampôlec a 3 =0.107 t 0.962, a 4 =1.067 t pou prosarmìsame sta dedomèna. pou qrhsimopoi jhkan eðnai v 1 = f H + f F + F kai v 2 = f H + f F + H. Hqronik exèlixh tou v 1 dðnetai sto sq ma 3.1. Parìmoia eikìna me aut tou prohgoômenou sq matoc lamb noume kai gia to di nusma v H Sumperifor tou SALI gia tic Qaotikèc Troqièc 'Opwc perigr yame kai sthn par. 2.5 tou KefalaÐou 2, o Mikrìteroc DeÐkthc Eujugr mmishc (SALI) mporeð na qrhsimopoihjeð gia ton akrib kai gr goro prosdiorismì thc organwmènhc qaotik c fôshc mðac troqi c Qamilt niac ro c. H di krish aut basðzetai sthn diaforetik sumperifor tou SALI stic parap nw duo peript seic: EÐte o SALI talant netai gôrw apì mh mhdenikèc timèc sthn perðptwsh twn organwmènwn troqi n, eðte èqoume SALI 0, kaj c t, lìgw eujugr mmishc ìlwn twn dianusm twn apìklishc me thn kateôjunsh tou mègistou ekjèth Lyapunov sthn perðptwsh qaotik n troqi n. M lista, h pt sh aut eðnai ekjetik, ìpwc deðxame kai sto ed fio 2.5 tou KefalaÐou 2 kai ekfr zetai apì th sqèsh SALI e (σ 1 σ 2 )t ìpou σ 1,σ 2 oi dôo mègistoi ekjètec Lyapunov (σ 1 >σ 2 ). Qrhsimopoi ntac ta parap nw apotelèsmata mporoôme na entopðsoume t ra akìma kai polô mikrèc perioqèc organwmènhc qaotik c kðnhshc se Qamilt nia dunamik sust mata kai sumplektikèc apeikonðseic (bl. kef. 5). Ja qrhsimopoi soume gia to skopì autì duo apl paradeðgmata:

85 Kef laio3 : Kanonik kai Qaotik Dunamik Qamilt niwn Susthm twn 2 kai 3 Bajm n EleujerÐac 71 Sq ma 3.2: H qronik exèlixh tou SALI (a) gia mða organwmènh troqi shmeiwmènh me maôro shmeðo sthn tom Poincaré y = 0 tou sq matoc (b). To Qamilt nio sôsthma me N =2bajmoÔc eleujerðac H 2 = 1 2 (p2 x + p2 y )+1 2 (x2 + y 2 )+x 2 y 1 3 y3 (3.10) gia H 2 = 1 8, pou melet jhke apì touc Hénon & Heiles [45] kai to Qamilt nio sôsthma me N =3bajmoÔc eleujerðac H 3 = 1 2 (p2 x + p 2 y + p 2 z)+ 1 2 (Ax2 + By 2 + Cz 2 ) ɛxz 2 ηyz 2, (3.11) jètontac A =0.9, B =0.4, C =0.225, ɛ =0.56 kai η =0.2, to opoðo melet jhke arqik sta rjra [21, 23] tou G. Kontìpoulou kai sunergat n tou. 'Enac aplìc poiotikìc trìpoc melèthc thc dunamik c tètoiwn Qamilt niwn dunamik n susthm twn lðgwn bajm n eleujerðac eðnai h apeikìnish twn tom n twn troqi n touc me k poia kat llhlh e- pif neia tom n Poincaré (PSS) [54]. H mèjodoc aut èqei qrhsimopoihjeð kat kôrio lìgo se Qamilt nia sust mata 2 bajm n eleujerðac afoô se aut h epif neia tom c Poincaré eðnai èna epðpedo 2 diast sewn. Sta sust mata 3 bajm n eleujerðac ìmwc o q roc f sewn eðnai exadi statoc kai h epif neia tom n Poincaré eðnai tetradi stath! Autì èqei wc apotèlesma h sumperifor twn troqi n na mhn mporeð na optikopoihjeð eôkola sthn perðptwsh aut. 'Enac trìpoc bèbaia na xeperasjeð to wc nw prìblhma eðnai h probol tou tetradi statou epipèdou Poincaré se q rouc mikrìterhc di stashc. 'Omwc akìma ki autèc oi probolèc eðnai suqn dôskolo na ermhneujoôn kai mporeð eôkola na odhg soun se esfalmèna sumper smata wc proc to eðdoc kðnhshc thc troqi c.

86 H Sumperifor tou SALI gia tic Qaotikèc Troqièc Gia na parousi soume thn sumperifor tou SALI stouc 2 kai 3 bajmoôc eleujerðac ja exet soume leptomer c k poiec qarakthristikèc organwmènec kai qaotikèc troqièc touc. Sto sq ma 3.3(a) èqoume apeikonðsei tic diadoqikèc tomèc miac organwmènhc kai miac qaotik c troqi c tou Qamilt niou sust matoc (3.10) me to epðpedo pou orðzetai apì thn x =0. Ta shmeða thc organwmènhc troqi c keðntai p nw se mða suneq kleist analloðwth kampôlh (tìroc) pou diakrðnetai eukrin c sto eswterikì thc epif neiac tom n tou sq matoc 3.3. AntÐjeta, ta shmeða thc qaotik c troqi c emfanðzontai tuqaða diaskorpismèna sthn epif neia aut. H qronik exèlixh tou SALI aut n twn duo troqi n apeikonðzetai sto sq ma 3.3(b). Sthn perðptwsh thc organwmènhc troqi c (sumpag c gramm ) o SALI paramènei di foroc tou mhdenìc, en sthn perðptwsh thc qaotik c troqi c (diakekommènh gramm ), Ôstera apì èna metabatikì qrìno, o SALI fjðnei apìtoma kai jewroôme ìti èqei dh gðnei mhdèn se qrìno t 800 kaj c èqei fj sei sto ìrio arijmhtik c akrðbeiac tou upologist (10 16 ). Autì shmaðnei ìti gia t 800 ta 2 dianôsmata apìklishc èqoun sqedìn plèon eujugrammisjeð sthn Ðdia dieôjunsh kai mporoôme me asf leia na isqurisjoôme ìti h troqi aut eðnai qaotik. Bèbaia, ja mporoôsame na apofanjoôme ìti h troqi aut eðnai qaotik polô nwrðtera, jewr ntac ìti ta duo dianôsmata apìklishc tautðzontai ìtan to SALI fj nei k poio mikrìtero kat fli, p.q met apì qrìno t = 400. Parìmoia sumperifor parousi zei o SALI kai gia qaotikèc kai organwmènec troqièc thc Qamilt niac tri n bajm n eleujerðac (3.11) ìpwc blèpoume kai sto sq ma 3.5. Sq ma 3.3: (a) H tom Poincaré miac organwmènhc kai miac qaotik c troqi c me arqikèc sunj kec x =0, y =0.1, p x , p y =0kai x =0, y = 0.25, p x , p y =0antÐstoiqa, gia to Hénon & Heiles sôsthma (3.10). H organwmènh troqi antistoiqeð sthn kleist elleiptik kampôlh, en h qaotik troqi antistoiqeð sto diaskorpismèno sônnefo shmeðwn sthn PSS. (b) H qronik exèlixh tou SALIgia tic duo troqièc tou (a) se dipl logarijmik klðmaka. H sumpag c gramm antistoiqeð sthn organwmènh troqi en h diakekommènh gramm sthn qaotik troqi. Ta arqik dianôsmata apìklishc w =(dx, dy, dp x,dp y ), pou qrhsimopoi jhkan gia ta apotelè-

87 Kef laio3 : Kanonik kai Qaotik Dunamik Qamilt niwn Susthm twn 2 kai 3 Bajm n EleujerÐac 73 smata tou sq matoc 3.3 eðnai w 1 (0) = (1, 0, 0, 0) kai w 2 (0) = (0, 0, 1, 0) all en gènei opoiad pote llh epilog twn dianusm twn aut n odhgeð se parìmoia sumperifor tou SALI. HisqÔc tou isqurismoô autoô uposthrðzetai kai apì touc akìloujouc upologismoôc: Epikentr nontac thn prosoq mac sthn perðptwsh twn qaotik n troqi n, melet me thn qaotik troqi tou sq matoc 3.3 stajeropoi ntac èna apì ta duo dianôsmata apìklishc w 1 (0) = (0, 1, 0, 0) kai metab llontac to deôtero w 2 (0). Gia k je diaforetikì zeug ri dianusm twn apìklishc w 1 (0), w 2 (0) upologðzoume ton qrìno T pou apaiteð o SALI gia na xeper sei k poio sugkekrimèno qamhlì kat fli, p.q kai elègqoume e n o qrìnoc T exart tai apì thn sugkekrimènh epilog arqik n dianusm twn apìklishc. Epilègoume to w 2 (0) me duo diaforetikoôc trìpouc: Pr ta, jewroôme duo dianôsmata apìklishc pou keðntai sthn epif neia tom c Poincaré tou sq matoc (3.3) èqontac metaxô touc gwnða θ ètsi ste w 1 (0) = (0, 1, 0, 0) kai w 2 (0) = (0, cos θ, 0, sin θ). Sto sq ma 3.4(a) apeikonðzoume ton wc nw qrìno T wc sun rthsh thc gwnðac θ [0,π]. 'Opwc eðnai anamenìmeno, gia gwnðec θ =0kai θ = π prokôptei T =0afoÔ ta duo dianôsmata apìklishc eðnai arqik eujugrammismèna ston q ro f sewn tou sust matoc. H mègisth tim tou qrìnou T antistoiqeð sthn perðptwsh ìpou to w 2 (0) eðnai k jeto sthnastaj pollaplìthta pou dièrqetai apì thn arqik sunj kh thc troqi c. Sthn perðptwsh aut h suntetagmènh tou w 2 (0) kat m koc thc astajoôc dieôjunshc eðnai mhdèn kai epomènwc o qrìnoc pou apaiteðtai gia na anaptôxei to di nusma shmantik sunist sa kat m koc thc dieôjunshc aut c megistopoieðtai (bl. koruf thc grafik c par stashc tou sq. (3.4)). ParathroÔme epðshc sto sq ma autì ìti gia ìla ta θ (0,π) oqrìnoc T den all zei shmantik, metaballìmenoc praktik mìno sto di sthma [400, 500]. O deôteroc èlegqoc pou ektelèsame tan na upologðsoume ton qrìno T gia 1000 dianôsmata apìklishc w 2 (0) twn opoðwn oi suntetagmènec eðnai tuqaðoi arijmoð (bl. sq ma 3.4(b)). Apì ta apotelèsmata tou sq matoc 3.4 epomènwc sumperaðnoume ìti o qrìnoc T praktik den exart tai apì thn epilog twn arqik n dianusm twn apìklishc. Apì thn llh meri, o upologismìc tou mègistou ekjèth Lyapunov σ 1 (bl. par. 2.6), den èqei tic Ðdiec idiìthtec sôgklishc se antðstoiqa qronik diast mata me to SALI. Autì gðnetai emfanèc sto sq ma 3.6 ìpou sqedi zoume thn exèlixh tou L 1 (t) ìpou L 1 (t) σ 1 gia t (bl. sq ma 3.6(a)) kai tou SALI (bl. sq ma 3.6(b)) gia mða qaotik troqi tou sust matoc (3.10). Se qrìno t 1900 o SALI èqei fj sei sthn tim kai den apaitoôntai plèon peraitèrw upologismoð tou. AntÐjeta, o upologismìc tou L 1 (t) mèqri ton Ðdio qrìno (t 1900) den deðqnei kajar sôgklish sto sq ma 3.6(a). Fusik, ja mporoôsame na eðmastan sðgouroi gia thn qaotik fôsh thc troqi c aut c ìtan akìma t 1000 ìpou SALI Epomènwc, gðnetai fanerì, ìti to SALI èqei èna shmantikì pleonèkthma ènanti tou mègistou ekjèth Lyapunov, afoô faðnetai na sugklðnei sto mhdèn gia qaotikèc troqièc ( na stajeropoieðtai gia kanonikèc) polô pio gr gora apì ìti apaiteðtai gia na apofanjoôme an o mègistoc ekjèthc Lyapunov sugklðnei se mh mhdenik tim ( teðnei sto mhdèn, antðstoiqa). H sumperifor tou SALI melet jhke leptomer c sthn perðptwsh enìc pl rwc oloklhr simou Qamilt niou sust matoc 2 bajm n eleujerðac sthn ergasða [8]. EkeÐ deðxame ìti opoiod pote zeug ri aujaðretwn dianusm twn apìklishc teðnei ston efaptìmeno q ro tou tìrou ston opoðo h troqi exelðssetai, kai ìpou h kðnhsh orðzetai apì 2 anex rthta dianusmatik pedða, pou antistoiqoôn sta

88 H Sumperifor tou SALI gia tic Qaotikèc Troqièc Sq ma 3.4: O qrìnoc T pou qrei zetai o SALI gia na gðnei mikrìteroc apì sthn perðptwsh thc qaotik c troqi c tou sq matoc 3.3 qrhsimopoi ntac wc arqik dianôsmata apìklishc ta w 1 (0) = (0, 1, 0, 0) kai (a) w 2 (0) = (0, cos θ, 0, sin θ), kai(b) w 2 (0) tou opoðou oi suntetagmènec eðnai tuqaðoi arijmoð. O qrìnoc T sqedi zetai sto (a) wc sun rthsh thc gwnðac θ, kai sto(b) wc sun rthsh tou deðkth i twn tuqaðwc paragìmenwn dianusm twn. Sq ma 3.5: H qronik exèlixh tou SALI gia mða organwmènh (sumpag c gramm ) kai mða qaotik troqi (diakekommènh gramm ) thc Qamilt niac 3 bajm n eleujerðac (3.11), me arqik sunj kh x = , y = , z =0, p x =0, p y =0, p z kai x = , y =0, z =0, p x = , p y =0, p z antðstoiqa. 2 oloklhr mata thc kðnhshc. Epomènwc, afoô ta dianôsmata apìklishc w 1 (t) kai w 2 (t) den eðnai grammik c exarthmèna, dièpontai apì dôo anex rthta dianusmatik pedða kai talant nontai gôrw apì mh mhdenikèc timèc.

89 Kef laio3 : Kanonik kai Qaotik Dunamik Qamilt niwn Susthm twn 2 kai 3 Bajm n EleujerÐac 75 Sq ma 3.6: H qronik exèlixh (a) tou L 1 (t), ìpoul 1 (t) σ 1, t,meσ 1 ton megalôtero ekjèth Lyapunov, kai (b) tou SALI gia thn qaotik troqi x =0, y = , p x , p y =0twn duo bajm n eleujerðac Qamilt nia (3.10). Se perioqèc ìmwc qaotik n troqi n enìc Qamilt niou sust matoc N bajm n eleujerðac ta pr gmata eðnai polô diaforetik. 'Opwc exhg same leptomer c sthn par tou KefalaÐou 2 sthn perðptwsh aut h qronik exèlixh tou w(t) dièpetai apì touc topikoôc ekjètec Lyapunov pou talant nontai gôrw apì tic timècσ 1 σ 2 σ 2n pou eðnai kai oi telikoð ekjètec Lyapunov sthn en lìgw perioq. 'Opwc perigr yame sto Kef laio 2, oi ekjètec Lyapunov qaotik n troqi n Qamilt niwn susthm twn eðnai pragmatikoð arijmoð kai omadopoioôntai se zeug ria me antðjeta prìshma duo ek twn opoðwn eðnai tautotik mhdèn [54]. Epomènwc, h exèlixh opoioud pote arqikoô dianôsmatoc apìklishc w 1 (0) dðnetai proseggistik apì mða èkfrash thc morf c w 1 (t) = 2n i=1 c (1) i e L it ê i, (3.12) ìpou ta c (1) i eðnai en gènei pragmatikoð arijmoð kai ta L i, ê i exart ntai apì thn sugkekrimènh jèsh, x(t), ston q ro f sewn ston opoðo h troqi exelðssetai. Gia na èqoume mia pr th ektðmhsh thc exèlixhc tou SALI stic peript seic autèc, upojètoume ìti oi topikoð ekjètec Lyapunov L i den talant nontai shmantik gôrw apì tic telikèc timèc touc kai epomènwc mporoôn na proseggisjoôn apì autèc, dhlad L i σ i. DeÔteron, jewroôme ìti h shmantikìterh suneisfor sto di nusma apìklishc w 1 (t) proèrqetai apì touc duo megalôterouc ìrouc thc sqèshc (3.12), dhlad w 1 (t) c (1) 1 e L 1t ê 1 + c (1) 2 e L 2t ê 2 c (1) 1 e σ 1t ê 1 + c (1) 2 e σ 2t ê 2. (3.13)

90 H Sumperifor tou SALI gia tic Qaotikèc Troqièc MporoÔme ètsi na qrhsimopoi soume th sqèsh (3.13) gia na upologðsoume proseggistik ta monadiaða dianôsmata kai ìpou s i =sign(c (i) 1 ), i =1, 2. w 1 (t) w 1 (t) c(1) 1 e σ 1t ê 1 + c (1) 2 e σ 2t ê 2 c (1) 1 eσ 1t w 2 (t) w 2 (t) c(2) 1 e σ 1t ê 1 + c (2) 2 e σ 2t ê 2 c (2) 1 eσ 1t = s 1 ê 1 + c(1) 2 c (1) 1 e (σ1 σ2)t ê 2, (3.14) = s 2 ê 1 + c(2) 2 c (2) 1 e (σ1 σ2)t ê 2, (3.15) Sq ma 3.7: (a) H qronik exèlixh tou L 1 (t) gia thn qaotik troqi me arqik sunj kh x = 0, y = 0.25, p x , p y =0twn duo bajm n eleujerðac Qamilt nia (3.10). (b) O SALI thc Ðdiac troqi c (sumpag c gramm ) kai h sun rthsh e σ 1t (diakekommènh gramm ) gia σ 1 = O xonac tou qrìnou eðnai grammikìc. Gia na upologðsoume t ra to SALI apì ton orismì tou, (bl. par. 2.7) prosjètoume kai afairoôme tic exis seic (3.14) kai (3.15) opìte paðrnoume SALI(t) =min w 1 (t) w 1 (t) ± w 2(t) w 2 (t) c (1) 2 c (1) 1 ± c (2) 2 c (2) 1 e (σ 1 σ 2 )t ê 2. (3.16) OrÐzontac me c thn jetik posìthta tou dexioô mèlouc thc parap nw exðswshc kai qrhsimopoi ntac to gegonìc ìti to ê 2 eðnai monadiaðo di nusma èqoume telik SALI(t) ce (σ 1 σ 2 )t. (3.17) (bl. kai ex. (2.35)). H sqèsh aut deðqnei kajar ìti o SALI gia qaotikèc troqièc teðnei sto mhdèn ekjetik gr gora kai ìti o rujmìc pt shc tou sqetðzetai me thn diafor twn duo megalôterwn

91 Kef laio3 : Kanonik kai Qaotik Dunamik Qamilt niwn Susthm twn 2 kai 3 Bajm n EleujerÐac 77 ekjet n Lyapunov thc dunamik c. Gia na elègxoume thn orjìthta twn parap nw analutik n apotelesm twn arqik se èna Qamilt nio sôsthma 2 bajm n eleujerðac ja qreiasjeð na upenjumðsoume ìti sthn perðptwsh aut up rqei ènac mìno jetikìc ekjèthc Lyapunov, (σ 1 > 0) en o amèswc mikrìteroc eðnai Ðsoc me to mhdèn, σ 2 =0. 'Etsi, h exðswsh (3.17) metatrèpetai sth sqèsh SALI(t) ce σ 1t. (3.18) Sto sq ma 3.7(a) apeikonðzoume se dipl logarijmik klðmaka ton topikì mègisto ekjèth Lyapunov L 1 (t) wc sun rthsh tou qrìnou t gia mia qaotik troqi tou Qamilt niou sust matoc 2 bajm n eleujerðac (3.10). O mègistoc ekjèthc Lyapunov paramènei jetikìc kai di foroc tou mhdenìc upodeiknôontac th qaotik fôsh thc upì exètash troqi c. Akolouj ntac th qronik exèlixh gia arkoôntwc meg lo qronikì di sthma gia na apokt soume axiìpistec proseggðseic (t 10000) brðskoume σ Sto sq ma 3.7(b) apeikonðzoume to SALI gia thn Ðdia troqi (sumpag c gramm ) qrhsimopoi ntac grammik klðmaka gia ton qrìno t. 'Opwc parathroôme, to apotèlesma sumfwneð me th sqèsh (3.18) (diakekommènh gramm ) kai epomènwc katal goume kai p li sto sumpèrasma ìti h troqi eðnai qaotik afoô o SALI gia t 800. 'Allwste h pt sh tou SALI sto mhdèn eðnai dh faner apì to t 400, ìpouosali èqei gðnei Oi qaotikèc troqièc enìc Qamilt niou sust matoc tri n bajm n eleujerðac èqoun duo jetikoôc ekjètec Lyapunov, σ 1 kai σ 2. 'Etsi, gia thn prosèggish thc sumperifor c tou SALI mèsw thc sqèshc (3.17), apaiteðtai h gn sh kai twn 2 aut n ekjet n Lyapunov. Gia na epibebai soume loipìn, thn isqô tou tôpou (3.17) upologðzoume pr ta touc ekjètec Lyapunov σ 1 kai σ 2 gia mða qaotik troqi tou Qamilt niou sust matoc tri n bajm n eleujerðac (3.11) efarmìzontac p.q. thn mèjodo pou prot jhke apì touc Benettin et al. [8, 9]. Ta apotelèsmata parousi zontai sto sq ma (3.7)(a) ìpou o upologismìc suneqðzetai mèqric ìtou oi topikoð ekjètec Lyapunov L 1 kai L 2 stamat soun na èqoun shmantikèc talant seic kai sugklðnoun stic mh mhdenikèc timèc σ 1, σ 2. 'Etsi, gia t 10 6 kai gia enèrgeia H 3 = brðskoume σ , σ Qrhsimopoi ntac tic timèc autèc blèpoume sto sq ma 3.8(b) ìti h klðsh tou SALI (sumpag c gramm ) anaparðstatai me kal akrðbeia apì th sqèsh (3.17) (diakekommènh gramm ). EÐnai epðshc emfanèc ìti o SALI sugklðnei pio gr gora sto mhdèn upodeiknôontac ètsi ìti h troqi eðnai qaotik, pio gr gora apì touc duo megalôterouc ekjètec Lyapunov oi opoðoi apaitoôn polô megalôtero qrìno gia na sugklðnoun stic telikèc touc timèc. 'Etsi, ta apotelèsmata twn sqhm twn 3.7 kai 3.8 dðnoun isqurèc endeðxeic wc proc thn orjìthta thc sqèshc (3.17) gia thn sumperifor tou SALI. 3.3 Prosdiorismìc Perioq n T xhc kai Q ouc O SALI prosfèrei epðshc ènan idiaðtera qr simo trìpo diaqwrismoô olìklhrwn perioq n qaotik c kai organwmènhc kðnhshc se èna eurô f sma problhm twn Qamilt niac dunamik c. Ed ja qrhsimopoi soume th mèjodo tou aut gia thn oriojèthsh kai qartogr fhsh perioq n tou q rou f sewn

92 Prosdiorismìc Perioq n T xhc kai Q ouc Sq ma 3.8: (a) H qronik exèlixh twn duo megalôterwn jetik n ekjet n Lyapunov kai h sôgklis touc stic timèc σ 1 kai σ 2 gia mða qaotik troqi me arqik sunj kh x =0, y =0, z =0, p x =0, p y =0, p z tou Qamilt niou sust matoc tri n bajm n eleujerðac (3.11). (b) O qronik exèlixh tou SALI thc Ðdiac troqi c (sumpag c gramm ) kai h sun rthsh ce (σ 1 σ 2 )t (diakekommènh gramm ) gia σ 1 =0.0310, σ 2 = kai c =10 1. O xonac tou qrìnou eðnai grammikìc. ìpou sunup rqoun eureðac klðmakac organwmènec kai qaotikèc troqièc. Sto sq ma 3.9 parousi zoume se arket leptomèreia thn eikìna thc epif neiac tom n Poincaré x = 0 tou Qamilt niou sust matoc 2 bajm n eleujerðac (3.10). 'Opwc eðnai fanerì, up rqoun sto sq ma perioqèc organwmènhc kðnhshc gôrw apì eustajeðc periodikèc troqièc, kaj c kai qaotikèc perioqèc gem tec me diaskorpismèna shmeða. Ja deðxoume mèsw qr shc tou SALI ìti eðnai dunatìn na apokalufjoôn polô perissìterec leptomèreiec thc dunamik c apì ìsec diakrðnontai sthn paroôsa megèjunsh: JewroÔme troqièc me arqikèc sunj kec p nw sthn eujeða p y =0. Eidikìtera, qrhsimopoioôme 5000 arqikèc sunj kec omoiìmorfa katanemhmènec sthn en lìgw eujeða kai upologðzoume thn tim tou SALI gia k je mða apì autèc. Ta apotelèsmata parousi zontai sto sq ma 3.10, ìpou apeikonðzoume thn tim tou SALI wc sun rthsh thc y suntetagmènhc thc arqik c sunj khc twn troqi n gia t = 1000 (bl. sq ma 3.10(a)) kai t = 4000 (bl. sq ma 3.10(b)). Sto sq ma autì ta shmeða sundèontai me eujeðec grammèc, ètsi ste oi enallagèc tou SALI na eðnai eôkola oratèc. ParathroÔme ìti up rqoun diast mata ìpouosali èqei meg lec timèc, (p.q. megalôterec apì 10 4 ) kai oi opoðec antistoiqoôn se organwmènh kðnhsh p nw se nhsðdec eust jeiac. Up rqoun ìmwc kai perioqèc ìpou o SALI èqei polô mikrèc timèc, (p.q. mikrìterec apì ) oi opoðec upodhl noun ìti autèc eðnai perioqèc qaotik c kðnhshc. SugkrÐnontac to sq ma 3.10 me to 3.9 mporoôme eôkola na diakrðnoume merikèc apì tic perioqèc autèc kai sta dôo sq mata. Parìlo bèbaia pou oi perissìterec arqikèc sunj kec dðnoun timèc tou SALI megalôterec apì 10 4 mikrìterec apì 10 12, up rqoun kai arqikèc sunj kec oi opoðec dðnoun endi mesec timèc tou

93 Kef laio3 : Kanonik kai Qaotik Dunamik Qamilt niwn Susthm twn 2 kai 3 Bajm n EleujerÐac 79 SALI (10 12 < SALI 10 4 ) ìpwc gia par deigma gia qrìno t = 1000 sto sq ma 3.10(a). Autèc oi arqikèc sunj kec antistoiqoôn se qaotikèc troqièc oi opoðec arqik sumperifèrontai san na tan organwmènec all met apì èna qronikì di sthma mikrì meg lo emfanðzetai o qaotikìc touc qarakt rac. Oi troqièc autèc lègontai sticky, brðskontai sta ìria nhsðdwn eust jeiac kai paramènoun se aut gia arket meg lo qronikì di sthma ste o qaotikìc touc qarakt rac na eðnai dôskolo na apokalufjeð qwrðc makroqrìniec oloklhr seic twn exis sewn kðnhshc. Ed eðnai akrib c pou faðnetai h axða tou SALI. Meto na meiwjeð h tim tou dh met apì qrìno t = 1000, sto epðpedo tou 10 4 SALI 10 12, mac èqei d sei mða isqur èndeixh ìti h troqi eðnai sticky upono ntac ìti an perimèname lðgo akìma ja blèpame ìti eðnai qaotik! 'Etsi, sugkrðnontac ta sq mata 3.10(a) kai 3.10(b) gðnetai pr gmati fanerì ìti sqedìn ìla ta shmeða pou èqoun < SALI 10 4 apoktoôn gia t = 4000 akìma mikrìterec timèc sto sq ma 3.10(b)), en h tim tou SALI gia ta shmeða pou antistoiqoôn se organwmènh kðnhsh paramènei Ðdia. Bèbaia, den eðnai eôkolo na orðsoume èna monadikì kat fli k tw apìto opoðo na upodeiknôetai safèstata h qaotikìthta miac troqi c. Parìla aut, ta arijmhtik apotelèsmata sepoll sust mata pou exet same èdeixan ìti mia kal tim tou SALI gia èna tètoio kat fli qaotikìthtac eðnai Sq ma 3.9: H tom Poincaré x = 0 thc Qamilt niac 2 bajm n eleujerðac (3.10). Sqedi zetai epðshc kai o xonac p y =0. Melet ntac prosektikìtera tic duo eikìnec tou sq matoc 3.10, parathroôme ìti gôrw apì thn jèsh y 0.1 up rqei mða om da shmeðwn mèsa se mða meg lh qaotik perioq h opoða èqei tim tou SALI > Aut ta shmeða antistoiqoôn se troqièc me arqikèc sunj kec mèsa se mða mikr nhsðda eust jeiac, h opoða den diakrðnetai kan sthn tom Poincaré tou sq matoc 3.9! Epiplèon, to shmeðo me arqik sunj kh y = èqei meg lh tim tou SALI (> 0.1) kai stic duo eikìnec tou sq matoc 3.10 en ìla ta geitonik tou shmeða èqoun SALI < 10 9 akìma kai gia qrìno t = Autì to shmeðo antistoiqeð se mða organwmènh troqi mèsa se mða mikroskopik perioq

94 Prosdiorismìc Perioq n T xhc kai Q ouc eust jeiac h opoða den faðnetai par mìno met apì mða polô meg lh megèjunsh aut c thc perioq c thc tom c Poincaré. Blèpoume loipìn me autìn ton trìpo, ìti h susthmatik efarmog thc mejìdou tou SALI mporeð na apokalôyei pollèc leptomèreiec thc dunamik c oi opoðec diaforetik den ja tan eôkolo na parathrhjoôn. Efarmìzontac thn wc nw an lush ìqi mìno kat m koc miac eujeðac all kai se olìklhro to epðpedo thc tom c Poincaré kai sqedi zontac me èna sugkekrimèno qr ma k je arqik sunj kh an - loga me thn tim tou SALI mporoôme na sqedi soume mia leptomer eikìna twn perioq n org nwshc kai q ouc se olìklhrh thn epif neia tom n. Sto sq ma 3.11(a) parousi zoume to apotèlesma mðac tètoiac an lushc gia thn Qamilt nia 2 bajm n eleujerðac (3.10), qrhsimopoi ntac èna puknì plègma arqik n sunjhk n sthn tom Poincaré. Oi perioqèc tou q rou twn f sewn qwrðzontai se tèsseric kathgorðec, an loga me tic diaforetikèc timèc tou SALI gia qrìno t = 1000 kai apeikonðzontai me diaforetikèc apoqr seic wcex c:maôro e n SALI 10 12, skoôro gkri e n < SALI 10 8, gkri e n 10 8 < SALI 10 4 kai anoiqtì gkri e n SALI > Epomènwc, sto sq ma 3.11(a) diakrðnoume kat' arq c perioqèc me anoiqtì gkri qr ma, ìpou h kðnhsh eðnai organwmènh kai maôrec perioqèc ìpou h kðnhsh eðnai qaotik. Sta sônora metaxô aut n twn perioq n diakrðnoume epðshc perioqèc me skoôro gkri kai gkri qr ma pou antistoiqoôn stic legìmenec sticky troqièc. AxÐzei na anafèroume ed ìti sto sq ma 3.11(a) mporoôme na diakrðnoume kai polô mikrèc nhsðdec eust jeiac mèsa se meg lec qaotikèc perioqèc, oi opoðec den eðnai emfaneðc sthn tom Poincaré tou sq matoc 3.9, ìpwc gia par deigma aut sth jèsh y 0.1 kai p y 0. Parìlo pou to sq ma 3.11 upologðsthke mìno gia t = 1000, o qrìnoc autìc eðnai arketìc gia thn apok luyh mikr n perioq n org nwshc mèsa se meg lec qaotikèc perioqèc. Apì pleur c upologistikoô qrìnou (CPU) mða katagraf twn tim n tou SALI pou qrhsimopoieð èna pl rec plègma arqik n sunjhk n ìpwc autì pou sqedi zoume sto sq ma 3.11(a) eðnai mða arket qronobìra diadikasða pou apaiteð perð tic 8 9 rec se èna upologist Pentium 4 2GHz. Ekmetalleuìmenoi ìmwc th summetrða tou sq matoc wc proc ton orizìntio xona kai tautðzontac thn tim tou SALI mðac troqi c me ekeðnh ìlwn twn endi meswn tom n thc me thn epif neia Poincaré epitôqame na mei soume ton upologismì thc eikìnac tou sq matoc 3.11(a) se 2 rec qrìnou CPU (se ènan upologist Pentium 4 2GHz) gia èna plègma arqik n sunjhk n omoiìmorfa katanemhmènwn sto hmiepðpedo p y 0 kai telikì qrìno t = Gia èna Qamilt nio sôsthma 3 bajm n eleujerðac ìpwc to (3.11) h antðstoiqh tom Poincaré eðnai 4 diast sewn kai epomènwc ìqi kai tìso qr simh ìso sthn perðptwsh twn 2 bajm n eleujerðac. AntÐjeta, to SALI mporeð kai p li na diaqwrðsei me epituqða perioqèc t xhc kai q ouc. Gianato doôme autì, epilègoume arqikèc sunj kec se èna tetradi stato plègma thc tom c Poincaré kai sqedi zoume me diaforetikì qr ma k je arqik sunj kh (mazð me ìla ta endi mesa shmeða thc) an loga me thn telik tim tou SALI met apì qrìno t = Me ton trìpo autì brðskoume p li perioqèc t xhc kai q ouc oi opoðec mporoôn na optikopoihjoôn e n periorðsoume thn melèth mac se ènan 2 didi stato upìqwro thc 4 di stathc tom c Poincaré. Gia par deigma, sto sq ma 3.11(b) apeikonðzoume, gia thn enèrgeia H 3 = , ton upìqwro y =0, p y =0(gia z =0kai p z 0) tou Qamilt niou sust matoc (3.11), qrhsimopoi ntac thn

95 Kef laio3 : Kanonik kai Qaotik Dunamik Qamilt niwn Susthm twn 2 kai 3 Bajm n EleujerÐac 81 Sq ma 3.10: Oi timèc tou SALI gia (a) t = 1000 kai (b) t = 4000 gia troqièc tou Qamilt niou sust matoc 2 bajm n eleujerðac (3.10) me arqikèc sunj kec sthn eujeða p y =0thc tom c Poincaré tou sq matoc 3.9, wc sun rthsh thc y suntetagmènhc thc arqik c sunj khc. Ðdia teqnik ìpwc kai sthn perðptwsh mðac Qamilt niac 2 bajm n eleujerðac. ParathroÔme kai ed perioqèc organwmènhc (anoiqtì gkri qr ma) kai qaotik c kðnhshc (maôro qr ma), kaj c epðshc kai sticky troqièc (skoôro gkri kai gkri qr ma) sta ìria twn nhsðdwn eust jeiac. Eikìnec ìpwc h 3.11, mporoôn na qrhsimopoihjoôn olik gia ton upologismì tou posostoô tou ìgkou tou q rou f sewn pou katalamb netai apì qaotikèc kai organwmènec troqièc kai topik gia ton entopismì eustaj n periodik n troqi n sta kèntra twn nhsðdwn eust jeiac tou sq matoc. Efarmìzontac thn wc nw diadikasða ja upologðsoume t ra gia to Qamilt nio sôsthma (3.10) to posostì qaotik n troqi n thc epif neiac tom n Poincaré me dôo trìpouc: (1) jewr ntac ìti mia troqi eðnai qaotik an to SALI < 10 8 kai organwmènh an SALI > 10 8 kai (2) melet ntac ap' eujeðac to sq ma 3.11(a) me mða arijmhtik mèjodo pou qrhsimopoi jhke sto rjro [45] gia to Ðdio sôsthma 2 bajm n eleujerðac (3.10). Ta sugkritik apotelèsmata twn dôo aut n mejìdwn parousi zontai sto sq ma Eidikìtera, sto sq ma 3.12(a) parathroôme ìti h mèjodoc thc s rwshc thc epif neiac tom n Poincaré qwrðc thn taôtish thc telik c tim c tou SALI me ekeðnh ìlwn twn endi meswn shmeðwn thc (maôro qr ma) dðnei wc posostì qaotik n perioq n 55% perðpou thc sunolik c tom c Poincaré, lðgo ligìtero dhlad apì ìso dðnei h taqôterh mèjodoc s rwshc thc epif neiac Poincaré pou anafèrame pio p nw (kat thn opoða to SALI mðac troqi c tautðzetai me ta endi mesa shmeða thc) apeikonizìmenh me gkri qr ma. Sto sq ma 3.12(b) apeikonðzoume ton antðstoiqo upologismì tou posostoô qaotik n perioq n tou sust matoc (3.10) wc sun rthsh thc olik c enèrgeiac H 2, ìpwc autì parousi sthke sthn ergasða [58]. ParathroÔme ìti gia H 2 =1/8 ta apotelèsmata sumpðptoun se ikanopoihtik akrðbeia me ekeðno tou sq matoc 3.12(a).

96 Prosdiorismìc Perioq n T xhc kai Q ouc Sq ma 3.11: Perioqèc diaforetik n tim n tou SALI (a) sthn tom Poincaré x = 0 thc Qamilt niac 2 bajm n eleujerðac (3.10), gia t = 1000,H 2 =1/8 kai (b) ston upìqwro y =0, p y =0 thc tom c Poincaré z =0thc Qamilt niac 3 bajm n eleujerðac (3.11), gia t = 5000,H 3 = Kai stic 2 eikìnec oi arqikèc sunj kec qrwmatðzontai maôrec e n SALI 10 12, skoôro gkri e n < SALI 10 8, gkri e n 10 8 < SALI 10 4 kai anoiqtì gkri e n SALI > Sq ma 3.12: (a) To posostì twn qaotik n troqi n (SALI < 10 8 ) me arqikèc sunj kec sthn tom Poincaré thc Qamilt niac 2 bajm n eleujerðac (3.10) gia enèrgeia H 2 = 1 8 wc sun rthsh tou qrìnou t. H maôrh gramm antistoiqeð sthn s rwsh thc tom c qwrðc thn qr sh epit qunshc en oi gkri grammèc kai stic 2 eikìnec antistoiqoôn sthn s rwsh me epit qunsh. (b) O upologismìc tou posostoô twn qaotik n perioq n thc ergasðac [58] gia to sôsthma (3.10) wc sun rthsh thc olik c enèrgeiac E. ParathroÔme ìti gia E = 1/8 ta apotelèsmata sumpðptoun me aut thc eikìnac (a).

97 Kef laio3 : Kanonik kai Qaotik Dunamik Qamilt niwn Susthm twn 2 kai 3 Bajm n EleujerÐac 83 Epomènwc, gðnetai antilhptì ìti h s rwsh thc tom c Poincaré mèsw thc mejìdou thc epit qunshc den eðnai apolôtwc akrib c (oi duo kampôlec tou sq matoc 3.12(a) den sumpðptoun akrib c), eðnai ìmwc protimìterh gia thn melèth meg lwn perioq n miac tom c Poincaré kaj c o qrìnoc CPU pou apaiteðtai eðnai shmantik ligìteroc. Gia par deigma, h qartogr fhsh thc tom c Poincaré tou sq matoc 3.11(b) me thn mèjodo thc s rwshc qwrðc qr sh thc mejìdou epit qunshc apaiteð perðpou deuterìlepta qrìnou CPU gia thn olokl rwsh ìlwn twn arqik n sunjhk n tou plègmatoc gia qrìno olokl rwshc t = se antðjesh me ton algìrijmo pou qrhsimopoieð thn teqnik thc epit qunshc, o opoðoc apaiteð mìno 2100 deuterìlepta! H mèjodoc tou SALI mporeð epðshc na qrhsimopoihjeð gia ton diaqwrismì metaxô t xhc kai q ouc, ìqi mìno se tomèc Poincaré, all kai se opoiond pote llo q ro paramètrwn kai metablht n tou sust matoc. Wc par deigma anafèroume to apotèlesma tou sq matoc (3.13) sto opoðo apeikonðzoume tic timèc tou SALI sto epðpedo (y,h 2 ) gia thn Qamilt nia 2 bajm n eleujerðac (3.10). Eidikìtera, epilègoume arqikèc sunj kec me x =0, y [ 0.3, 0.4], p y =0kai H 2 =[0.08, 0.18] kai upologðzoume tic antðstoiqec timèc tou SALI gia qrìno olokl rwshc twn troqi n t = To apotèlesma pou brðskoume eðnai polô parìmoio me autì tou rjrou [34] sto opoðo qrhsimopoi jhke h mèjodoc FLI [36] wc diagnwstikì ergaleðo Ôparxhc qaotik c dunamik c. Apì to sq ma 3.13 blèpoume ìti kaj c h enèrgeia H 2 thc Qamilt niac aux netai apì to 0.08 wc to 0.18, oi arqikèc sunj kec me y [ 0.3, 0.4] pou tan organwmènec metatrèpontai se qaotikèc, upodeiknôontac ìti polloð KAM tìroi (nhsðdec eustajoôc kðnhshc) èqoun katastrafeð kai sthn jèsh touc èqoun emfanisjeð qaotikèc perioqèc. Stamat me touc upologismoôc sthn enèrgeia H 2 =0.18 epeid gia megalôterec enèrgeiec oi perissìterec troqièc tou sust matoc diafeôgoun sto peiro. 3.4 H Sumperifor tou SALI se Leptèc Qaotikèc Perioqèc Hapotelesmatikìthta thc mejìdou tou SALI wc ergaleðou di krishc metaxô qaotikìthtac kai org - nwshc se Qamilt nia sust mata eðnai akìma pio eudi krith ìtan to mègejoc thc qaotik c perioq c eðnai polô mikrì wc proc to mègejoc ìlou tou q rou f sewn, idiaðtera sthn perðptwsh Qamilt niwn susthm twn poll n bajm n eleujerðac. Gia na diafwtðsoume thn perðptwsh aut ja qrhsimopoi soume wc par deigma thn parak tw Qamilt nia duo bajm n eleujerðac [15] H(x, y, p x,p y )= 1 2 (p2 x + p2 y )+1 4 (x4 + y 4 + η(x y) 4 )=E (3.19) ìpou ta x kai y eðnai oi suntetagmènec jèshc kai p x, p y eðnai oi suzugeðc ormèc, kai η R mða stajer par metroc. Eidikìtera, jewroôme thn tim η = 0.24 me olik enèrgeia tou sust matoc Ðsh me E = 1000 (an kai lìgw thc morf c thc (3.19) h E mporeð na p rei opoiad pote tim me kat llhlec allagèc klðmakac). Hpijan idiìthta thc oloklhrwsimìthtac thc parap nw Qamilt niac (3.19), gia di forec timèc thc paramètrou η, eðqe melethjeð sto rjro [15], me qr sh an lushc idiomorfi n sto migadikì pedðo tou qrìnou, kai eðqe deiqjeð ìti genik h (3.19) den eðnai oloklhr simh. Sthn perðptwsh

98 H Sumperifor tou SALI se Leptèc Qaotikèc Perioqèc Sq ma 3.13: Oi timèc tou SALI gia èna plègma omoiìmorfa katanemhmènwn arqik n sunjhk n sto epðpedo (y,h 2 ) gia thn Qamilt nia 2 bajm n eleujerðac (3.10) gia qrìno olokl rwshc k je troqi c t = E n to SALI < h arqik sunj kh qrwmatðzetai maôrh, e n SALI [10 12, 10 8 ) qrwmatðzetai me skoôro gkri, e n SALI [10 8, 10 4 ) qrwmatðzetai me gkri kai e n SALI [10 4, 2] h arqik sunj kh qrwmatðzetai me anoiqtì gkri qr ma. η = 0.25 ìmwc oi qaotikèc perioqèc eðnai tìso leptèc ste na mhn eðnai eôkola anagnwrðsimec mèsw mðac apl c episkìphshc thc epif neiac tom n Poincaré. Jètwntac η =0.24 loipìn parathroôme se mða tom Poincaré (x, p x ),y=0, p y > 0 ìpwc aut tou sq matoc 3.14 mða idiaðtera lept qaotik perioq h opoða perib llei 7 nhsðdec eust jeiac. Epilègontac m lista wc arqik sunj kh to shmeðo me suntetagmènec x =0,y =0,p x =0.77,p y (bl. gkri mikrì kôklo sto kèntro tou sq matoc (3.14)) ja diereun soume p c o SALI sumperifèretai sthn perðptwsh aut, sugkrðnont c ton kai me ton antðstoiqo mègisto ekjèth Lyapunov. 'Opwc parathroôme sto sq ma 3.15 mporoôme pr gmati na sumper noume ìti o SALI anadeiknôei me akrðbeia ton qaotikì qarakt ra thc troqi c: Gia par deigma sto sq ma 3.15(a) ìtan o qrìnoc olokl rwshc t 100 h antðstoiqh tim tou SALI eðnai 10 4 en gia t 700 èqei pèsei sto AntÐstoiqa, h exèlixh tou mègistou ekjèth Lyapunov thc Ðdiac troqi c epibebai nei ìti h troqi eðnai qaotik afoô o ekjèthc deðqnei kajar gia t>100 ìti sugklðnei se mða jetik tim (bl. sq. 3.15(a)). All zontac t ra thn tim tou η se 0.25, mporoôme kai ekeð na entopðsoume me qr sh tou SALI mða qaotik perioq arket leptìterh aut c tou sq matoc 3.14 kai gia autì polô pio dôskolo na anakalufjeð, ìpwc epishmaðnetai kai sthn ergasða [15].

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS DEUTERHS KAI ANWTERHS TAXHS 1. Grammikèc diaforikèc exis seic deôterhc kai an terhc tˆxhc

Διαβάστε περισσότερα

SUNARTHSEIS POLLWN METABLHTWN. 5h Seirˆ Ask sewn. Allag metablht n sto diplì olokl rwma

SUNARTHSEIS POLLWN METABLHTWN. 5h Seirˆ Ask sewn. Allag metablht n sto diplì olokl rwma PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN 5h Seirˆ Ask sewn Allag metablht n sto diplì olokl rwma Jèma. Qrhsimopoi ntac

Διαβάστε περισσότερα

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS. PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS 6h Seirˆ Ask sewn OmogeneÐc grammikèc diaforikèc exis seic me stajeroôc suntelestèc Jèma

Διαβάστε περισσότερα

Ανάλυση ις. συστήματα

Ανάλυση ις. συστήματα Σήματα Συστήματα Ανάλυση ourier για σήματα και συνεχούς χρόνου Λυμένες ασκήσει ις Κνσταντίνος Κοτρόπουλος Τμήμα Πληροφορικής συστήματα Θεσσαλονίκη, Ιούνιος 3 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS. PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II DIAFORIKES EXISWSEIS h Seirˆ Ask sewn Diaforikèc eis seic > diaforikèc

Διαβάστε περισσότερα

Diakritˆ Majhmatikˆ I. Leutèrhc KuroÔshc (EÔh Papaðwˆnnou)

Diakritˆ Majhmatikˆ I. Leutèrhc KuroÔshc (EÔh Papaðwˆnnou) Diakritˆ Majhmatikˆ I Leutèrhc KuroÔshc (EÔh Papaðwˆnnou) PlhroforÐec... Tetˆrth, 09.00-11.00, Paraskeu, 18.00-20.00 SÔggramma 1: Λ. Κυρούσης, Χ. Μπούρας, Π. Σπυράκης. Διακριτά Μαθηματικά: Τα Μαθηματικά

Διαβάστε περισσότερα

25 OktwbrÐou 2012 (5 h ebdomˆda) S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

25 OktwbrÐou 2012 (5 h ebdomˆda) S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc Mˆjhma 9 0 25 OktwbrÐou 2012 (5 h ebdomˆda) Diaforikèc Exis seic TÔpoi Diaforik n exis sewn H pio apl diaforik exðswsh y = f (x) Diaforikèc Exis seic TÔpoi Diaforik n exis sewn H pio apl diaforik exðswsh

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Ο δυϊκός χώρος Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Εφαρμοσμένα Μαθηματικά για Μηχανικούς ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εφαρμοσμένα Μαθηματικά για Μηχανικούς Σημειώσεις: Μετασχηματισμός Z Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Kefˆlaio 7 Metasqhmatismìc Z 7. Orismìc tou metasqhmatismoô

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Εφαρμοσμένα Μαθηματικά για Μηχανικούς ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εφαρμοσμένα Μαθηματικά για Μηχανικούς Σημειώσεις: Δειγματοληψία Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Kefˆlaio 5 DeigmatolhyÐa 'Estw èna sônolo periodikˆ

Διαβάστε περισσότερα

11 OktwbrÐou 2012. S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc

11 OktwbrÐou 2012. S. Malefˆkh Genikì Tm ma Majhmatikˆ gia QhmikoÔc Mˆjhma 7 0 11 OktwbrÐou 2012 Orismìc sunart sewn mèsw orismènwn oloklhrwmˆtwn To orismèno olokl rwma prosfèrei ènan nèo trìpo orismoô sunˆrthshc afoô to orismèno olokl rwma mia suneqoôc sunˆrthshc f (t),

Διαβάστε περισσότερα

9. α 2 + β 2 ±2αβ. 10. α 2 ± αβ + β (1 + α) ν > 1+να, 1 <α 0, ν 2. log α. 14. log α x = ln x. 19. x 1 <x 2 ln x 1 < ln x 2

9. α 2 + β 2 ±2αβ. 10. α 2 ± αβ + β (1 + α) ν > 1+να, 1 <α 0, ν 2. log α. 14. log α x = ln x. 19. x 1 <x 2 ln x 1 < ln x 2 UpenjumÐseic gia thn Jetik kai Teqnologik KateÔjunsh Kajhght c: N.S. Maurogi nnhc 1 Tautìthtec - Anisìthtec 1. (α ± ) = α ± α +. (α ± ) 3 = α 3 ± 3α +3α ± 3 3. α 3 ± 3 =(α ± ) ( α α + ) 4. (α + + γ) =

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Εφαρμοσμένα Μαθηματικά για Μηχανικούς ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εφαρμοσμένα Μαθηματικά για Μηχανικούς Σημειώσεις: Μετασχηματισμός Laplace Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Kefˆlaio 8 Metasqhmatismìc Laplace 8. Orismìc

Διαβάστε περισσότερα

Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac

Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac Kbantik Perigraf tou Kìsmou mac KwnstantÐnoc Sfètsoc Kajhght c Fusik c Genikì Tm ma, Panepist mio Patr n Jerinì SqoleÐo Fusik c sthn EkpaÐdeush 28 IounÐou - 1 IoulÐou 2010 EstÐa Episthm n Pˆtrac Ti ennooôme

Διαβάστε περισσότερα

Diˆsthma empistosônhc thc mèshc tim c µ. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH EKTIMHSH PARAMETRWN - 2. Dhm trhc Kougioumtz c.

Diˆsthma empistosônhc thc mèshc tim c µ. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH EKTIMHSH PARAMETRWN - 2. Dhm trhc Kougioumtz c. Statistik gia Hlektrolìgouc MhqanikoÔc EKTIMHSH PARAMETRWN - 2 6 Maòou 2010 EktÐmhsh Diast matoc empistosônhc Melet same thn ektim tria ˆθ paramètrou θ: An gnwrðzoume thn katanom thc X kai eðnai F X (x;

Διαβάστε περισσότερα

Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I

Anaplhrwt c Kajhght c : Dr. Pappˆc G. Alèxandroc PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I. Aìristo Olokl rwma 2. Orismèno Olokl rwma 3. Diaforetik èkfrash tou aìristou oloklhr matoc H Sunˆrthsh F ()

Διαβάστε περισσότερα

Κλασσική Ηλεκτροδυναμική II

Κλασσική Ηλεκτροδυναμική II ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασσική Ηλεκτροδυναμική II Πεδία Σημειακών Φορτίων Διδάσκων : Καθ. Κ. Ταμβάκης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Eisagwg sthn KosmologÐa

Eisagwg sthn KosmologÐa Eisagwg sthn KosmologÐa BasileÐou S. Gerogiˆnnh Kajhght Tm matoc Fusik c PanepisthmÐou Patr n Patra 2009 Kefˆlaio 1 Eisagwgikˆ 1.1 Gwniakì mègejoc, parsèk, ètoc fwtìc O parathrht c tou Sq matoc 1.1 parathreð

Διαβάστε περισσότερα

στο Αριστοτέλειο υλικού.

στο Αριστοτέλειο υλικού. Σήματα Συστήματα Μετασχηματισμός aplace Λυμένες ασκήσεις Κωνσταντίνος Κοτρόπουλος Τμήμα Πληροφορικής Θεσσαλονίκη, Ιούνιος 03 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι

Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Τίτλος Μαθήματος: Γραμμική Άλγεβρα Ι Ενότητα: Θέματα Εξετάσεων Όνομα Καθηγητή : Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ

Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Τίτλος Μαθήματος: Γραμμική Άλγεβρα ΙΙ Ενότητα: Διγραμμικές και Τετραγωνικές μορφές Όνομα Καθηγητή: Ανδρέας Αρβανιτογεώργος Τμήμα: Μαθηματικών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN.

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN. PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN h Seirˆ Ask sewn Akrìtata pragmatik n sunart sewn 1. Na brejoôn ta topikˆ akrìtata

Διαβάστε περισσότερα

GENIKEUMENA OLOKLHRWMATA

GENIKEUMENA OLOKLHRWMATA PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA I GENIKEUMENA OLOKLHRWMATA Anplhrwt c Kjhght c: Dr. Pppˆc G. Alèndroc GENIKEUMENA OLOKLHRWMATA H ènnoi tou orismènou

Διαβάστε περισσότερα

6h Seirˆ Ask sewn. EpikampÔlia oloklhr mata

6h Seirˆ Ask sewn. EpikampÔlia oloklhr mata PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METLHTWN 6h Seirˆ Ask sewn EpikampÔlia oloklhr mata 1 Jèma 1. Na upologisjeð to epikampôlio

Διαβάστε περισσότερα

Anaz thsh eustaj n troqi n se triplˆ sust mata swmˆtwn

Anaz thsh eustaj n troqi n se triplˆ sust mata swmˆtwn Tmhma Fusikhc Aristoteleio Panepisthmio Jessalonikhc Ptuqiakh Ergasia Anaz thsh eustaj n troqi n se triplˆ sust mata swmˆtwn Ajanˆsioc MourtetzÐkoglou A.E.M.:13119 epiblèpwn kajhght c G. Bougiatz c 8 IoulÐou

Διαβάστε περισσότερα

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN EPIKAMPULIA OLOKLHRWMATA

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METABLHTWN EPIKAMPULIA OLOKLHRWMATA PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN TMHMA POLITIKWN MHQANIKWN ANWTERA MAJHMATIKA II SUNARTHSEIS POLLWN METLHTWN EPIKAMPULIA OLOKLHRWMATA 1. EpikampÔlio Olokl rwma 1ou eðdouc Efarmogèc 2. Dianusmatikˆ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Θεωρία Βελτιστοποίησης. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Μηχανική Μάθηση. Ενότητα 10: Θεωρία Βελτιστοποίησης. Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Ενότητα 10: Θεωρία Βελτιστοποίησης Ιωάννης Τσαμαρδίνος Τμήμα Επιστήμης Υπολογιστών To genikì prìblhma, na broôme to mègisto elˆqisto miac sunˆrthshc

Διαβάστε περισσότερα

1 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος. Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα

1 η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος. Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Εθνικό Μετσόβιο Πολυτεχνείο Αναγνώριση Προτύπων και Νευρωνικά Δίκτυα η Σειρά Ασκήσεων Θεόδωρος Αλεξόπουλος Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

2+sin^2(x+2)+cos^2(x+2) Δ ν =[1 1 2 ν 1, ν ) ( ( π (x α) ημ β α π ) ) +1 + a 2

2+sin^2(x+2)+cos^2(x+2) Δ ν =[1 1 2 ν 1, ν ) ( ( π (x α) ημ β α π ) ) +1 + a 2 Parathr seic sta Jèmata Jetik c kai Teqnologik c KateÔjunshc tou ètouc 7 Peiramatikì LÔkeio Euaggelik c Sqol c SmÔrnhc 1 IounÐou 7 PerÐlhyh Oi shmei seic autèc anafèrontai sta jèmata Majhmatik n Jetik

Διαβάστε περισσότερα

f(x) =x x 2 = x x 2 x =0 x(x 1) = 0,

f(x) =x x 2 = x x 2 x =0 x(x 1) = 0, NÐkoc E. AggourÐdhc To Je rhma tou Sarkovskii Panepist mio Kr thc Tm ma Majhmatik n 2 Thn kritik epitrop apotèlesan oi Ajanasìpouloc KwnstantÐnoc Katsoprin khc Emmanou l Kwst khc Ge rgioc (epiblèpwn) touc

Διαβάστε περισσότερα

Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PAR

Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PAR Statistik gia PolitikoÔc MhqanikoÔc EKTIMHSH PARAMETRWN - 2 8 DekembrÐou 202 t.m. X me mèsh tim µ t.m. X 2 me mèsh tim µ 2 Diaforˆ µ µ 2? [X kai X 2 anexˆrthtec] DeÐgma {x, x 2,..., x n } x DeÐgma {x 2,

Διαβάστε περισσότερα

5. (12 i)(3+4i) 6. (1 + i)(2+i) 7. (4 + 6i)(7 3i) 8. (1 i)(2 i)(3 i)

5. (12 i)(3+4i) 6. (1 + i)(2+i) 7. (4 + 6i)(7 3i) 8. (1 i)(2 i)(3 i) Peiramatiko Lukeio Euaggelikhc Sqolhc Smurnhc Taxh G, Majhmatika Jetikhc kai Teqnologikhc Kateujunshc, Askhseic Kajhght c: Oi shmei seic autèc eðnai gia sqolik qr sh. MporoÔn na anaparaqjoôn kai na dianemhjoôn

Διαβάστε περισσότερα

Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJ

Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJ Statistik gia PolitikoÔc MhqanikoÔc ELEGQOS UPOJESEWN 18 DekembrÐou 2012 'Elegqoc Upojèsewn 1 Statistik upìjesh 2 Statistik elègqou kai perioq apìrriyhc 3 Apìfash elègqou Statistik upìjesh mhdenik upìjesh

Διαβάστε περισσότερα

Pragmatik Anˆlush ( ) TopologÐa metrik n q rwn Ask seic

Pragmatik Anˆlush ( ) TopologÐa metrik n q rwn Ask seic Pragmatik Anˆlush (2010 11) TopologÐa metrik n q rwn Ask seic Omˆda A' 1. 'Estw (X, ρ) metrikìc q roc kai F, G uposônola tou X. An to F eðnai kleistì kai to G eðnai anoiktì, deðxte ìti to F \ G eðnai kleistì

Διαβάστε περισσότερα

Mègisth ro - elˆqisth tom

Mègisth ro - elˆqisth tom 15 DekembrÐou 2009 DÐnetai grˆfoc (N, A) me ìria ro c x ij [b ij, c ij ] gia kˆje akm (i, j) kai dôo epilegmènouc kìmbouc s kai t. Jèloume na upologðsoume th ro sto grˆfo, ste na megistopoieðtai h apìklish

Διαβάστε περισσότερα

Ανάλυση ασκήσεις. συστήματα

Ανάλυση ασκήσεις. συστήματα Σήματα Συστήματα Ανάλυση Fourier για σήματα και διακριτού χρόνου Λυμένες ασκήσεις Κωνσταντίνος Κοτρόουλος Τμήμα Πληροφορικής συστήματα Θεσσαλονίκη, Ιούνιος 3 Άδειες Χρήσης Το αρόν εκαιδευτικό υλικό υόκειται

Διαβάστε περισσότερα

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARAMETRWN - 2 20 Maòou 200 t.m. X me mèsh tim µ t.m. X 2 me mèsh tim µ 2 Diaforˆ µ µ 2? [X kai X 2 anexˆrthtec] DeÐgma {x, x 2,..., x n } x DeÐgma {x 2, x 22,...,

Διαβάστε περισσότερα

+#!, - ),,) " ) (!! + Henri Poincar e./ ', / $, 050.

+#!, - ),,)  ) (!! + Henri Poincar e./ ', / $, 050. Topologik Taxinìmhsh Dunamik n Susthm twn StaÔroc AnastasÐou Didaktorikh Diatribh Panepisthmio Patrwn Sqolh Jetikwn Episthmwn Tmhma Majhmatikwn Patra 2012 H Trimelhc Sumbouleutikh Epitroph SpÔroc N. Pneumatikìc,

Διαβάστε περισσότερα

EUSTAJEIA DUNAMIKWN SUSTHMATWN 1 Eisagwg O skop c tou par ntoc kefala ou e nai na parousi sei th basik jewr a gia th mel th thc eust jeiac en c mh gra

EUSTAJEIA DUNAMIKWN SUSTHMATWN 1 Eisagwg O skop c tou par ntoc kefala ou e nai na parousi sei th basik jewr a gia th mel th thc eust jeiac en c mh gra EUSTAJEIA DUNAMIKWN SUSTHMATWN Eisagwg O skop c tou par ntoc kefala ou e nai na parousi sei th basik jewr a gia th mel th thc eust jeiac en c mh grammiko sust matoc. 'Opwc e nai gnwst, h genik l sh en

Διαβάστε περισσότερα

1, 3, 5, 7, 9,... 2, 4, 6, 8, 10,... 1, 4, 7, 10, 13,... 2, 5, 8, 11, 14,... 3, 6, 9, 12, 15,...

1, 3, 5, 7, 9,... 2, 4, 6, 8, 10,... 1, 4, 7, 10, 13,... 2, 5, 8, 11, 14,... 3, 6, 9, 12, 15,... To Je rhma tou Dirichlet Dèspoina NÐka IoÔlioc 999 Majhmatikì Tm ma Panepist mio Kr thc 2 Prìlogoc Oi pr toi arijmoð, 2, 3, 5, 7,,..., eðnai ekeðnoi oi fusikoð arijmoð oi opoðoi èqoun akrib c dôo diairètec,

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία Πιθανοτήτων και Στατιστική Ενότητα 3: Συσχέτιση & Γραμμική Παλινδρόμηση Κουγιουμτζής Δημήτρης Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών

Διαβάστε περισσότερα

Ask seic me ton Metasqhmatismì Laplace

Ask seic me ton Metasqhmatismì Laplace Ask seic me ton Metasqhmatismì Laplace Epimèleia: Gi rgoc Kafentz c Upoy. Didˆktwr Tm m. H/U Panepist mio Kr thc 8 IounÐou 4. 'Estw to s ma { A, t T x(t), alloô () (aþ) Na upologðsete to metasq. Fourier

Διαβάστε περισσότερα

È Ö Ñ Ø Ó ÄÙ Ó Ù Ð ËÕÓÐ ËÑÙÖÒ Ì Ü Å Ñ Ø Â Ø Ì ÕÒÓÐÓ Ã Ø Ù ÙÒ Ë Ñ Û Â ÛÖ Ã Ø ÆºËº Å ÙÖÓ ÒÒ Ç Ñ ô ÙØ Ò ÕÓÐ ÕÖ º ÅÔÓÖÓ Ò Ò Ò Ô Ö Õ Ó Ò Ò Ò Ñ Ó Ò Ð Ö Ö¹ Ò Ñ Ò ÐÐ Ü ÑÓÖ ØÓÙº ØÓÒ Ô Ö ÓÖ Ñ ØÛÒ Ò Ô Ù ØÛÒ Ð ôò

Διαβάστε περισσότερα

Ανάλυση. σήματα και συστήματα

Ανάλυση. σήματα και συστήματα Σήματα Συστήματα Ανάλυση ourier διακριτού χρόνου Κωνσταντίνος Κοτρόπουλος Τμήμα Πληροφορικής για σήματα και συστήματα Θεσσαλονίκη, Ιούνιος 23 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Στατιστική για Χημικούς Μηχανικούς

Στατιστική για Χημικούς Μηχανικούς ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Στατιστική για Χημικούς Μηχανικούς Ενότητα 3: Έλεγχος Υποθέσεων Κουγιουμτζής Δημήτρης Τμήμα Χημικών Μηχανικών Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

2 PerÐlhyh Se aut n thn ergasða, parousi zoume tic basikìterec klassikèc proseggðseic epðlushc Polu-antikeimenik n Problhm twn BeltistopoÐhshs(PPB) ka

2 PerÐlhyh Se aut n thn ergasða, parousi zoume tic basikìterec klassikèc proseggðseic epðlushc Polu-antikeimenik n Problhm twn BeltistopoÐhshs(PPB) ka MejodologÐec sthn Polu-Antikeimenik BeltistopoÐhsh apì Antwnèlou E. GewrgÐa Diplwmatik ErgasÐa Sqol Jetik n Episthm n Tm ma Majhmatik n Panepist mio Patr n Epiblèpousa: EpÐk.Kajhg tria J. N. Gr ya P tra,

Διαβάστε περισσότερα

Eisagwg sth Grammik 'Algebra Tìmoc B DeÔterh 'Ekdosh Dhm trhc B rsoc Dhm trhc Derizi thc Miq lhc Mali kac OlumpÐa Talèllh Prìlogoc Sto pr to mèroc autoô tou tìmou meletoôme idiìthtec enìc tetragwnikoô

Διαβάστε περισσότερα

Σχήμα 1.1: Διάφορες ισόχρονες καμπύλες με διαφορετικές μεταλλικότητες Ζ, και περιεκτικότητα σε ήλιο Υ.

Σχήμα 1.1: Διάφορες ισόχρονες καμπύλες με διαφορετικές μεταλλικότητες Ζ, και περιεκτικότητα σε ήλιο Υ. Perieqìmena 1 Astrik sm nh 3 1.1 Sm nh kai astrik exèlixh.................... 4 1.1.1 Isìqronec - Jewrhtik HR diagr mmata........ 4 1.1.2 Parathrhsiak diagr mmata............... 7 1.1.3 Astrik sm nh san

Διαβάστε περισσότερα

στο Αριστοτέλειο υλικού.

στο Αριστοτέλειο υλικού. Σήματα Συστήματα Μετασχηματισμός Κωνσταντίνος Κοτρόπουλος Τμήμα Πληροφορικής Θεσσαλονίκη, Ιούνιος 203 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

YWMIADH BASILEIOU fifianalush PROSARMOGHS ELASTOPLASTIKWN METALLIKWN KATASKEUWN UPO TO TRISDIASTATO KRITHRIO DIARROHS TRESCA ME TEQNIKES TOU HMIJETIKO

YWMIADH BASILEIOU fifianalush PROSARMOGHS ELASTOPLASTIKWN METALLIKWN KATASKEUWN UPO TO TRISDIASTATO KRITHRIO DIARROHS TRESCA ME TEQNIKES TOU HMIJETIKO ARISTOTELEIO PANEPISTHMIO JESSALONIKHS TMHMA POLITIKWN MHQANIKWN TOMEAS EPISTHMHS KAI TEQNOLOGIAS TWN KATASKEUWN YWMIADH BASILEIOU PtuqioÔqou PolitikoÔ MhqanikoÔ fifianalush PROSARMOGHS ELASTOPLASTIKWN

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΜΑΘΗΜΑΤΙΚΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΑΘΗΜΑΤΙΚΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Εισαγωγή στη Μιγαδική Ανάλυση Ι. Γ. Στρατής Καθηγητής Τμήμα Μαθηματικών Αθήνα, 2006 Εισαγωγή

Διαβάστε περισσότερα

Hmiomˆdec telest n sônjeshc kai pðnakec Hausdorff se q rouc analutik n sunart sewn

Hmiomˆdec telest n sônjeshc kai pðnakec Hausdorff se q rouc analutik n sunart sewn ARISTOTELEIO PANEPISTHMIO JESSALONIKHS SQOLH JETIKWN EPISTHMWN TMHMA MAJHMATIKWN TOMEAS MAJHMATIKHS ANALUSHS PETROS GALANOPOULOS Hmiomˆdec telest n sônjeshc kai pðnakec Hausdorff se q rouc analutik n sunart

Διαβάστε περισσότερα

AM = 1 ( ) AB + AΓ BΓ+ AE = AΔ+ BE. + γ =2 β + γ β + γ tìte α// β. OΓ+ OA + OB MA+ MB + M Γ+ MΔ =4 MO. OM =(1 λ) OA + λ OB

AM = 1 ( ) AB + AΓ BΓ+ AE = AΔ+ BE. + γ =2 β + γ β + γ tìte α// β. OΓ+ OA + OB MA+ MB + M Γ+ MΔ =4 MO. OM =(1 λ) OA + λ OB Peiramatiko Lukeio Euaggelikhc Sqolhc Smurnhc Taxh B, Majhmatika Jetikhc kai Teqnologikhc Kateujunshc, Askhseic Kajhght c: Shmei seic gia sqolik qr sh. MporoÔn na anaparaqjoôn kai na dianemhjoôn eleôjera

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Φωνής Άσκηση 2η Στυλιανού Ιωάννης Τμήμα Επιστήμης Υπολογιστών HU578: 2 η Seirˆ Ask sewn AporÐec: yannis@csd.uoc.gr 1. (aþ) Sac dðdetai o anadromikìc

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά για Μηχανικούς

Εφαρμοσμένα Μαθηματικά για Μηχανικούς ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Εφαρμοσμένα Μαθηματικά για Μηχανικούς Σημειώσεις: Βασικές Έννοιες Σημάτων και Συστημάτων Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Kefˆlaio 2 Basikèc ènnoiec

Διαβάστε περισσότερα

JEMATA EXETASEWN Pragmatik Anˆlush I

JEMATA EXETASEWN Pragmatik Anˆlush I JEMATA EXETASEWN Pragmatik Anˆlush I JEMA 1o. A)(M. 1.5) Na qarakthrðsete (me aitiolìghsh) tic protˆseic pou akoloujoôn me thn èndeixh Swstì Lˆjoc: (i) 'Estw x 0 tètoio ste x < ε, gia kˆje ε > 0. Tìte

Διαβάστε περισσότερα

ISTORIKH KATASKEUH PRAGMATIKWN ARIJMWN BIBLIOGRAFIA

ISTORIKH KATASKEUH PRAGMATIKWN ARIJMWN BIBLIOGRAFIA ΛΟΓΙΣΜΟΣ CALCULUS Διαφορικός Λογισμός, Απειροστικός Λογισμός 1670 1740 Ουράνια Μηχανική Isaac Newton 1648-1727 Gottfried Wilhelm Leibniz 1646-1716 απειροστάπολύ μικρά μεγέθη, άπειροπάρα πολύ μεγάλο, όριο

Διαβάστε περισσότερα

Στατιστική για Χημικούς Μηχανικούς

Στατιστική για Χημικούς Μηχανικούς ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Στατιστική για Χημικούς Μηχανικούς Ενότητα 4: Συσχέτιση & Γραμμική Παλινδρόμηση Κουγιουμτζής Δημήτρης Τμήμα Χημικών Μηχανικών Άδειες Χρήσης

Διαβάστε περισσότερα

Didaktorikèc spoudèc stic HPA, sta Majhmatikˆ. 20 MartÐou 2015

Didaktorikèc spoudèc stic HPA, sta Majhmatikˆ. 20 MartÐou 2015 Didaktorikèc spoudèc stic HPA, sta Majhmatikˆ 20 MartÐou 2015 Sunjhkec spoud n Misjìc: 1700-2500 dolˆria to m na. EnoÐkio: 700-1200 dolˆria. Mènw me sugkˆtoiko(-ouc). Upoqre seic se 2 wc 0 exˆmhna to qrìno:

Διαβάστε περισσότερα

PANEPISTHMIO KRHTHS SQOLH JETIKWN KAI TEQNOLOGIKWN EPISTHMWN TMHMA MAJHMATIKWN ELENH TZANAKH SUNDUASTIKH GENIKEUMENWN SUMPLEGMATWN SMHNWN KAI PARATAGMATWN UPEREPIPEDWN DIDAKTORIKH DIATRIBH HRAKLEIO 2007

Διαβάστε περισσότερα

ARISTOTELEIO PANEPISTHMIO JESSALONIKHS SQOLH JETIKWN EPISTHMWN TMHMA PLHROFORIKHS TEQNIKES PARAMORFWSIMWN MONTELWN SE PROBLHMATA TEQNHTHS ORASHS, EPEXERGASIAS EIKONAS KAI BINTEO Didaktorik Diatrib MIQAHL

Διαβάστε περισσότερα

PerÐlhyh H moriak arqitektonik kai o sqediasmìc polôplokwn morðwn pou perièqoun foullerènia antiproswpeôei èna pedðo thc upermoriak c epist mhc sto op

PerÐlhyh H moriak arqitektonik kai o sqediasmìc polôplokwn morðwn pou perièqoun foullerènia antiproswpeôei èna pedðo thc upermoriak c epist mhc sto op DIDAKTORIKH DIATRIBH MORIAKH MONTELOPOIHSH THS UGROKRUSTALLIKHS SUMPERIFORAS UPERMORIAKWN SUSTHMATWN POU PERIEQOUN FOULLERENIA StaÔrou D. PeroukÐdh upoblhjeðsa sto Diatmhmatikì Prìgramma Metaptuqiak n

Διαβάστε περισσότερα

ARISTOTELEIO PANEPISTHMIO JESSALONIKHS POLUTEQNIKH SQOLH TMHMA HLEKTROLOGWN MHQANIKWN & MHQANIKWN UPOLOGISTWN TOMEAS THLEPIKOINWNIWN Diplwmatik ErgasÐa tou Papadìpoulou N. Iw nnh Melèth thc 'AllhlepÐdrashc

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Εξετάσεις Ιουνίου 2002 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ ΤΩΝ ΥΛΙΚΩΝ Εξετάσεις Ιουνίου (α) Αναπτύξτε την µέθοδο του τραπεζίου για τον αριθµητικό υπολογισµό του ολοκληρώµατος: b I( f ) = f ( x) a όπου f (x) συνεχής και ολοκληρώσιµη

Διαβάστε περισσότερα

spin triplet S =1,M S =0 = ( + ) 2 S =1,M S = 1 = spin singlet S =0,M S =0 = ( )

spin triplet S =1,M S =0 = ( + ) 2 S =1,M S = 1 = spin singlet S =0,M S =0 = ( ) SummetrÐec kai Quarks Nikìlaoc A. Tetr dhc Iw nnhc G. Flwr khc 2 Perieqìmena Eisagwgikèc ènnoiec 5. Eisagwg............................. 5.2 SummetrÐa Isospin......................... 0 2 StoiqeÐa JewrÐac

Διαβάστε περισσότερα

2

2 LOGISMOS METABOLWN & EFARMOGES STH MAJHMATIKH MONTELOPOIHSH PTUQIAKH ERGASIA DIONUSHS JEODOSHS-PALIMERHS A.M. : 311/2003028 EPIBLEPWN: NIKOLOPOULOS QRHSTOS A PANEPISTHMIO AIGAIOU TMHMA MAJHMATIKWN SAMOS

Διαβάστε περισσότερα

Upologistik Fusik Exetastik PerÐodoc IanouarÐou 2013

Upologistik Fusik Exetastik PerÐodoc IanouarÐou 2013 Upologistik Fusik Exetastik PerÐodoc IanouarÐou 03 Patra, 6 Ianouariou 03 Jèma A. Na exhg sete grafikˆ thn mèjodo thc diqotìmhshc. B. Na exhg sete grafikˆ thn mèjodo Runge Kutta. Jèma. DiatÔpwsh Oi migadikèc

Διαβάστε περισσότερα

Anagn rish ProtÔpwn & Neurwnikˆ DÐktua Probl mata 2

Anagn rish ProtÔpwn & Neurwnikˆ DÐktua Probl mata 2 Jeìdwroc Alexìpouloc, Anaplhrwt c Kajhght c Theodoros Alexopoulos, Associate Professor EJNIKO METSOBIO POLUTEQNEIO NATIONAL TECHNICAL UNIVERSITY SQOLH EFARMOSMENWN MAJHMATIKWN KAI DEPARTMENT OF PHYSICS

Διαβάστε περισσότερα

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE

10/2013. Mod: 02D-EK/BT. Production code: CTT920BE 10/2013 Mod: 02D-EK/BT Production code: CTT920BE GR ΕΓΧΕΙΡΙ ΙΟ ΧΡΗΣΗΣ ΚΑΙ ΣΥΝΤΗΡΗΣΗΣ σελ. 1 ΠΙΝΑΚΑΣ ΠΕΡΙΕΧΟΜΕΝΩΝ ΚΕΦ 1 ΕΙΣΑΓΩΓΗ... 3 ΚΕΦ 2 ΕΓΚΑΤΑΣΤΑΣΗ... 3 2.1 ΜΕΤΑΚΙΝΗΣΗ ΚΑΙ ΑΠΟΣΥΣΚΕΥΑΣΙΑ...3 2.2 ΗΛΕΚΤΡΙΚΗ

Διαβάστε περισσότερα

SofÐa ZafeirÐdou: GewmetrÐec

SofÐa ZafeirÐdou: GewmetrÐec Tm ma Majhmatik n Panepist mio Patr n Bohjhtikèc Shmei seic gia to mˆjhma GewmetrÐec SofÐa ZafeirÐdou Anaplhr tria Kajhg tria Pˆtra 2018 Oi shmei seic autèc grˆfthkan gia tic anˆgkec tou maj matoc GewmetrÐa.

Διαβάστε περισσότερα

MELETH TWN RIZWN TWN ASSOCIATED ORJOGWNIWN

MELETH TWN RIZWN TWN ASSOCIATED ORJOGWNIWN IWANNH D. STAMPOLA MAJHMATIKOU MELETH TWN RIZWN TWN ASSOCIATED ORJOGWNIWN q-poluwnumwn DIDAKTORIKH DIATRIBH TMHMA MAJHMATIKWN SQOLH JETIKWN EPISTHMWN PANEPISTHMIO PATRWN PATRA 2004 Stouc goneðc mou kai

Διαβάστε περισσότερα

Σήματα Συστήματα Ανάλυση Fourier για σήματα και συστήματα συνεχούς χρόνου Περιοδικά Σήματα (Σειρά Fourier)

Σήματα Συστήματα Ανάλυση Fourier για σήματα και συστήματα συνεχούς χρόνου Περιοδικά Σήματα (Σειρά Fourier) Σήματα Συστήματα Ανάλυση Fourier για σήματα και συστήματα συνεχούς χρόνου Περιοδικά Σήματα (Σειράά Fourier) Κωνσταντίνος Κοτρόπουλος Τμήμα Πληροφορικής Θεσσαλονίκη, Ιούνιος 3 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

APEIROSTIKOS LOGISMOS I

APEIROSTIKOS LOGISMOS I 1 OktwbrÐou 2012 Kwdikìc Maj matoc: 101 (U) 'Etoc didaskalðac: 2012-2013, Qeimerinì Exˆmhno Hmèrec didaskalðac: Deut. - Tet. - Par., 11:00-13:00 Didˆskontec Tm ma 1 o (AM pou l gei se 0,1,2) Amf 21, BasÐleioc

Διαβάστε περισσότερα

N.Σ. Μαυρογιάννης 2010

N.Σ. Μαυρογιάννης 2010 N.Σ. Μαυρογιάννης 200 Το παρόν µπορεί να διανεµηθεί και να αναπαραχθεί ελεύθερα µε την παράκληση να διατηρηθεί η αρχική του µορφή Προλεγόµενα Στην µαθηµατική λέσχη http://clubs.pathfinder.gr/mathematica/

Διαβάστε περισσότερα

Ergasthriak 'Askhsh 2

Ergasthriak 'Askhsh 2 Kefˆlaio 2 Ergasthriak 'Askhsh 2 Οπου θα δούμε πώς μπορούμε να ορίζουμε δικές μας διαδικασίες και θα παρουσιάσουμε τις primitive διαδικασίες χειρισμού λιστών, τις μεταβλητές και τα side effects. 2.1 P

Διαβάστε περισσότερα

Upologistikˆ Zht mata se Sumbibastikèc YhfoforÐec

Upologistikˆ Zht mata se Sumbibastikèc YhfoforÐec Panepisthmio Patrwn - Poluteqnikh Sqolh Tm ma Mhqanik n Hlektronik n Upologist n kai Plhroforik c Upologistikˆ Zht mata se Sumbibastikèc YhfoforÐec Dhmhtrioc Kalaðtzhc Diplwmatik ErgasÐa sto plaðsio tou

Διαβάστε περισσότερα

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN. Ask seic kai Jèmata sthn Pragmatik Anˆlush I TMHMA POLITIKWN MHQANIKWN

PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN. Ask seic kai Jèmata sthn Pragmatik Anˆlush I TMHMA POLITIKWN MHQANIKWN PANEPISTHMIO DUTIKHS ATTIKHS SQOLH MHQANIKWN Ask seic kai Jèmata sthn Pragmatik Anˆlush I TMHMA POLITIKWN MHQANIKWN Anaplhrwt c Kajhght c: Dr. Pappˆc G. Alèandroc Perieqìmena. Sumbolismìc kai OrologÐa..

Διαβάστε περισσότερα

Eukleideiec Gewmetriec

Eukleideiec Gewmetriec Eukleideiec Gewmetriec 1. Ta stoiqeða tou EukleÐdh To pio shmantikì biblðo sthn IstorÐa twn Majhmatik n allˆ kai èna apì ta pio shmantikˆ sthn IstorÐa tou anjr pinou politismoô eðnai ta StoiqeÐa tou EukleÐdh.

Διαβάστε περισσότερα

Φυλλο 3, 9 Απριλιου Ροδόλφος Μπόρης

Φυλλο 3, 9 Απριλιου Ροδόλφος Μπόρης FÔlla Majhmatik c PaideÐac Φυλλο 3, 9 Απριλιου 2010 StoiqeiojeteÐtai me to L A TEX 2ε Epimèleia: N.S. Maurogi nnhc, Dr Majhmatik n Peiramatikì LÔkeio Euaggelik c Sqol c SmÔrnhc mavrogiannis@gmail.com 1

Διαβάστε περισσότερα

EJNIKO METSOBIO POLUTEQNEIO SQOLH HLEKTROLOGWN MHQANIKWN KAI MHQANIKWN UPOLOGISTWN TOMEAS TEQNOLOGIAS PLHROFORIKHS KAI UPOLOGISTWN ERGASTHRIO UPOLOGISTIKWN SUSTHMATWN Enopoihmènh efarmog metasqhmatism

Διαβάστε περισσότερα

ANAGNWRISH MOUSIKOU EIDOUS: MIA BIO-EMPNEUSMENH POLUGRAMMIKH PROSEGGISH Metaptuqiak Diatrib IWANNH K. PANAGAKH PtuqioÔqou tou Tm matoc Plhroforik c kai Thlepikoinwni n, E.K.P.A. Epiblèpwn: KwnstantÐnoc

Διαβάστε περισσότερα

Panepisthmio Patrwn Poluteqnikh Sqolh Tmhma Mhqanikwn H/U kai Plhroforikhc Prìgramma Metaptuqiak n Spoud n : fiepist mh kai TeqnologÐa twn Upologist nfl Diplwmatik ErgasÐa Suntomìterec Diadromèc DÔo KrithrÐwn:

Διαβάστε περισσότερα

B ν = 2kT. I ν = 2kT b. Te tν/μ dt ν /μ (59) T b T (1 e τν ) (60) T b τ ν T (61)

B ν = 2kT. I ν = 2kT b. Te tν/μ dt ν /μ (59) T b T (1 e τν ) (60) T b τ ν T (61) Sta radiokômata (gia hν kt kai e hν/kt 1 hν/kt ) h sun rthsh tou Plank paðrnei thn polô apl morf tou nìmou Rayleigh-Jeans: kai h jermokrasða lamprìthtac dðnetai apì th sqèsh B ν = 2kT λ 2 (57) I ν = 2kT

Διαβάστε περισσότερα

στο Αριστοτέλειο υλικού.

στο Αριστοτέλειο υλικού. Σήματα Συστήματα Εισαγωγικά Κωνσταντίνος Κοτρόπουλος Τμήμα Πληροφορικής Θεσσαλονίκη, Ιούνιος 2013 Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

MÐa SÔntomh Eisagwgă stic SÔgqronec JewrÐec Isìthtac

MÐa SÔntomh Eisagwgă stic SÔgqronec JewrÐec Isìthtac MÐa SÔntomh Eisagwgă stic SÔgqronec JewrÐec Isìthtac Nikìlac BroÔsalhc nicholas.vrousalis@lmh.ox.ac.uk 29 OktwbrÐou 2007 1 KĹpoiec basikèc diakrðseic 1.1 Ish Mèrimna Φέροµαι εξίσου στην Α και στον Β vs.

Διαβάστε περισσότερα

ΜΕΤΑΒΟΛΙΚΕΣ ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΕΛΕΥΘΕΡΩΝ ΣΥΝΟΡΩΝ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΑ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΝΙΠΥΡΑΚΗ ΜΑΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

ΜΕΤΑΒΟΛΙΚΕΣ ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΕΛΕΥΘΕΡΩΝ ΣΥΝΟΡΩΝ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΑ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΝΙΠΥΡΑΚΗ ΜΑΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΜΕΤΑΒΟΛΙΚΕΣ ΑΝΙΣΟΤΗΤΕΣ ΚΑΙ ΠΡΟΒΛΗΜΑΤΑ ΕΛΕΥΘΕΡΩΝ ΣΥΝΟΡΩΝ ΣΤΗ ΜΑΘΗΜΑΤΙΚΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΑ ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΝΙΠΥΡΑΚΗ ΜΑΡΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΗΡΑΚΛΕΙΟ ΝΟΕΜΒΡΙΟΣ

Διαβάστε περισσότερα

SUNOLA BIRKHOFF JAMES ϵ ORJOGWNIOTHTAS KAI ARIJMHTIKA PEDIA

SUNOLA BIRKHOFF JAMES ϵ ORJOGWNIOTHTAS KAI ARIJMHTIKA PEDIA EJNIKO METSOBIO POLUTEQNEIO SQOLH EFARMOSMENWN MAJHMATIKWN & FUSIKWN EPISTHMWN TOMEAS MAJHMATIKWN DIDAKTORIKH DIATRIBH SUNOLA BIRKHOFF JAMES ϵ ORJOGWNIOTHTAS KAI ARIJMHTIKA PEDIA Qr stoc S. Qwrianìpouloc

Διαβάστε περισσότερα

thlèfwno: , H YHFIAKH TAXH A' GumnasÐou Miqˆlhc TzoÔmac Sq. Sumb. kl.

thlèfwno: , H YHFIAKH TAXH A' GumnasÐou Miqˆlhc TzoÔmac Sq. Sumb. kl. A' GumnasÐou Sq. Sumb. kl. PE03 GiatÐ epibˆlletai h eisagwg thc sôgqronhc teqnologðac sthn ekpaðdeush. Η Πληροφοριοποίηση της κοινωνίας. Η αυξανόμενη πολυπλοκότητα του εκπαιδευτικού συστήματος. Η σημερινή

Διαβάστε περισσότερα

2

2 exomoiwsh kai sugkrish apodoshc grid diktuwn, me katanemhmenouc kai kentrikopoihmenouc algorijmouc elegqou porwn Tm ma Mhqanik n H/U kai Plhroforik c Mpakìlac Iw nnhc A.M 85 M.D.E. Susthm twn EpexergasÐac

Διαβάστε περισσότερα

HU215 - Frontist rio : Seirèc Fourier

HU215 - Frontist rio : Seirèc Fourier HU5 - Frontist rio : Seirèc Fourier Epimèleia: Gi rgoc P. Kafentz c Upoy. Didˆktwr Tm m. H/U Panepist mio Kr thc MartÐou 4. Na sqediˆsete to fˆsma plˆtouc kai to fˆsma fˆshc tou s matoc xt + cosπt sinπt

Διαβάστε περισσότερα

Farkas. αx+(1 α)y C. λx+(1 λ)y i I A i. λ 1,...,λ m 0 me λ 1 + +λ m = m. i=1 λ i = 1. i=1 λ ia i A. j=1 λ ja j A. An µ := λ λ k = 0 a λ k

Farkas. αx+(1 α)y C. λx+(1 λ)y i I A i. λ 1,...,λ m 0 me λ 1 + +λ m = m. i=1 λ i = 1. i=1 λ ia i A. j=1 λ ja j A. An µ := λ λ k = 0 a λ k Kefˆlaio 1 DiaqwrÐzon UperepÐpedo L mma Farkas 1.1 Kurtˆ SÔnola 'Ena uposônolo C tou R n onomˆzetai kurtì an, gia kˆje x,y C kai kˆje λ [0,1], αx+(1 α)y C. An a i, i = 1,2,...,m eðnai dianôsmata ston R

Διαβάστε περισσότερα

Autìmath Exagwg Peril yewn kai h Axiolìghs touc

Autìmath Exagwg Peril yewn kai h Axiolìghs touc Autìmath Exagwg Peril yewn kai h Axiolìghs touc Ge rgioc Giannakìpouloc 1 ggianna@iit.demokritos.gr 1 Tm ma Mhqanik n Plhroforiak n kai Epikoinwniak n Susthmˆtwn Panepist mio AigaÐou se sunergasða me to

Διαβάστε περισσότερα

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA

Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARA Statistik gia QhmikoÔc MhqanikoÔc EKTIMHSH PARAMETRWN - 1 12 AprilÐou 2013 Eisagwgikˆ sthn ektðmhsh paramètrwn t.m. X me katanom F X (x; θ) Parˆmetroc θ: ˆgnwsth θ µ, σ 2, p DeÐgma {x 1,..., x n }: gnwstì

Διαβάστε περισσότερα

EfarmogËc twn markobian n alus dwn

EfarmogËc twn markobian n alus dwn Kefàlaio 7 EfarmogËc twn markobian n alus dwn 7.1 Eisagwg Sto kefàlaio autï ja do me merikëc efarmogëc twn markobian n alus dwn stic s gqronec epist mec kai sthn teqnolog a. Ja do me giat h mhqan anaz

Διαβάστε περισσότερα

Shmei seic Sunarthsiak c Anˆlushc

Shmei seic Sunarthsiak c Anˆlushc Shmei seic Sunarthsiak c Anˆlushc Apìstoloc Giannìpouloc 1 Panepisthmio Krhthc Tmhma Majhmatikwn Anoixh 2003 1 Tm. Majhmatik n, Panep. Ajhn n 2 Perieqìmena 1 Μετρικοί χώροι 5 1.1 Ορισμός................................................

Διαβάστε περισσότερα

Θεωρία Πιθανοτήτων και Στατιστική

Θεωρία Πιθανοτήτων και Στατιστική ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Θεωρία Πιθανοτήτων και Στατιστική Ενότητα 2: Εκτίμηση Παραμέτρων Κουγιουμτζής Δημήτρης Τμήμα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών

Διαβάστε περισσότερα

KBANTOMHQANIKH II (Tm ma A. Laqanˆ) 28 AugoÔstou m Upìdeixh: Na qrhsimopoihjeð to je rhma virial 2 T = r V.

KBANTOMHQANIKH II (Tm ma A. Laqanˆ) 28 AugoÔstou m Upìdeixh: Na qrhsimopoihjeð to je rhma virial 2 T = r V. Jèma 1: KBANTOMHQANIKH II (Tm ma A. Laqanˆ) 8 AugoÔstou 001 SwmatÐdio mˆzac m kineðtai sto kentrikì dunamikì V (r) = λ log (r/a). Gia tic idiokatastˆseic thc enèrgeiac na brejeð h mèsh tim tou tetrag nou

Διαβάστε περισσότερα

r ν = I ν I c α ν =1 r ν = I c I ν W ν =

r ν = I ν I c α ν =1 r ν = I c I ν W ν = An kai ta kômata pl smatoc den eðnai hlektromagnhtik, h allhlepðdras touc me lla kômata (p.q. iontoakoustik kômata) mporeð na dìsei hlektromagnhtik aktinobolða sth suqnìthta pl smatoc kai thn pr th armonik

Διαβάστε περισσότερα

Shmei seic sto mˆjhma Analutik GewmetrÐa

Shmei seic sto mˆjhma Analutik GewmetrÐa Shmei seic sto mˆjhma Analutik GewmetrÐa Didˆskwn: Lˆppac D. Ejnikì Kapodistriakì Panepist mio Ajhn n B' MEROS 3 EPIFANEIES sto QWRO Epifˆneia gia thn perigraf thc qreiˆzontai dôo parˆmetroi mia eidik

Διαβάστε περισσότερα

ENA TAXIDI STH SUNOQH. g ab T a bc. R i jkl

ENA TAXIDI STH SUNOQH. g ab T a bc. R i jkl ENA TAXIDI STH SUNOQH Γ i jk g ab T a bc K i jk i jk { i jk } g ab R i jkl Suggrafèac: Ant nioc Mhtsìpouloc 1 Epiblèpwn: Kajhght c Miqˆlhc Tsamparl c 2 AJHNA 2017 1 E-mail: antonmitses@gmailcom 2 Τμήμα

Διαβάστε περισσότερα