2017H5^ ADVANCES IN MATHEMATICS (CHINA) May, 2017
|
|
- Ευτρόπιος Παπακώστας
- 7 χρόνια πριν
- Προβολές:
Transcript
1 246fi23L < f Vol. 46, No H5^ ADVANCES IN MATHEMATICS (CHINA) May, , F (3) *ο»ff(+fiμ2χ ]w< (f^ma; ;ffi, f^, ff, ) doi: /sxjz b 3-: 9rjt d^kjg=qdl_, [ az±~raksbcb^ F (3) yytexv ΦmO>D9±Ξ, ΩP ;ufzcb^ E (3) YT Tingley sn> D? ou, Πh}McxDWN. Ω: EXvzlΨ; ;ufz; F (3) yyt MR(2010) 7!fflß: 46A22; 46B20 / 6"fflß : O177.3 $& ψfl: A $4± : (2017) r 30 G" Banach ff/ß*$,8n, -ρ += FvMY%2 +Yfl μtvb+0μ. Banach `ν# [1] uqρ3$ c e+-ρ (%2) 0q. %, $ +ßΦ@z0q#6O(MxeΠ2Fv-ρ +"zff"0q..ad»iu$ -ρ% 2?hY9z f (MYW} q+ff"0q dωkφνi A, M"z0q9 A T A = AA T = E), fifi_+l@ff YE*Iu$ H ΠT+Es2t. tg 6E*WßΦ+H FWl@eyfi8? S D, DPDΛ+ß*kd»H@$ -ρ +"zff"0qtae?!, hpο TxW8H@$ +@zπ2ymxe2t v"zfiv+yfltsk"+,fl, 6DC>, a_fw[6$ +%2-ρ +0q, 8χ y+ Tingley ο +flflott!ξx. ffi 1987 G Tingley `ν# [9] u±ρ3#μv>-ρ> ο F), 6Z]FvCfiG- 37:R?2 ffa2+tλ, *'3»4H #μv>9-ρ +ff"0qk"+fi_ (Ξ [3 4, 6]), ffi;q±flfl3'n+x4 Banach $ e+ Tingley ο [5]. $t, ν [5] ucπfiqρ, 8WEßΦH@+DΛ+ Banach $, sffl T!+ d, wp8w 2» +H@$, Cl;T#6+nψpg?.. fiο +1D'Dt, `;TßΦH@0q+U& χ,.als8 2»+H@$, ß=CgD8M#μV (>) 1TKWο flfl+±t?y pgf (T$) +Ξ8, s:}mtyw[38»ffi+. ν/-`ν [2] u8 T$» $, M# μv>0a :>Φ +ΠxU& 13Ξ8, *'3D,b+gTP=IJ+fi_. ν [7 8] u `@zyw#μqßt8»2d#52-2t+ωπχ, *'3DΛH@$ E (2) d E A (n) +% 2-ρ +0q. ß=wψDν [7 8] 6J3 F (Γ) $, h-;t 6ßΦ+H@0q, ffit'8ν [7 8], Λ *'3 F (3) $ %2-ρ +ff"0q. vo`l: MOv(`L: rffi)c: ^ ~]ψ;rffi (No , No ). liangxiaobin2004@126.com
2 3L 0+fl: F (3) /%,&3.ffQi Πffi/ fl. 2.1 j Γ={1, 2,,n} tdpqωu, aχ` {e s } n s=1 t Banach $ X +D # μq, π Γ Γ DDPh, x X, z s Γ x(s)e s, T (I) s Γ x(s)e s = s Γ x(s) e s = s Γ x(s)e π(s). ß=»9 fiωπ+ X F (n).$ (Γ tρ$uc!t+~+6j). F (n).$ t' %[B+, soe, MΠ(Iu$ H p- d@zt$»$ B,H sup, --. 6, g:ff>eχo)e F (n).+$, M±tZlt (pg}!fzk ) F (n). $. a: j X =span{e i } n, x = n x ie i, H x =( n λ i x i p ) 1 p, λi > 0, p 1, pg H x =(λ n x i p +(1 λ)max{ x 1 p, x 2 p,, x n p }) 1 p, p 2, 0 <λ<1. a_$ X l9 : (II) b y X, 8<P s Γ, T x(s) y(s), c x X T x y. bχ` s N, p x(s N ) < y(s N ), c x < y. (III) b x =1, s Γ (x(s))2 =1%T % x(s) rtdgffl 5.»fio Banach $ E (n).$, {e s } n s=1 t fi$ (a_ (III) L : (A)b x(s) sg1gffl 5, x =1, c s Γ (x(s))2 < 1. pg (B) b x(s) sg1gffl 5, x =1, c s Γ (x(s))2 > 1. ha+ E (n).$ Ffi» E A (n) p EB (n).$.) ν [7 8] +wbfi_tyw E (2) d E A (n).$ +. ±ν%2-ρ +ff"0qt` F (3).$ e*'+, ;TC>C Yfflfi. 2 1ff ffiff 0ρ 2.1 [8] j V t F (n).$ H'fi@ X, Y n +o-ρ%2, {e k } n k=1, {γ k} n k=1 Ffit X, Y $ (V (e 1 ),V(e 2 ),,V(e n )) T = A(γ 1,γ 2,,γ n ) T, A =(a ij ) t n ΩoCi, c A +ΠjR+A 1. 5ffi ν [8] u+l@t` E (n).$ e 1+, ;Mρ64L8 F (n) Ct /+. 0ρ 2.2 b A =(a ij ) t n ΩoCi, λe A = λ n + b 1 λ n b n 1 λ + b n, Mu b k -W A +DS k Ωw q (w:b A + i 1 i 2 i k 1Tt i 1 i 2 i k 4+ TZ [8μ V +14q) ndμf ( 1) k. z A[i 1 i 2 i k ] A + i 1 i 2 i k 1Fv4V + k Ωw q, i 1i 2 i k A[i 1 i 2 i k ] νi A + T k Ωw qnd, c b k =( 1) k i 1i 2 i k A[i 1 i 2 i k ]. 8 1 b A =(a ij ) F (n).$ H'fi@ X, Y n +o-ρ%2, {e k } n k=1, {γ k} n k=1 Ffit X, Y $ (V (e 1 ),V(e 2 ),,V(e n )) T = A(γ 1,γ 2,,γ n ) T. L F (n). $ T2t (I),!m n n n n n x i y i e i = x i e i y i e i = ((x k y k )a ki )γ i k=1 n n = ((x k y k )(a ki )) γ π(i) k=1 n n = ((x k y k )( a ki ))γ π(i), k=1 ffldχρ, νi A +_I4 (pg1) e TZ Ψ}JcE t-ρ%2, νi A _IΦ
3 426 ; e 46fi m14 (pg11) *'+-νiht-ρ%2. Fχß=z A νi A V +14q, z A ij t A +1 i 11 j 4Z +X q (w A jx1 i 11 j 4Z V +14q). flρ 2.1 j V t1ph'fi@z+ F (3).$ X, Y n +-ρ%2, c V dωkφνi. 5ffi j (V (e 1 ),V(e 2 ),V(e 3 )) T = A(γ 1,γ 2,γ 3 ) T, A =(a ij ) t 3 ΩoCi, {e k } 3 k=1, {γ k} 3 k=1 Ffit X, Y $ V t1ph'fi@z+ F (3).$ X, Y n +-ρ%2. (i) SM, 2.1, A +ΠjR+A 1,!j A = θ, θ = ±1, L A NzΩi, csgtdr 1 pg 1, Gm A TΠjR θ. GcpgdR θ, pgdr θ 61RUΞ, 7Y A = θ :9. Wtß=T θe A =0. SM, 2.2 T θ 3 +( 1)θ 2 i 1 A[i 1 ]+( 1) 2 θ i 1i 2 A[i 1 i 2 ]+( 1) 3 A =0. S A[1] = a 11,A[2] = a 22, A[3] = a 33 Fv A[12] = A 33, A[13] = A 22,A[23] = A 11, wt θ (a 11 + a 22 + a 33 )+θ(a 11 + A 22 + A 33 ) θ =0. (1) z A (1) A ΨJc *νi. S A (1) H -ρ%2, c A (1) H 6TΠj R+ 1 p 1, yi' A (1) = θ, fia0!m A (1) TΠjR θ. z i 1i 2 i k A (1) [i 1 i 2 i k ] νi A (1) + k Ωw qnd, SM, 2.2, VT θ i 1 A (1) [i 1 ] θ i 1i 2 A (1) [i 1 i 2 ]+θ =0. (2) yi' A (1) [1] = a 11, A (1) [2] = a 22, A (1) [3] = a 33, A (1) [12] = A 33, A (1) [13] = A 22, A (1) [23] = A 11. (3) S (2) (3) T S (1) (4)!* θ ( a 11 + a 22 + a 33 ) θ(a 11 A 22 A 33 )+θ =0. (4) a 11 = θa 11. (5) S A = θ!m, b A -ρ%2, c T a 11 = A A 11. (ii) b8νi A +1 i 1d i 1 1Φm*'-νi, hf*'+-νi+1 i 1 1d i 2 1Φm, EflχX, os± A +1 i 1Φm'1D1; fia0eflφm4, ±1 j 4Φm' 1D4; hap* a ij μw h-νi+1d11d4, ß=z h+-νi A i,j. A i,j H t-ρ%2. T A i,j =( 1) i+j θ, F A i,j ToΠjR ( 1) i+j θ. 8νi A i,j viafi A +Ξ8. E (5) q, ß=T a ij =( 1) i+j θa i,j 11, ;Rο*' A i,j +ΨmC>,! A i,j 11 = A ij. LfiwT a ij =( 1) i+j A A ij, F A T A = AA T = E. w V + "zff"0q dωkφνi.
4 3L 0+fl: F (3) /%,&3.ffQi 427 #fi 2.1 a_ V td»iu$ R 3 e+o%2-ρ, c V YW} q+"zff" 0q dωkφνi. 8 2 YW%2-ρ +=, ±)t flfl Tingley ο. "`ß==", 6, 2.1 fi 8+IJ, /+K sg7!f}, h-qρ3dpffle*wd»iu$ Es2t;*'M %2-ρ +ff"0q?hy9z f hpfi8+dpy-l@, Tfil@C>'% ff, %, fic>8nz»u0nkttp=2+ (fin A +ΠjR+A 1, c A TΠjR +1 pg 1), $»z]n, fld+l@c>y 2μΠfi!TI_, 6 Jz»U0χ A ρfi 2t, l@μ ffl'fi. `»4+ν#pgΨ u, ß=m)Iu$ u%2-ρ YW} q+ff"0qtkφνi (A T A = AA T = E), Λ+l@t YE*WEs2t (pg}ts Es U&ρ)+ßΦ+ C;T_eν#TM l>pg±'l@uesωπte B+. "`ffiß=6, 2.1 +fi8!fχρ, BΩΠ!FΛc d»$ χ`h@8»q (w F (n).$ +2t (I), ;d»iu$! 9 fi), hctxwß=sk"0,fl%2-ρ dkφνi+yflfvh@8»q2t+λr. Iu$ o%2-ρ kφνi,?`), a IkΦνi7V fi$ YW} q+%2-ρ,!fl@fi$ Iu$, h!ft8iu$ +DP"i. ffifχffl 8ß=!Fχ' E (n) +.$ (ΠaH p, p 2 d@z H sup, -) μ ρ>ff` 9zΨm *'ßT'fiH@0qYp+-q. %, Cχ`M +T$»H@$, ffi[qλbd 9z *'ßT'fiH@0qYp+-q..a<»$ Fk Φ0 #μv> > +H@$. #fi 2.2 a_ V t1ph'fi@z+ E (3).$ X, Y +o%2-ρ, {e k } 3 k=1, {γ k } 3 k=1 Ffit X, Y $ c V 0q : V (e i)=θ i γ π(i), θ i = ±1, i =1, 2, 3. Mu π D {1, 2, 3} {1, 2, 3} +DDPh. 5ffi j (V (e 1 ),V(e 2 ),V(e 3 )) = (γ 1,γ 2,γ 3 )A T, c 1= V (e 1 ) = a 1j γ j, j=1 ; A T A = AA T = E, T (a 1j ) 2 =1. j=1 yi' E (3).$ T2t (III), F%T %QTDgffi8p 1 n /. M 1fi,!l. Lfi, ffl8*l. flρ 2.2 a_ V 0 t1ph'fi@z+ E (3).$ X, Y #μv> +o-ρ, {e k } 3 k=1, {γ k} 3 Ffit k=1 X, Y $ c V 0!> Y$ +-ρ%2 V 0 +0q : V 0 (e i )=θ i γ π(i), θ i = ±1,, 2, 3, Mu π D {1, 2, 3} {1, 2, 3} +DDP h. T x S(X), x= 3 x ie i,v 0 (x) = 3 θ ix i γ π(i). 5ffi B2. ~6 V 0 F> Y$ +%2 V, Sffl8 2.2, T V 0 (e i )=V (e i )=θ i γ π(i), θ i = ±1,, 2, 3,
5 428 ; e 46fi Mu π D {1, 2, 3} {1, 2, 3} +DDPh. b x S(X), x= 3 x ie i, c ( ) V 0 (x) =V (x) =V x i e i = x i V (e i )=x i V 0 (e i )= θ i x i γ π(i). οf2. x E (3), 7 0, x =0, ( ) V (x) = x x V 0, x 0. x! V V 0 +>, S2t (I) d (II) ffld@l V H %2-ρ. Φ) tg8w_i F (n).$ +-ρ%2 7T±ν+fi_? Ψν%' [1] Banach, S., Théorie des Opérations Linéaires, Warszawa: Z Subwencji Funduszu Kultury Narodowej, 1932 (in French). [2] Cheng, L.X. and Dong, Y.B., On a generalized Mazur-Ulam question: extension of isometries between unit spheres of Banach spaces, J. Math. Anal. Appl., 2011, 377(2): [3] Ding, G.G., The isometric extension problem in the unit spheres of l p(γ) (p >1) type spaces, Sci. China Math., 2002, 32(11): [4] Ding, G.G., The representation of onto isometric mappings between two spheres of l -type spaces and application on isometric extension problem, Sci. Sin. Math., 2004, 34(2): (in Chinese). [5] Ding, G.G., On the linearly isometric extension problem, Sci. Sin. Math., 2015, 45(1): 1-8 (in Chinese). [6] Fang, X.N. and Wang, J.H., Extension of isometries on the unit sphere of l p(γ) space, Sci. China Math., 2010, 53(4): [7] Liang, X.B. and Huang, S.X., On the representation of linear isometries between the E (2) type real spaces, ActaMath.Sci.Ser.AChin.Ed., 2010, 30(4): (in Chinese). [8] Liang, X.B. and Xie, X.H., On the representation of linear isometries between the En A type real spaces, Pure Appl. Math. (Xi an), 2014, 30(2): (in Chinese). [9] Tingley, D., Isometries of the unit sphere, Geom. Dedicata, 1987, 22(3): On the Representation of Isometric Linear Operators in the F (3) Type Spaces LIANG Xiaobin (Department of Mathematics, Shangrao University, Shangrao, Jiangxi, , P. R. China) Abstract: In the paper, we introduce the concept of normed symmetric bases. By using its properties and algebraic techniques, we get the representation theorem of isometric linear operators in F (3) type Banach spaces, so as to reveal the nature that the linear isometric operators are the synthesis of reflections and rotations in 3-dimensional Euclidean space. Finally, we also use the representation theorem to obtain a necessary and sufficient condition of Tingley issues in E (3) space, which is a new result. Keywords: isometric linear operators; representation theorem; F (3) type space
J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5
Vol. 37 ( 2017 ) No. 5 J. of Math. (PRC) 1,2, 1, 1 (1., 225002) (2., 225009) :. I +AT +, T + = T + (I +AT + ) 1, T +. Banach Hilbert Moore-Penrose.. : ; ; Moore-Penrose ; ; MR(2010) : 47L05; 46A32 : O177.2
a~ 1.1 [4] x, y X. x + λy x, λ C, Ifi x 4 y Φ Birkhoff MIß, a~ 1.2 [8] ε [0, 1), x, y X. x + λy 2 x 2 2ε x λy, λ C, Ifi x 4
fl45xfl4r ffi - R K Vol.45, No.4 2016q7F ADVANCES IN MATHEMATICS (CHINA) July, 2016 d ju Birkhoff Πh`fff! " (~i,efl,ba
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (
35 Þ 6 Ð Å Vol. 35 No. 6 2012 11 ACTA MATHEMATICAE APPLICATAE SINICA Nov., 2012 È ÄÎ Ç ÓÑ ( µ 266590) (E-mail: jgzhu980@yahoo.com.cn) Ð ( Æ (Í ), µ 266555) (E-mail: bbhao981@yahoo.com.cn) Þ» ½ α- Ð Æ Ä
Solutions - Chapter 4
Solutions - Chapter Kevin S. Huang Problem.1 Unitary: Ût = 1 ī hĥt Û tût = 1 Neglect t term: 1 + hĥ ī t 1 īhĥt = 1 + hĥ ī t ī hĥt = 1 Ĥ = Ĥ Problem. Ût = lim 1 ī ] n hĥ1t 1 ī ] hĥt... 1 ī ] hĥnt 1 ī ]
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Single-value extension property for anti-diagonal operator matrices and their square
1 215 1 Journal of East China Normal University Natural Science No. 1 Jan. 215 : 1-56412151-95-8,, 71119 :, Hilbert. : ; ; : O177.2 : A DOI: 1.3969/j.issn.1-5641.215.1.11 Single-value extension property
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM
2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).
Vol. 37 ( 2017 ) No. 3 J. of Math. (PRC) R N - R N - 1, 2 (1., 100029) (2., 430072) : R N., R N, R N -. : ; ; R N ; MR(2010) : 58K40 : O192 : A : 0255-7797(2017)03-0467-07 1. [6], Mather f : (R n, 0) R
On the Galois Group of Linear Difference-Differential Equations
On the Galois Group of Linear Difference-Differential Equations Ruyong Feng KLMM, Chinese Academy of Sciences, China Ruyong Feng (KLMM, CAS) Galois Group 1 / 19 Contents 1 Basic Notations and Concepts
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库
ß¼ 0384 9200852727 UDC Î ± À» An Integral Equation Problem With Shift of Several Complex Variables Û Ò ÖÞ Ô ²» Ý Õ Ø ³ÇÀ ¼ 2 0 º 4 Ñ ³ÇÙÐ 2 0 º Ñ Ä ¼ 2 0 º Ñ ÄÞ Ê Ã Ö 20 5  Š¾ º ½ É É Ç ¹ ¹Ý É ½ ÚÓÉ
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp
Jordan Journal of Mathematics and Statistics (JJMS) 4(2), 2011, pp.115-126. α, β, γ ORTHOGONALITY ABDALLA TALLAFHA Abstract. Orthogonality in inner product spaces can be expresed using the notion of norms.
MATRIX INVERSE EIGENVALUE PROBLEM
English NUMERICAL MATHEMATICS Vol.14, No.2 Series A Journal of Chinese Universities May 2005 A STABILITY ANALYSIS OF THE (k) JACOBI MATRIX INVERSE EIGENVALUE PROBLEM Hou Wenyuan ( ΛΠ) Jiang Erxiong( Ξ)
d 2 y dt 2 xdy dt + d2 x
y t t ysin y d y + d y y t z + y ty yz yz t z y + t + y + y + t y + t + y + + 4 y 4 + t t + 5 t Ae cos + Be sin 5t + 7 5 y + t / m_nadjafikhah@iustacir http://webpagesiustacir/m_nadjafikhah/courses/ode/fa5pdf
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014
38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
On a four-dimensional hyperbolic manifold with finite volume
BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages 80 89 ISSN 1024 7696 On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α
Α Ρ Χ Α Ι Α Ι Σ Τ Ο Ρ Ι Α Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α Σ η µ ε ί ω σ η : σ υ ν ά δ ε λ φ ο ι, ν α µ ο υ σ υ γ χ ω ρ ή σ ε τ ε τ ο γ ρ ή γ ο ρ ο κ α ι α τ η µ έ λ η τ ο ύ
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
On Numerical Radius of Some Matrices
International Journal of Mathematical Analysis Vol., 08, no., 9-8 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/ijma.08.75 On Numerical Radius of Some Matrices Shyamasree Ghosh Dastidar Department
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
ECE 468: Digital Image Processing. Lecture 8
ECE 468: Digital Image Processing Lecture 8 Prof. Sinisa Todorovic sinisa@eecs.oregonstate.edu 1 Image Reconstruction from Projections X-ray computed tomography: X-raying an object from different directions
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Spherical Coordinates
Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical
Intuitionistic Fuzzy Ideals of Near Rings
International Mathematical Forum, Vol. 7, 202, no. 6, 769-776 Intuitionistic Fuzzy Ideals of Near Rings P. K. Sharma P.G. Department of Mathematics D.A.V. College Jalandhar city, Punjab, India pksharma@davjalandhar.com
A research on the influence of dummy activity on float in an AOA network and its amendments
2008 6 6 :100026788 (2008) 0620106209,, (, 102206) : NP2hard,,..,.,,.,.,. :,,,, : TB11411 : A A research on the influence of dummy activity on float in an AOA network and its amendments WANG Qiang, LI
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
D Alembert s Solution to the Wave Equation
D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS
Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, 2017 @ RIMS Contents Introduction Generalized Karcher equation Ando-Hiai inequalities Problem Introduction PP: The set of all positive definite operators
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Teor imov r. ta matem. statist. Vip. 94, 2016, stor
eor imov r. ta matem. statist. Vip. 94, 6, stor. 93 5 Abstract. e article is devoted to models of financial markets wit stocastic volatility, wic is defined by a functional of Ornstein-Ulenbeck process
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
Commutative Monoids in Intuitionistic Fuzzy Sets
Commutative Monoids in Intuitionistic Fuzzy Sets S K Mala #1, Dr. MM Shanmugapriya *2 1 PhD Scholar in Mathematics, Karpagam University, Coimbatore, Tamilnadu- 641021 Assistant Professor of Mathematics,
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1
General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,
F19MC2 Solutions 9 Complex Analysis
F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at
Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!
Bessel functions The Bessel function J ν (z of the first kind of order ν is defined by J ν (z ( (z/ν ν Γ(ν + F ν + ; z 4 ( k k ( Γ(ν + k + k! For ν this is a solution of the Bessel differential equation
SPECIAL FUNCTIONS and POLYNOMIALS
SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Heisenberg Uniqueness pairs
Heisenberg Uniqueness pairs Philippe Jaming Bordeaux Fourier Workshop 2013, Renyi Institute Joint work with K. Kellay Heisenberg Uniqueness Pairs µ : finite measure on R 2 µ(x, y) = R 2 e i(sx+ty) dµ(s,
Estimation of stability region for a class of switched linear systems with multiple equilibrium points
29 4 2012 4 1000 8152(2012)04 0409 06 Control Theory & Applications Vol 29 No 4 Apr 2012 12 1 (1 250061; 2 250353) ; ; ; TP273 A Estimation of stability region for a class of switched linear systems with
Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
33 2 2011 4 Vol. 33 No. 2 Apr. 2011 1002-8412 2011 02-0096-08 1 1 1 2 3 1. 361005 3. 361004 361005 2. 30 TU746. 3 A Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention
X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F
Πανεπιστήμιο Θεσσαλίας ΗΥ240: Θεωρία Σημάτων και Συστημάτων 4..2006 Φυλλάδιο Τυπολόγιο μετασχηματισμών ourier, Laplace και Z Σύμβολα Για έναν πραγματικό αριθμό x, συμβολίζουμε με x, x, [x], τον αμέσως
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).
Vol. 34 ( 2014 ) No. 4 J. of Math. (PRC) (, 710123) :. -,,, [8].,,. : ; - ; ; MR(2010) : 91A30; 91B30 : O225 : A : 0255-7797(2014)04-0779-08 1,. [1],. [2],.,,,. [3],.,,,.,,,,.., [4].,.. [5] -,. [6] Markov.
Cyclic or elementary abelian Covers of K 4
Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
The k-α-exponential Function
Int Journal of Math Analysis, Vol 7, 213, no 11, 535-542 The --Exponential Function Luciano L Luque and Rubén A Cerutti Faculty of Exact Sciences National University of Nordeste Av Libertad 554 34 Corrientes,
Laplace s Equation in Spherical Polar Coördinates
Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1
DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation
DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
N. P. Mozhey Belarusian State University of Informatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS
Òðóäû ÁÃÒÓ 07 ñåðèÿ ñ. 9 54.765.... -. -. -. -. -. : -. N. P. Mozhey Belarusian State University of Inforatics and Radioelectronics NORMAL CONNECTIONS ON SYMMETRIC MANIFOLDS In this article we present
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb
Ξ 31 Vol 31,No 1 2 0 0 1 2 JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb 2 0 0 1 :025322778 (2001) 0120016205 (, 230026) : Q ( m 1, m 2,, m n ) k = m 1 + m 2 + + m n - n : Q ( m 1, m 2,, m
SOME PROPERTIES OF FUZZY REAL NUMBERS
Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen
Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D
Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions
International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
n=2 In the present paper, we introduce and investigate the following two more generalized
MATEMATIQKI VESNIK 59 (007), 65 73 UDK 517.54 originalni nauqni rad research paper SOME SUBCLASSES OF CLOSE-TO-CONVEX AND QUASI-CONVEX FUNCTIONS Zhi-Gang Wang Abstract. In the present paper, the author
Error ana lysis of P2wave non2hyperbolic m oveout veloc ity in layered media
28 1 2009 3 Vol128 No11 GLOBAL GEOLOGY Mar1 2009 : 1004 5589 (2009) 01 0098 05 P 1, 1, 2, 1 1., 130026; 2., 100027 :,,,, 1%,,, 12187%,, : ; ; ; : P63114 : A Abstract: Error ana lysis of P2wave non2hyperbolic
Risk! " #$%&'() *!'+,'''## -. / # $
Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
A General Note on δ-quasi Monotone and Increasing Sequence
International Mathematical Forum, 4, 2009, no. 3, 143-149 A General Note on δ-quasi Monotone and Increasing Sequence Santosh Kr. Saxena H. N. 419, Jawaharpuri, Badaun, U.P., India Presently working in
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
Apr Vol.26 No.2. Pure and Applied Mathematics O157.5 A (2010) (d(u)d(v)) α, 1, (1969-),,.
2010 4 26 2 Pure and Applied Matheatics Apr. 2010 Vol.26 No.2 Randić 1, 2 (1., 352100; 2., 361005) G Randić 0 R α (G) = v V (G) d(v)α, d(v) G v,α. R α,, R α. ; Randić ; O157.5 A 1008-5513(2010)02-0339-06
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!
MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
POSITIVE SOLUTIONS FOR A FUNCTIONAL DELAY SECOND-ORDER THREE-POINT BOUNDARY-VALUE PROBLEM
Electronic Journal of Differential Equations, Vol. 26(26, No. 4, pp.. ISSN: 72-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp POSITIVE SOLUTIONS
J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]
Vol 36 ( 216 ) No 3 J of Mah (PR) 1, 2, 3 (1, 4335) (2, 4365) (3, 431) :,,,, : ; ; ; MR(21) : 35A1; 35A2 : O17529 : A : 255-7797(216)3-591-7 1 d d [x() g(, x )] = f(, x ),, (11) x = ϕ(), [ r, ], (12) x(
Quick algorithm f or computing core attribute
24 5 Vol. 24 No. 5 Cont rol an d Decision 2009 5 May 2009 : 100120920 (2009) 0520738205 1a, 2, 1b (1. a., b., 239012 ; 2., 230039) :,,.,.,. : ; ; ; : TP181 : A Quick algorithm f or computing core attribute
Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl
Around Vortices: from Cont. to Quantum Mech. Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl Maicon José Benvenutti (UNICAMP)
Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ
Ó³ Ÿ. 218.. 15, º 2(214).. 171Ä176 Š Œ œ ƒˆˆ ˆ ˆŠ ˆ ˆ ˆ Š Š Œ Œ Ÿ ˆ Š ˆ Š ˆ ˆŠ Œ œ ˆ.. Š Ö,, 1,.. ˆ μ,,.. μ³ μ,.. ÉÓÖ μ,,.š. ʳÖ,, Í μ ²Ó Ò ² μ É ²Ó ± Ö Ò Ê É É Œˆ ˆ, Œμ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê μ ± Ê É
Wishart α-determinant, α-hafnian
Wishart α-determinant, α-hafnian (, JST CREST) (, JST CREST), Wishart,. ( )Wishart,. determinant Hafnian analogue., ( )Wishart,. 1 Introduction, Wishart. p ν M = (µ 1,..., µ ν ) = (µ ij ) i=1,...,p p p
þÿ¼ ½ ±Â : ÁÌ» Â Ä Å ÃÄ ²µ þÿä Å ÃÇ»¹º Í Á³ Å
Neapolis University HEPHAESTUS Repository School of Economic Sciences and Business http://hephaestus.nup.ac.cy Master Degree Thesis 2015 þÿ ½»Åà Äɽ µ½½ ¹Î½ Ä Â þÿ±¾¹»ì³ à  º±¹ Ä Â þÿ±à ĵ»µÃ¼±Ä¹ºÌÄ Ä±Â
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
, Snowdon. . Frahm.
- :..... ( ). :., Snowdon.. Frohrib Jennige -.[ ]...[ ] Ghannadi-Asl Zahrai..,.[ ]... Frahm Frahm [ ] Den Hartog. mzahrai@ut.ac.ir, hashemif@conwag.com . - Den Hartog g(t)=0 ω f(t)=p 0 sinωt. ω y st =P