a~ 1.1 [4] x, y X. x + λy x, λ C, Ifi x 4 y Φ Birkhoff MIß, a~ 1.2 [8] ε [0, 1), x, y X. x + λy 2 x 2 2ε x λy, λ C, Ifi x 4

Σχετικά έγγραφα
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Prey-Taxis Holling-Tanner

Single-value extension property for anti-diagonal operator matrices and their square

2017H5^ ADVANCES IN MATHEMATICS (CHINA) May, 2017

Vol. 40 No Journal of Jiangxi Normal University Natural Science Jul p q -φ. p q

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Α Ρ Ι Θ Μ Ο Σ : 6.913

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

L p approach to free boundary problems of the Navier-Stokes equation

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

On a four-dimensional hyperbolic manifold with finite volume

High order interpolation function for surface contact problem

A General Note on δ-quasi Monotone and Increasing Sequence

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Homomorphism in Intuitionistic Fuzzy Automata

Quick algorithm f or computing core attribute

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Congruence Classes of Invertible Matrices of Order 3 over F 2

On the Galois Group of Linear Difference-Differential Equations

Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

1. 3. ([12], Matsumura[13], Kikuchi[10] ) [12], [13], [10] ( [12], [13], [10]

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

On Numerical Radius of Some Matrices

N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

SPECIAL FUNCTIONS and POLYNOMIALS

SOME PROPERTIES OF FUZZY REAL NUMBERS

ER-Tree (Extended R*-Tree)

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

Διδάσκων: Καθηγητής Νικόλαος Μαρμαρίδης, Καθηγητής Ιωάννης Μπεληγιάννης

Spherical Coordinates

Motion analysis and simulation of a stratospheric airship

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Reminders: linear functions

Fractional Colorings and Zykov Products of graphs

Applying Markov Decision Processes to Role-playing Game

( y) Partial Differential Equations

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

On Inclusion Relation of Absolute Summability

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Intuitionistic Supra Gradation of Openness

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

. (1) 2c Bahri- Bahri-Coron u = u 4/(N 2) u

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Adachi-Tamura [4] [5] Gérard- Laba Adachi [1] 1

Βιογραφικό Σημείωμα. Γεωργίου Κ. Ελευθεράκη ΓΕΝΙΚΑ ΣΤΟΙΧΕΙΑ EKΠΑΙΔΕΥΣΗ

2 Composition. Invertible Mappings

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Higher Derivative Gravity Theories

Example Sheet 3 Solutions

{ u (t)+a(t)f(u) =0, 0 <t<1; { u (t)+a(t)u (t)+b(t)u(t)+h(t)f(u) =0, 0 <t<1;

Γεώργιος Ακρίβης. Προσωπικά στοιχεία. Εκπαίδευση. Ακαδημαϊκές Θέσεις. Ηράκλειο. Country, Ισπανία. Λευκωσία, Κύπρος. Rennes, Γαλλία.

Space-Time Symmetries

M p f(p, q) = (p + q) O(1)

Lecture 13 - Root Space Decomposition II

The q-commutators of braided groups

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

I. Μητρώο Εξωτερικών Μελών της ημεδαπής για το γνωστικό αντικείμενο «Μη Γραμμικές Ελλειπτικές Διαφορικές Εξισώσεις»

PULLBACK D-ATTRACTORS FOR THE NON-AUTONOMOUS NEWTON-BOUSSINESQ EQUATION IN TWO-DIMENSIONAL BOUNDED DOMAIN. Xue-Li Song.

ΙΩΑΝΝΗΣ ΜΙΧΑΗΛ ΡΑΣΣΙΑΣ

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Reflecting Brownian motion in two dimensions: Exact asymptotics for the stationary distribution

Heisenberg Uniqueness pairs

, P bkc (c[0, 1]) P bkc (L p [0, 1]) (1) 2 P bkc (X) O A (2012) Aumann. R. J., [3]. Feb Vol. 28 No.

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Approximation of distance between locations on earth given by latitude and longitude

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homomorphism of Intuitionistic Fuzzy Groups

ΔΘΝΗΚΖ ΥΟΛΖ ΓΖΜΟΗΑ ΓΗΟΗΚΖΖ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΗΚΖ ΔΡΓΑΗΑ

FEATURES APPLICATION PRODUCT T IDENTIFICATION PRODUCT T DIMENSION MAG.LAYERS

Finite difference method for 2-D heat equation

Homework 3 Solutions


12. Radon-Nikodym Theorem

100x W=0.1 W=

Intuitionistic Fuzzy Ideals of Near Rings

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

Wishart α-determinant, α-hafnian

Transcript:

fl45xfl4r ffi - R K Vol.45, No.4 2016q7F ADVANCES IN MATHEMATICS (CHINA) July, 2016 d ju Birkhoff Πh`fff! " (~i,efl,ba <9<,E, 9<fl,/V, ~i, }χ, 726000) doi: 10.11845/sxjz.2015075b Λ}: 1» ψff4, μffi#ffi) Birkhoff 2fiffl- ρχß, *ν#.0fflfl$, fl& 3%#ffi)fi ρ +- 2fiοffi)fi ρ - 2fi+,/' (ffi)fi Birkhoff 2fi+,/'. cg]: Birkhoff 2fi; ffi) Birkhoff 2fi; ffi)fi Birkhoff 2fi/' MR(2010) Ωvbl: 47D45; 46L40 / Ψwble: O177.1 y [sp: A yξze: 1000-0917(2016)04-0603-07 fif.u($ Fß?6(Q, R-MI B- MI I- MIffMI(ffi5Λ%D7 4.U (G [1 2, 4, 6, 12, 14 17]). Sp^, *!+Lρ2f3 MI(ffi5, ομf-ssfflmi(ffi5. fl [8] H($ FR. fsffl B- MIßffi54(Q, fl [9 10] Ho= F. fsfflmiß ffi5, fl [11] HΞ($ FR7 fsffl I- MIßffi5, fl [12 13, 18] HΞ($ FRM f Sffl ρ + - MI Sffl ρ - MI4Sffl ρ- MIßffi5Φ.Ufs(Q. H3 -SMI(ffi5 R, B-MI> Birkhoff MIΩμf*!+Lß0T: fl [3] HΞ($ FR. f'd x 4 y Birkhoff MIß2,ffl0μH; fl [13] HΞ($ FR. f'd x 4 y Sffl Birkhoff MI ßffl0μH; fl [7] H)($ FR.Uf'd x 4 y Birkhoff MIßffl0μH, ρ2ffl [3] ßΩ&Lh; fl [5] H)($ FROlf ffi Birkhoff MI$(: ΦffWßfffi. Ω ff Lhßt#, ΞflH)($ FR,. f'd x 4 y Sffl Birkhoff MIß2,ffl0μH, Φu OlfSffl ρ + - MI4Sffl ρ - MI$(: χφsffl Birkhoff MI$(:. 1 YΦt io HΞflR, X, Y Y± )($ F, Z ± Ξ($ F, C ± )fic, R ± ΞfiC. a~ 1.1 [4] x, y X. x + λy x, λ C, Ifi x 4 y Φ Birkhoff MIß, Bfi x B y. a~ 1.2 [8] ε [0, 1), x, y X. x + λy 2 x 2 2ε x λy, λ C, Ifi x 4 y ΦSffl Birkhoff MIß, Bfi x ε B a~ y. 1.3 : [13] T : X Y, ε [0, 1). ψy4ß x, y X, x B y T (x) ε B T (y), Ifi T ΦSffl Birkhoff MIß. a~ 1.4 [12] x, y X, ρ ±(x, y) = lim t 0 ± x+ty 2 x 2, fifi$fi fi. Ψ+zr: 2015-04-06. )*+Ψνzr: 2015-09-06. ;N&m: }χλz@νxxz,; /VA9&m (No. 2012JM1018) 5}χΛKDνV&Z,/V&m (No. 15JK1221). E-mail: kongliang2005@163.com 2t

604 fl, Q J 45X a~ 1.5 [12] x, y X. ρ + (x, y) =0, Ifi x 4 y Φ ρ +- MIß, Bfi x ρ+ y. ρ (x, y) =0, Ifi x 4 y Φ ρ - MIß, Bfi x ρ y. a~ 1.6 [12] ε [0, 1), x, y X. ρ +(x, y) ε x y, Ifi x 4 y ΦSffl ρ + - MI ß, Bfi x ε ρ + y. ρ (x, y) ε x y, Ifi x 4 y ΦSffl ρ - MIß, Bfi x ε ρ y. a~ 1.7 : [12] T : X Y, ε [0, 1). ψy4ß x, y X, x ρ+ y T (x) ε ρ + T (y), Ifi T ΦSffl ρ + - MIß. ψy4ß x, y X, x ρ y T (x) ε ρ T (y), Ifi T Φ Sffl ρ - MIß.» fi, fl# [3] HΞ($ FRa;$fi fi. f'd x 4 y Birkhoff MIßffl0μH: am 1.1 x, y Z, α R, I x B (y αx) ρ (x, y) α x 2 ρ + (x, y). x B y ρ (x, y) 0 ρ + (x, y). fl# [13] HΞ($ FRρ2fffi` 1.1 ßLh, ομf'd x 4 y Sffl Birkhoff MIß ffl0μh: am 1.2 ε [0, 1), x, y Z, α R, I» fi, x ε B (y αx) ρ (x, y) ε x y αx α x 2 ρ + (x, y)+ε x y αx. x ε B y ρ (x, y) ε x y 0 ρ + (x, y)+ε x y. 8Wwßffi Φ: H)($ FRΦ'1>_fflffi` 1.1 4ffi` 1.2 ßLh? fl# [7] H) ($ FR!.Uf$fi fiß(q (ffi` 1.3), P". f x 4 y Birkhoff MIßffl0μH (ffi` 1.4). am 1.3 x, y X, α, β C, I (1) ρ (x, y) = ρ + (x, y) = ρ + ( x, y); (2) ρ ±(x, x) = x 2 ; (3) ρ ± (αx, βy) = αβ ρ ± (x, ei(θ ω) y), sr α = α e iω, β = β e iθ ; (4) ρ ± (x, αx + y) =Re(α) x 2 + ρ ± (x, y); (5) ρ ±(x, y) x y. am 1.4 x, y X, I» fi, x B y ρ (x, e iθ y) 0 ρ +(x, e iθ y), θ R. ΞflH)($ FR. 'd x 4 y Sffl Birkhoff MIßffl0μH, ομfψkßlh. am 1.5 (y αx)»uo» ε [0, 1), x, y X, α C, I x ε B ρ (x, e iθ y) ε x y αx Re(e iθ α) x 2 ρ +(x, e iθ y)+ε x y αx, θ R. (1) x ε B y ρ (x, e iθ y) ε x y 0 ρ +(x, e iθ y)+ε x y, θ R.

4r ]e: 1AT Birkhoff NJρUC 605 2 io_ r fifffflffi` 1.5 ßOl,!M?,7`. m 2.1 ε [0, 1), x, y X. x ε B y, I x ε B ±q =ffi5 ( y). 1.2 [P. m 2.2 ε [0, 1), x, y X, I x ε B y x + te iθ y 2 x 2 2ε x te iθ y, t 0, θ R x + se iθ y 2 x 2 2ε x se iθ y, s, θ R. ±q =ffi5 1.2 [P. m 2.3 u, v X, a R, ffi5: ϕ : R R fi ϕ(s) = u + sv 2 + a u sv. ϕ(0) <ϕ(s), s (b 1,b 2 ) \{0}, sr b 1 < 0, b 2 > 0, I ϕ(0) ϕ(s), s R. ±q 6fi s 1,s 2 R, ( ) s1 + s 2 ϕ = 2 u + s 1 + s 2 2 v 2 + a u s 1 + s 2 v 2 ( u 2 + s 1 2 v u + 2 + s ) 2 2 ( 2 v s 1 + a u 2 v s ) 2 + 2 v ( u 2 2 + s 1 2 v 2 u + 2 + s ) 2 2 v 2 + a u s 1 2 v s 2 + a u 2 v = ϕ(s 1) 2 + ϕ(s 2), 2 3 ϕ fiß3fi. s R \{0}, v σ (0, 1) Π (1 σ)0 + σs (b 1,b 2 ) \{0}, I= ϕ Φß3fiο ϕ(0) <ϕ((1 σ)0 + σs) (1 σ)ϕ(0) + σϕ(s). " ϕ(0) <ϕ(s), s R \{0}. / ϕ(0) ϕ(s), s R. am 1.5 ^±q Π0(. (1) t 0, θ R, = x ε B (y αx) 47` 2.2 P @Φ x + te iθ (y αx) 2 x 2 2ε x te iθ (y αx) = x 2 2ε x t(y αx), "=ffi` 1.3 (4) ο ρ + (x, x + te iθ (y αx) 2 x 2 eiθ (y αx)) = lim ε x y αx, t 0 + 2t ε x y αx ρ + (x, eiθ (y αx)) = ρ +(x, e iθ αx +e iθ y) =Re( e iθ α) x 2 + ρ + (x, eiθ y) = Re(e iθ α) x 2 + ρ +(x, e iθ y).

606 fl, Q J 45X / Re(e iθ α) x 2 ρ + (x, eiθ y)+ε x y αx, θ R. (2) t 0, θ R, = x ε B (y αx) 47` 2.1 ο, x ε B I " x + te iθ (y αx) 2 = x +( t)e iθ [ (y αx)] 2 x 2 2ε x te iθ (y αx) = x 2 2ε x t(y αx), x + te iθ (y αx) 2 x 2 ε x y αx, t <0, 2t [ (y αx)], G=7` 2.2 [P ρ (x, x + te iθ (y αx) 2 x 2 eiθ (y αx)) = lim ε x y αx. t 0 2t 8;ffi` 1.3 (4), _ffl (1) ßOl[ο, Re(e iθ α) x 2 ρ (x, e iθ y) ε x y αx, θ R. / ρ (x, eiθ y) ε x y αx Re(e iθ α) x 2 ρ + (x, eiθ y)+ε x y αx, θ R. ffl&(. Ψ%E x 0, y αx 0. (1) ±flb, I θ R, =ffi` 1.3 (4) P Re(e iθ α) x 2 ρ +(x, e iθ y)+ε x y αx. ε x y αx ρ + (x, eiθ y) Re(e iθ α) x 2 = ρ +(x, e iθ (y αx)), nj x + se iθ (y αx) 2 x 2 2ε x y αx 2 lim, θ R. s 0 + 2s ψy4ß γ (0, 1), x + se iθ (y αx) 2 x 2 2(ε + γ) x y αx < lim, θ R, s 0 + s " H δ 2 > 0, Πο s (0,δ 2 ), 2(ε + γ) x s(y αx) < x + se iθ (y αx) 2 x 2, θ R, @Φ s (0,δ 2 ), x 2 < x + se iθ (y αx) 2 +2(ε + γ) x s(y αx), θ R.?= ρ (x, e iθ y) ε x y αx Re(e iθ α) x 2 4ffi` 1.3 (4) [ο ρ (x, e iθ (y αx)) ε x y αx, θ R,

4r ]e: 1AT Birkhoff NJρUC 607 I x + se iθ (y αx) 2 x 2 2 lim 2ε x y αx, θ R. s 0 2s ψ@ kß γ (0, 1), ο` H δ 1 < 0, Πο s (δ 1, 0), / s (δ 1, 0) (0,δ 2 ), x 2 < x + se iθ (y αx) 2 +2(ε + γ) x s(y αx), θ R, x 2 < x + se iθ (y αx) 2 +2(ε + γ) x s(y αx), θ R. ffi5: ϕ : R R fi ϕ (s) = x + se iθ (y αx) 2 +2(ε + γ) x s(y αx), I G=7` 2.3 ο ϕ (0) <ϕ (s), s (δ 1, 0) (0,δ 2 ), x 2 x + se iθ (y αx) 2 +2(ε + γ) x s(y αx), s, θ R. (2) = γ ßy4(, H (2) ±Rg γ 0 + ο x 2 x + se iθ (y αx) 2 +2ε x s(y αx), s, θ R, " x + se iθ (y αx) 2 x 2 2ε x se iθ (y αx), s, θ R. =7` 2.2 [P x ε B (y αx). m 2.4 T : X Y Φ$(:, I T ΦSffl ρ + - MI$(:»uO» T Φ Sffl ρ - MI$(:. ±q Π0(. x ρ y, I=ffi` 1.3 (1) ο ( x) ρ+ y.?= T ΦSffl ρ + - MI $(: ο ( T (x)) ε ρ + T (y), "=ffi` 1.3 (1) 4ffi5 1.6 ο T (x) ε ρ T (y), / T ΦSffl ρ - MI$(:. ffl&(ο`[o. xn 2.1 T : X Y ΦSffl ρ + - MI:Sffl ρ - MI$(:, I T ΦSffl Birkhoff MI$(:. ±q x X \{0}, =ffi` 1.3 (4) ο, θ R, ρ ± ( x, ρ ± (x, ) eiθ y) x 2 x +e iθ y = ρ ± (x, eiθ y) x 2 x 2 + ρ ± (x, eiθ y)=0. 6fi T ΦSffl ρ + - MI:Sffl ρ - MI$(:, =7` 2.4 [P ( T (x) ε ρ ± ρ ±(x, e iθ ) y) x 2 T (x)+e iθ T (y), θ R,

608 fl, Q J 45X I θ R, ρ ± ( T (x), ρ ±(x, e iθ y) x 2 T (x)+e iθ T (y)) ε T (x) ρ ± (x, eiθ y) x 2 T (x)+e iθ T (y) T (x) 2 ε T (x) T (y) + ε ρ x 2 ± (x, e iθ y). "=ffi` 1.3 (4) ο, θ R, ρ ± (T (x), T eiθ (x) 2 T (y)) x 2 ρ ± (x, eiθ y) I> ε T (x) T (y) + ε T (x) 2 x 2 ρ ± (x, eiθ y), T (x) 2 x 2 ρ +(x, e iθ T (x) 2 y) ε ρ x 2 + (x, e iθ y) ε T (x) T (y) ρ + (T (x), e iθ T (y)), θ R (3) 4 ρ (T (x), e iθ T (x) 2 T (y)) ε T (x) T (y) + ε ρ x 2 (x, e iθ y) T (x) 2 + x 2 ρ (x, e iθ y), θ R. (4) u, w X, u =0: w =0, ILh"wflb. u, w X \{0}, u B w, =ffi` 1.4 ο, ρ (u, e iθ w) 0 ρ +(u, e iθ w), θ R, @Φ ρ (u, eiθ w) = ρ (u, eiθ w), c7 (3) ±4 (4) ±ο ρ + (u, eiθ w) = ρ + (u, eiθ w), θ R. T (u) 2 (1 ε) u 2 ρ +(u, e iθ w) ε T (u) T (w) ρ +(T (u), e iθ T (w)), θ R (5) 4 ρ (T (u), e iθ T (u) 2 T (w)) ε T (u) T (w) +(1 ε) u 2 ρ (u, e iθ w), θ R. (6) = (5) ±4 (6) ±[ο I ε T (u) T (w) ρ +(T (u), e iθ T (w)), ρ (T (u), e iθ T (w)) ε T (u) T (w), θ R, ρ (T (u), e iθ T (w)) ε T (u) T (w) 0 ρ +(T (u), e iθ T (w)) + ε T (u) T (w), θ R. "=ffi` 1.5 P T (u) ε B T (w), / T ΦSffl Birkhoff MI$(:.

4r ]e: 1AT Birkhoff NJρUC 609 kz [1] Alonso, J., Martini, H. and Wu, S.L., On Birkhoff orthogonality and isosceles orthogonality in normed linear spaces, Aequationes Math., 2012, 83(1): 153-189. [2] Alonso, J. and Soriano, M.L., On height orthogonality in normed linear spaces, Rocky Mountain J. Math., 1999, 29(4): 1167-1183. [3] Amir, D., Characterizations of Inner Product Spaces, Operator Theory: Advances and Applications, Vol. 20, Basel: Birkhäuser, 1986, 33. [4] Birkhoff, G., Orthogonality in linear metric space, Duke Math. J., 1935, 1(2): 169-172. [5] Blanco, A. and Turnšek, A., On maps that preserve orthogonality in normed spaces, Proc.Roy.Soc. Edinburgh Sect. A, 2006, 136(4): 709-716. [6] Carlsson, S.O., Orthogonality in normed linear spaces, Ark. Mat., 1962, 4(4): 297-318. [7] Chen, C.Q., Linear maps preserving orthogonality, M.S. Dissertation, Suzhou: Soochow University, 2013 (in Chinese). [8] Chmieliński, J., On an ε-birkhoff orthogonality, J. Inequal. Pure Appl. Math., 2005, 6(3): Article 79, 7 pages. [9] Chmieliński, J., Linear mappings approximately preserving orthogonality, J. Math. Anal. Appl., 2005, 304(1): 158-169. [10] Chmieliński, J., Stability of the orthogonality preserving property in finite-dimensional inner product spaces, J. Math. Anal. Appl., 2006, 318(2): 433-443. [11] Chmieliński, J. and Wójcik, P., Isosceles-orthogonality preserving property and its stability, Nonlinear Anal., 2010, 72(3/4): 1445-1453. [12] Chmieliński, J. and Wójcik, P., On a ρ-orthogonality, Aequationes Math., 2010, 80(1): 45-55. [13] Chmieliński, J. and Wójcik, P., ρ-orthogonality and its preservation revisited, In: Recent Developments in Functional Equations and Inequalities (Brzdęk, J., Chmieliński, J., Ciepliński, K., Ger, R., Páles, Z. and Zdun, M.C. eds.), Banach Center Publ., Vol. 99, Warszawa: Pol. Acad. Sci., 2013, 17-30. [14] Diminnie, C.R., A new orthogonality relation for normed linear spaces, Math. Nachr., 1983, 114(1): 197-203. [15] James, R.C., Orthogonality in normed linear spaces, Duke Math. J., 1945, 12(2): 291-302. [16] Mazaheri, H. and Vaezpour, S.M., Orthogonality and ε-orthogonality in Banach spaces, Aust. J. Math. Anal. Appl., 2005, 2(1): Article 10, 1-5. [17] Saidi, F.B., An extension of the notion of orthogonality to Banach spaces, J. Math. Anal. Appl., 2002, 267(1): 29-47. [18] Wójcik, P., Linear mappings preserving ρ-orthogonality, J. Math. Anal. Appl., 2012, 386(1): 171-176. Notes on Approximate Birkhoff Orthogonality KONG Liang (College of Mathematics and Computer Application, Institute of Applied Mathematics, Shangluo University, Shangluo, Shaanxi, 726000, P. R. China) Abstract: In a complex normed space, a sufficient and necessary condition for approximate Birkhoff orthogonality is given and it is a generalization of the known results. Also, it is proved that approximate ρ + -orthogonality and approximate ρ -orthogonality preserving linear mappings are all approximate Birkhoff orthogonality preserving mapping. Keywords: Birkhoff orthogonality; approximate Birkhoff orthogonality; approximate Birkhoff orthogonality preserving mapping