: :

Σχετικά έγγραφα
: :

: :

: :

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 24 Νοεμβρίου 2007 Β ΓΥΜΝΑΣΙΟΥ

B τάξη Γυμνασίου Πρόβλημα 1. Να υπολογίσετε την τιμή της αριθμητικής παράστασης

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

Α={1,11,111,1111,..., }

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 18 :

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

B τάξη Γυμνασίου ( 2 2) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 20 Οκτωβρίου 2012 Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 1 ΝΟΕΜΒΡΙΟΥ 2008 B ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ Β τάξη Λυκείου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 79 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 10 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

2. Να προσδιορίσετε τους επταψήφιους αριθμούς, οι οποίοι είναι τέλεια τετράγωνα και τα τρία πρώτα ψηφία τους, στη σειρά, είναι τα 4, 0 και 0.

: :

Θαλής Β' Γυμνασίου

x , οπότε : Α = = 2.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 71 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 2010 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 76 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 14 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 19 Νοεμβρίου 2011 Β ΓΥΜΝΑΣΙΟΥ 2 : 2.

GREEK MATHEMATICAL SOCIETY Πανεπιστημίου (Ελευθερίου Βενιζέλου) ΑΘΗΝΑ Τηλ Fax:

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 77 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 12 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 21 ΝΟΕΜΒΡΙΟΥ 2009 B ΓΥΜΝΑΣΙΟΥ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

( 5) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) Ενδεικτικές λύσεις

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ. 3 2 x. β)

Ιωάννης Σ. Μιχέλης Μαθηματικός

Θαλής Α' Λυκείου

2. Αν ΑΒΓΔ είναι ένα τετράπλευρο περιγεγραμμένο σε κύκλο ακτίνας ρ, να δείξετε ότι ισχύει: ΑΒ + ΓΔ 4ρ.

Για τις εορτές των Χριστουγέννων και το νέο έτος το Δ.Σ. της ΕΜΕ σας εύχεται ολόψυχα χρόνια πολλά, προσωπική και οικογενειακή ευτυχία.

Ευκλείδης Β' Γυμνασίου Να λύσετε την εξίσωση: 1 {3 [5 7 x : 9] 7} 5=26

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 65 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 2004 B ΓΥΜΝΑΣΙΟΥ

2. Αν α, β είναι θετικοί πραγματικοί και x, y είναι θετικοί πραγματικοί διαφορετικοί από το 0, να δείξετε ότι: x β 2 α β

Μαθηματικά Α' Γυμ. - Ερωτήσεις Θεωρίας 1 ΕΡΩΤΗΣΕΙΣ. (1) Ποιοι είναι οι φυσικοί αριθμοί; Γράψε τέσσερα παραδείγματα.

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

Θέματα κι επίσημες λύσεις 2006 εως 2014 Θαλή κι Ευκλείδη της Ε.Μ.Ε.

Θέματα κι επίσημες λύσεις 2006 εως 2015 Θαλή κι Ευκλείδη της Ε.Μ.Ε.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Α ΤΑΞΗΣ ΓΥΜΝΑΣΙΟΥ ΣΧΟΛΙΚΟ ΕΤΟΣ: ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΗΜΕΡΟΜΗΝΙΑ: ΧΧ ΙΟΥΝΙΟΥ 2017 ΘΕΜΑΤΑ ΘΕΩΡΙΑΣ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

Α τάξη Λυκείου ( ) 2. ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ 2009

ΜΑΘΗΜΑΤΙΚΑ ΑΛΓΕΒΡΑ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 3 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ B ΓΥΝΜΑΣΙΟΥ. 1. Να λυθούν οι εξισώσεις και οι ανισώσεις :

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 78 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 11 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

Οι γωνίες και που ονομάζονται «εντός εναλλάξ γωνίες» και είναι ίσες. «εντός-εκτός και επί τα αυτά μέρη γωνίες» και είναι ίσες.

ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 68 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 24 ΝΟΕΜΒΡΙΟΥ Α τάξη Λυκείου

Κεφάλαιο 7 ο : Θετικοί και Αρνητικοί αριθμοί

ΕΠΑΝΑΛΗΨΗ Α ΓΥΜΝΑΣΙΟΥ

( ) ( ) ( ) ( ) ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 30 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 23 Φεβρουαρίου 2013 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Λύση (α) Έχουμε

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)

B τάξη Γυμνασίου : : και 4 :

1 ΘΕΩΡΙΑΣ...με απάντηση

Συνοπτική Θεωρία Μαθηματικών Α Γυμνασίου

Θέματα μεγάλων τάξεων

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 33 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 27 Φεβρουαρίου 2016

Πρόβλημα 1 (α) Να συγκρίνετε τους αριθμούς Μονάδες 2 (β) Αν ισχύει ότι: και αβγ 0, να βρείτε την τιμή της παράστασης: Γ= + +.

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΕΥΚΛΕΙΔΗΣ ΣΑΒΒΑΤΟ, 17 ΙΑΝΟΥΑΡΙΟΥ B τάξη Γυμνασίου Α= ( 2 2)

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 32 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" 28 Φεβρουαρίου 2015 Θέματα μικρών τάξεων

β =. Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα 1 Να βρείτε την τιμή της παράστασης: 3β + α α 3β αν δίνεται ότι: 3

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 19 Νοεμβρίου 2011 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ Α =

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Α ΓΥΜΝΑΣΙΟΥ

Άλγεβρα ( ) = ( 1)( 3 2) ( 1) 2. i) Να αποδείξετε ότι ( ) ii) Να υπολογίσετε την αριθμητική τιμή του ( ) iii) Να λύσετε την εξίσωση P( x ) = 0

ΑΣΚΗΣΕΙΣ 3 Ο ΚΕΦΑΛΑΙΟ

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

Ερωτήσεις τύπου «Σωστό - Λάθος» Σωστό Λάθος

Μαθηματικά Α Γυμνασίου

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 75 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 1 Νοεμβρίου Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ Προκριματικός διαγωνισμός Απριλίου 2015

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 72 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 19 Νοεμβρίου 2011 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ

2ο ΘΕΜΑ. μ Σε ισοσκελές τρίγωνο ΑΒΓ AB

Μπάμπης Στεργίου. Μαθηματική Ομάδα Β ΓΥΜΝΑΣΙΟΥ. Διαγωνισμοί της ΕΜΕ ΘΑΛΗΣ - ΕΥΚΛΕΙΔΗΣ. Προσωρινό αρχείο. Βιβλίο του Μαθητή

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΙΣΟΤΗΤΑ ΤΡΙΓΩΝΩΝ. 1. Καθεμιά από τις παρακάτω προτάσεις μπορεί να είναι σωστή ή λάθος Να γράψετε Σ στο

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ. α β. β (β) Το μικρότερο από τα κλάσματα που βρήκαμε στο προηγούμενο ερώτημα είναι το

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 36 η Εθνική Μαθηματική Ολυμπιάδα «Ο ΑΡΧΙΜΗΔΗΣ» 23 Φεβρουαρίου 2019 Θέματα και ενδεικτικές λύσεις μεγάλων τάξεων

Μαθηματικά προσανατολισμού Β Λυκείου

ΓΡΑΠΣΕ ΑΝΑΚΕΥΑΛΑΙΩΣΙΚΕ ΕΞΕΣΑΕΙ ΠΕΡΙΟΔΟΤ ΜΑΪΟΤ ΙΟΤΝΙΟΤ ΘΕΩΡΙΑ. Β. Να συμπληρώσετε στο γραπτό σας τις παρακάτω σχέσεις ώστε να προκύψουν ταυτότητες:

ΜΕΡΟΣ Α. 1 ο ΚΕΦΑΛΑΙΟ

ΜΑΘΗΜΑΤΙΚΑ - Γ ΓΥΜΝΑΣΙΟΥ

ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ΜΗΚΟΣ ΚΥΚΛΟΥ ΕΜΒΑΔΟΝ ΚΥΚΛΟΥ

ΤΕΤΡΑΚΤΥΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΣΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Αμυραδάκη 20, Νίκαια ( ) ΝΟΕΜΒΡΙΟΣ 2013 ΤΑΞΗ... Β ΛΥΚΕΙΟΥ... ΜΑΘΗΜΑ...ΓΕΩΜΕΤΡΙΑΣ...

Αρχιμήδης Μικροί Θεωρούμε τους αριθμούς. A= : : και B= 2 25 : Ποιος είναι μεγαλύτερος;

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ. B τάξη Γυμνασίου. Α= 2 1 : και :

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΓΕΩΜΕΤΡΙΑ Β ΛΥΚΕΙΟΥ ΜΕΤΡΙΚΕΣ ΣΧΕΣΕΙΣ

Μπάμπης Στεργίου. Μαθηματική Ομάδα Β ΓΥΜΝΑΣΙΟΥ. Διαγωνισμοί της ΕΜΕ ΘΑΛΗΣ - ΕΥΚΛΕΙΔΗΣ. Προσωρινό αρχείο. Βιβλίο του Μαθητή

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 27 η Ελληνική Μαθηματική Ολυμπιάδα "Ο Αρχιμήδης" ΣΑΒΒΑΤΟ, 27 ΦΕΒΡΟΥΑΡΙΟΥ 2010

ΟΔΗΓΙΕΣ ΠΡΟΣ ΤΟΥΣ ΠΡΟΕΔΡΟΥΣ ΤΩΝ ΤΟΠΙΚΩΝ ΝΟΜΑΡΧΙΑΚΩΝ ΕΠΙΤΡΟΠΩΝ, ΠΡΟΕΔΡΟΥΣ ΕΞΕΤΑΣΤΙΚΩΝ ΚΕΝΤΡΩΝ ΚΑΙ ΕΠΙΤΗΡΗΤΕΣ

Transcript:

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 74 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Οκτωβρίου 03 Ενδεικτικές λύσεις Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 6 74 3 : 4 5334 :. 9 8 9 6 74 6 74 3 : 4 53 34 : 3 3 53 8 9 8 9 9 9 8 74 54 3 3 53 94 94 6 00. 9 9 9 Πρόβλημα Ένας οικογενειάρχης πήρε από την τράπεζα ένα ποσόν χρημάτων. Από αυτά ξόδεψε το 0% για την αγορά ενός φορητού ηλεκτρονικού υπολογιστή. Στη συνέχεια, από τα χρήματα που του έμειναν ξόδεψε το 5% για αγορά τροφίμων της οικογένειας. Αν του έμειναν τελικά 360 ευρώ, να βρείτε: (α) Πόσα χρήματα πήρε από την τράπεζα ο οικογενειάρχης. (β) Πόσα χρήματα στοίχισαν τα τρόφιμα. (γ) Ποιο ποσοστό των χρημάτων που πήρε από την τράπεζα ξόδεψε συνολικά. (α) Μετά την αγορά τροφίμων έμειναν στον οικογενειάρχη 360 ευρώ. Αυτά τα χρήματα αποτελούν το 85% των χρημάτων που του έμειναν μετά την αγορά του υπολογιστή. Άρα το 85% αντιστοιχεί σε ποσόν 360 ευρώ, οπότε το ποσόν που του έμεινε μετά την αγορά του υπολογιστή είναι 00 600 360 600 ευρώ. 85 Σύμφωνα με τα δεδομένα του προβλήματος: το (00 0)% 80% του ποσού που πήρε αντιστοιχούν σε 600 ευρώ. Άρα τα χρήματα που πήρε από την τράπεζα είναι: 00 ευρώ. 600 000 80

(β) Τα τρόφιμα στοίχισαν το 5% των χρημάτων που έμειναν μετά την αγορά του υπολογιστή, δηλαδή 5 600 40 ευρώ. 00 Το ποσό αυτό μπορεί να βρεθεί και με την αφαίρεση: 600 360 40. (γ) Ο οικογενειάρχης από τα 000 ευρώ που πήρε από την τράπεζα ξόδεψε 000 360 640 ευρώ, δηλαδή ποσοστιαία επί τις εκατό 640 64 00 3. 000 Πρόβλημα 3 Δίνεται τρίγωνο ΑΒΓ στο οποίο η γωνία ˆ είναι διπλάσια της γωνίας ˆ. Η μεσοκάθετη της πλευράς ΒΓ τέμνει την πλευρά ΑΓ στο σημείο Ε και η ευθεία ΒΕ τέμνει την ευθεία, που περνάει από το σημείο Α και είναι παράλληλη προς την πλευρά ΒΓ, στο σημείο Ζ. Να αποδείξετε ότι: (α), (β) ˆ ˆ. Σχήμα (α) Επειδή το σημείο Ε ανήκει στη μεσοκάθετη της ΒΓ έπεται ότι, οπότε από το ισοσκελές τρίγωνο προκύπτει ˆ ˆ.Επειδή έπεται ότι: ˆ ˆ (εντός εναλλάξ γωνίες). Από τη σχέση της υπόθεσης ˆ, ˆ έχουμε: ˆ ˆ ˆ ˆ ˆ. Άρα το τρίγωνο ΑΒΖ είναι ισοσκελές με ΑΒ=ΑΖ. (β) Η γωνία ˆ είναι εξωτερική στο τρίγωνο ΕΒΓ, οπότε ˆ ˆ ˆ ˆ ˆ. Πρόβλημα 4 7 Ο λόγος δυο φυσικών αριθμών είναι. Διαιρώντας τον μεγαλύτερο αριθμό με το 5 8, το πηλίκο της διαίρεσης είναι ίσο με τον αριθμό 8, ενώ διαιρώντας τον μικρότερο αριθμό με το το πηλίκο της διαίρεσης είναι ίσο με τον αριθμό 9. Αν γνωρίζετε ότι το υπόλοιπο της διαίρεσης του μεγαλύτερου αριθμού με το 8 είναι πενταπλάσιο του

υπόλοιπου της διαίρεσης του μικρότερου αριθμού με το, να βρείτε τους δυο αριθμούς. ( ος τρόπος) 7 Έστω, οι δυο φυσικοί αριθμοί με, Τότε θα είναι και επιπλέον 5 88 5 και 9. Επομένως, έχουμε 7 5 7 (ιδιότητα ίσων κλασμάτων), οπότε έχουμε: 5 5 44 5 7 08 (από επιμεριστική ιδιότητα) 70 5 756 7 8 36, οπότε θα είναι 54 και 0. ος τρόπος. Έχουμε: 88, με 0,,,...,7 και 9, με 0,,,...,. Τα ζεύγη για τα οποία μπορεί να ισχύει η ισότητα είναι τα : και από αυτά μόνο το ζεύγος 0, μας δίνει 54 και 0 και το κλάσμα 54 0 που είναι ισοδύναμο με το 7 5. Γ ΓΥΜΝΑΣΙΟΥ Πρόβλημα Αν ο πραγματικός αριθμός είναι η μικρότερη δεκαδική προσέγγιση δέκατου του άρρητου αριθμού 5, να βρείτε την αριθμητική τιμή της παράστασης: 3 3 4,6 0,. Έχουμε: 45, οπότε 4 5 5. Είναι, οπότε η ζητούμενη τιμή του είναι,. Με αντικατάσταση βρίσκουμε: Πρόβλημα Αν ο θετικός ακέραιος ικανοποιεί τις ανισώσεις 4 5, να λύσετε ως προς άγνωστο x την ανίσωση: 3 x x x. 4 5 5 Έχουμε 4 5 5 4. Επειδή ο είναι θετικός ακέραιος, έπεται ότι ή.

3 x Για η ανίσωση γίνεται: x x x x x. Για η ανίσωση γίνεται: 3 x x x x x 0x, η οποία είναι αδύνατη. Πρόβλημα 3 Στο ορθοκανονικό σύστημα αναφοράς χoψ μια ευθεία (ε) σχηματίζει με τον άξονα χχ γωνία και επίσης διέρχεται από το σημείο, 6. Το σημείο Α ανήκει στον άξονα χχ και στην ευθεία, ενώ το σημείο Β ανήκει στον άξονα ψψ και στην ευθεία. (α) Βρείτε την εξίσωση της ευθείας. (β) Βρείτε τις συντεταγμένες των σημείων Α, Β και το εμβαδόν του τριγώνου. (γ) Βρείτε το εμβαδόν του τριγώνου ΟΑΜ. α) Η ζητούμενη εξίσωση έχει τη μορφή ψ αχ β, όπου α 45. Επειδή η ευθεία περνάει από το σημείο, 6 έχουμε ότι 6ββ -8. Άρα η εξίσωση της ευθείας είναι : ψ χ 8 Σχήμα είναι τα β) Τα σημεία τομής με τους άξονες χχ και ψψ 8, 0 και (0, 8). Άρα έχουμε OAB OA OB 88 3 τετρ. μονάδες,0, τότε το τρίγωνο ΚΜΑ είναι γ) Αν Κ είναι το σημείο με συντεταγμένες ορθογώνιο στο Κ και οι κάθετες πλευρές του έχουν μήκη 6 και 6. Από το Πυθαγόρειο θεώρημα λαμβάνουμε 6 6 36 6. Ομοίως, από το Πυθαγόρειο θεώρημα στο τρίγωνο ΟΑΒ λαμβάνουμε: 8 8 64 8. Επειδή τα τρίγωνα και ΟΑΒ έχουν κοινό ύψος από την κορυφή O, έστω, έχουμε:

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 73 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 0 Οκτωβρίου 0 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 5 44 39 8 : Α= 5 5 5 6 3+ 5 44 39 88 5 39 5 Α= 8 :. 5 5 5 6 = = = 3 + 5 44 5 39.. Πρόβλημα Αν ο κ είναι πρώτος θετικός ακέραιος και διαιρέτης του μέγιστου κοινού διαιρέτη των ακεραίων, 30 και 54, να βρείτε όλες τις δυνατές τιμές του κ και της παράστασης: κ 3 κ Β= :. κ κ Είναι ΜΚΔ (,30,54) = 6. Οι θετικοί διαιρέτες του 6 είναι οι,, 3, 6 και από αυτούς πρώτοι είναι οι και 3. Άρα έχουμε κ = ή κ = 3. 3 Για κ = έχουμε: 4 8 Β = : = : = =. 3 4 3 3

3 κ 3 3 Για κ = 3 ο διαιρέτης 0 της παράστασης Β γίνεται = = 0, ενώ ο κ 3 3 3 διαιρετέος γίνεται = = 5 5 0, οπότε η παράσταση Β δεν ορίζεται. 3 Πρόβλημα 3 Ένας ελαιοπαραγωγός έχει παραγωγή λαδιού 800 κιλά. Για την καλλιέργεια του ελαιώνα του ξόδεψε 407 ευρώ και για τη συγκομιδή του καρπού από τις ελιές του ξόδεψε 050 ευρώ. Η τιμή πώλησης του λαδιού είναι,5 ευρώ το κιλό και κατά την πώληση του λαδιού υπάρχουν κρατήσεις σε ποσοστό 6% πάνω στην τιμή πώλησης. (α) Να βρείτε πόσα κιλά λάδι πρέπει να πωλήσει ο παραγωγός για να καλύψει τα έξοδά του. (β) Αν επιπλέον το ελαιοτριβείο (εργοστάσιο που παράγεται το λάδι) κρατάει για την αμοιβή του το 8% του παραγόμενου λαδιού, να βρείτε πόσα κιλά λάδι θα μείνουν στον παραγωγό μετά την πώληση λαδιού για την κάλυψη των εξόδων του. 6 (α) Κατά την πώληση του λαδιού οι κρατήσεις είναι,5 = 0,5 ευρώ, οπότε η 00 καθαρή τιμή πώλησης είναι,5 0,5 =,35 ευρώ. Τα έξοδα του παραγωγού είναι 050 + 407 = 457 ευρώ, οπότε ο παραγωγός πρέπει να πωλήσει 457 :,35 = 60 κιλά λάδι. 8 (β) Το ελαιοτριβείο θα κρατήσει 800 = 64 κιλά λάδι, οπότε θα μείνουν στον 00 + = κιλά λάδι. παραγωγό 800 ( 60 64) 6 Πρόβλημα 4 3 Δίνεται τρίγωνο ΑΒΓ με ˆ Α = 60 και ΑΓ = ΑΒ. Παίρνουμε σημείο Ε πάνω στην πλευρά ΑΓ τέτοιο ώστε ΑΕ = ΑΒ. Αν η διχοτόμος της γωνίας ˆΑ τέμνει το ευθύγραμμο τμήμα BΕ στο σημείο Δ, να βρείτε τις γωνίες του τριγώνου ΔΕΓ. Σχήμα

Για συντομία, θα συμβολίσουμε με α το μήκος του τμήματος AB, δηλαδή: AB = α. 3 3 Εφόσον ΑΓ = AB = α και ΑΕ = ΑΒ = α, έχουμε: 3 α ΕΓ = ΑΓ ΑΕ = α α =. o Το τρίγωνο ΑΒΕ είναι ισοσκελές ( ΑΒ = ΑΕ ) και η γωνία του Αˆ είναι 60, οπότε το τρίγωνο είναι ισόπλευρο και η διχοτόμος του ΑΔ είναι και διάμεσος. α α Άρα είναι ΔΕ = και το τρίγωνο ΔΕΓ είναι ισοσκελές, αφού ΕΓ = ΕΓ =. Η γωνία ˆΕ είναι εξωτερική του ισόπλευρου τριγώνου ΑΒΕ. Άρα έχουμε Ε ˆ ˆ = 80 ΑΕΒ = 80 60 = 0, 80 0 οπότε : ˆ ˆ o Γ =Δ = = 30. Γ ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης 4 6 8 x y z Κ=, αν είναι x=, y = 4, z = 8 3 3 3 ( 3 3 + 4 9 ) και να αποδείξετε ότι είναι τέλειο τετράγωνο ρητού αριθμού. Έχουμε: ( ) ( ) 0 8 6 0 8 8 6 6 3 6 8 x=, y = 4 = =, z = 8 = =. Ο αριθμητής του κλάσματος γίνεται: ( ) ( ) ( ) 4 6 8 0 6 4 8 6 8 Α = x y z = = = Ο παρανομαστής του κλάσματος γίνεται: 0 64 08 8 0. ( 3 3 ) ( 3 4 6 ) 3 ( 3 ) 3 3 ( ) Π = 3 3 3 + 4 9 = 3 3 3 + 3 = 3 3 3+ 3 = 3 3 = 3 3 = 3. Άρα έχουμε 0 3 3 33 33 Κ= = = = 8 8 4 = 3 6. Πρόβλημα Να βρείτε για ποιες τιμές του πραγματικού αριθμού α οι αριθμοί 3 και -3 είναι λύσεις της ανίσωσης 4x 5α + < α x 3 + α. ( ) ( ) Ο αριθμός 3 είναι λύση της δεδομένης ανίσωσης, αν ισχύει ότι

6 4 3 5α + < α( 3 3) + ( α ) 5α + < α 6< 7α α >. 7 Ο αριθμός -3 είναι λύση της δεδομένης ανίσωσης, αν ισχύει ότι 4 ( 3) 5α + < α( 3 3) + ( α ) 5α + < 6α + α. 8< α α > 8 Επομένως οι αριθμοί 3 και -3 είναι λύσεις της ανίσωσης, όταν συναληθεύουν οι 6 6 ανισώσεις α > και α > 8, δηλαδή όταν α >. 7 7 Πρόβλημα 3 Αν το εμβαδόν Ε του χωρίου ΑΒΔΓ του διπλανού σχήματος ισούται με το του εμβαδού του κυκλικού δακτυλίου που ορίζεται από τους κύκλους ( Ο,α ) και ( Ο, β ), 0< β < α, να βρείτε τη γωνία ω = ΑΟΒ ˆ και την τιμή της παράστασης: Σ= ημ ω συνω 4. 3 3 Σχήμα Το εμβαδόν του χωρίου ΑΒΔΓ ισούται με τη διαφορά των εμβαδών των κυκλικών τομέων ΟΑΒ, και ΟΓΔ,, δηλαδή είναι ( ) ( ) ( ) ω ω α β ω Ε( ΑΒΔΓ ) = πα πβ =. π π Ο και Ο, β, 0< β < α, ισούται με Ε( Ο, β, α) = π ( α β ), οπότε, σύμφωνα με την Το εμβαδόν του κυκλικού δακτυλίου που ορίζεται από τους κύκλους (,α ) ( ) υπόθεση, έχουμε: ( ) ( ) ( ) ( ) Ε ΑΒΔΓ α β ω π = = ω =. Ε Ο, βα, π α β 6 π π Επειδή είναι ημω = ημ = και συν ω = συν =, έχουμε 6 3

3 3 3 3 3 3 3 Σ= ημ ω συν ω = = = =. 4 4 8 8 5 Πρόβλημα 4 Δίνεται ορθογώνιο ΑΒΓΔ με ΑΔ = α cm και ΑΒ<ΑΔ. Η κάθετη από την κορυφή Β προς τη διαγώνιο ΑΓ την τέμνει στο σημείο Ε. Αν ισχύει ότι ΕΓ = ΑΕ, να βρείτε: (i) το μήκος της πλευράς ΑΒ (ii) Το εμβαδόν του κύκλου που περνάει και από τις τέσσερις κορυφές του ορθογωνίου ΑΒΓΔ. Σχήμα 3 (i) Έστω ΑΒ = ΓΔ = x, ΑΕ = y, ΕΓ = y και ΒΖ= z. Από την εφαρμογή του Πυθαγορείου θεωρήματος στο τρίγωνα ΑΒΕ έχουμε: x = y + z z = x y. () Από την εφαρμογή του Πυθαγορείου θεωρήματος στο τρίγωνα ΒΓΕ έχουμε: α = 4y + z z = α 4y. () Από τις σχέσεις () και () λαμβάνουμε: α 4y = x y x = α 3y (3) Από την εφαρμογή του Πυθαγορείου θεωρήματος στο τρίγωνο ΑΔΓ έχουμε: 9y = x + α x = 9y α. (4) Από τις σχέσεις (3) και (4) έχουμε: α α 6 9y α = α 3y y = y =, 6 6 οπότε λαμβάνουμε και α 6 α α α x = α 3 = α 3 = x= 6. 6 (ii) Διάμετρος του κύκλου είναι η ΑΓ= 3y, οπότε η ακτίνα του είναι 3 α 6 R= y =. Το εμβαδό του κύκλου είναι 4 6α 3πα E = πr = π =. 6 8

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ 9 Νοεμβρίου 0 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ Πρόβλημα Να υπολογίσετε την τιμή της παράστασης: 7 3 7 : 5 7 4 7 6 3 4 4 3 3 4 4 4 4 7 7 6 3 7 3 9 8 6 3 3 0. 4 7 7 6 6 6 6 7 7 6 6 Πρόβλημα Αν ο είναι πρώτος φυσικός αριθμός και το κλάσμα 0 αριθμό, να βρείτε όλες τις δυνατές τιμές της παράστασης: :. 9 5 παριστάνει φυσικό Επειδή το κλάσμα 0 ν παριστάνει φυσικό αριθμό και ο αριθμός είναι πρώτος φυσικός αριθμός, έπεται ότι οι δυνατές τιμές του είναι ή 5. 0 0 Για,έχουμε: : : : 9 0. 9 9 9 9 9 9 5 5 5 5 5 0 5 0 8 80 3 Για 5, έχουμε: : : :. 9 4 9 4 8 4 5 0 5 5 5

Πρόβλημα 3 Τρεις αριθμοί α, β, γ είναι ανάλογοι με τους αριθμούς 3, 9, αντίστοιχα. Αν πάρουμε τον αριθμό γ ως μειωτέο και τον αριθμό α ως αφαιρετέο, τότε προκύπτει διαφορά ίση με 56. Να βρεθούν οι αριθμοί α, β και γ. Από την πρώτη υπόθεση του προβλήματος έχουμε ότι:, οπότε θα 3 9 είναι 3, 9 και. Έτσι από τη δεύτερη υπόθεση του προβλήματος προκύπτει η εξίσωση 56 3 56 8 56 7. Άρα είναι: 37, 97 63 και 7 77. Πρόβλημα 4 Δίνεται οξυγώνιο τρίγωνο με και η διχοτόμος του. Προεκτείνουμε τη διχοτόμο ΑΔ κατά το ευθύγραμμο τμήμα ΔΗ έτσι ώστε ΑΔ = ΔΗ. Από το σημείο Η φέρνουμε ευθεία παράλληλη προς την πλευρά ΑΒ που τέμνει την πλευρά ΑΓ στο σημείο Ε και την πλευρά ΒΓ στο σημείο Ζ.. Να αποδείξετε ότι : ˆ 90.. Να βρείτε τη γωνία ˆ, αν γνωρίζετε ότι : ˆ ˆ 0 0.. Επειδή η είναι διχοτόμος της γωνίας ˆ ˆ, θα ισχύει: ˆ ˆ. Από την παραλληλία των και ZH, συμπεραίνουμε ότι ˆ ˆ (εντός εναλλάξ). Άρα θα ισχύει ˆ ˆ, οπότε το τρίγωνο είναι ισοσκελές. To είναι το μέσο της βάσης του ισοσκελούς τριγώνου, οπότε η διάμεσος ΕΔ θα είναι και ύψος του ισοσκελούς τριγώνου ΑΕΗ, δηλαδή θα είναι και ˆ 90 Η. Επειδή ˆ ˆ 90, θα ισχύει: o o ˆ 90 ˆ 90 ˆ. Σχήμα ˆ 3 ˆ 3 είναι εξωτερική στο τρίγωνο, δηλαδή παραπληρωματική της γωνίας ˆ, οπότε θα είναι ˆ 3 ˆ. Από τις δύο τελευταίες ισότητες γωνιών έχουμε: o o o ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ 0 o 90 90 0.

Γ ΓΥΜΝΑΣΙΟΥ Πρόβλημα Αν 3 5, 7 0 :0 0 :0 και0 000 να βρείτε την τιμή της παράστασης: 6 Έχουμε: 3 3 0 :0 0 0 Άρα η παράσταση γίνεται: 5 7 57 3, 0 :0 0 0 και 0 000 0 0 0. 6 60 0 0 60 60 0 0 0 0 0 0 0 0 0 30 64 0 0 4 0 0 40000 40000 4 Πρόβλημα Να βρεθούν οι ακέραιοι που επαληθεύουν και τις δύο ανισώσεις: x 3 x x5 x9 και x. 4 4 8 Λύνουμε καθεμία από τις ανισώσεις. Έχουμε: x x5 x x5 4 4 4xx58xx58 x3. 4 4 x x 6 x 6 3 x9 x9 x9 x x x 4 8 4 8 4 8 x6 x9 x6 x9 x 8 8 8x x6x98x 8 8 8 8 x6x98x39 x x x. 3 3 Επομένως οι δύο ανισώσεις συναληθεύουν όταν x 3, οπότε οι ακέραιοι που 3 συναληθεύουν τις δύο ανισώσεις είναι οι, και 3. Πρόβλημα 3 Στο ορθοκανονικό σύστημα συντεταγμένων Oxy δίνεται ότι η ευθεία με y 3 x, όπου, πραγματικοί αριθμοί, είναι παράλληλη με την με εξίσωση y x και περνάει από το σημείο,8. (α) Να βρείτε τους πραγματικούς αριθμούς και. εξίσωση ευθεία

(β) Να επαληθεύσετε ότι τα σημεία 4, 4 και, ανήκουν στην ευθεία και να αποδείξετε ότι το σημείο Μ είναι το μέσον του ευθύγραμμου τμήματος ΚΛ. (α) Επειδή είναι, οι δύο ευθείες θα έχουν ίσους συντελεστές διεύθυνσης, οπότε προκύπτει η εξίσωση 3. Έτσι η εξίσωση της ευθείας γίνεται y x. Επιπλέον, από την υπόθεση, το σημείο,8 ανήκει στην ευθεία, οπότε θα ισχύει: 8 4. Άρα έχουμε:, : y x 4. και (β) Επειδή ισχύουν 4 44 και 4, τα σημεία 4, 4 και, επαληθεύουν την εξίσωση της ευθείας, οπότε αυτά είναι σημεία της ευθείας. Επιπλέον, παρατηρούμε οι αποστάσεις του σημείου Μ από τα σημεία Κ και Λ είναι ίσες. Πράγματι, έχουμε 8 936 45 4 4 936 45 Επομένως το σημείο Μ είναι το μέσον του ευθύγραμμου τμήματος ΚΛ. Πρόβλημα 4 Στο διπλανό σχήμα τα τετράπλευρα ΑΒΓΔ και ΕΖΗΘ είναι τετράγωνα. Το τετράγωνο ΕΖΗΘ έχει πλευρές που εφάπτονται του κύκλου C, στα σημεία Α, Β, Γ και Δ. (α) Να βρείτε το άθροισμα των εμβαδών των τεσσάρων χωρίων που βρίσκονται εσωτερικά του κύκλου C, και εξωτερικά του τετραγώνου ΑΒΓΔ. (β) Να βρείτε το άθροισμα των εμβαδών των τεσσάρων χωρίων που βρίσκονται εσωτερικά του τετραγώνου ΕΖΗΘ και εξωτερικά του κύκλου C,. 4 (γ) Να αποδείξετε ότι. (Θεωρείστε ότι 3,45). 3. Επειδή είναι ΟΑ = ΟΒ, και, έπεται ότι το τετράπλευρο ΟΑΖΒ είναι τετράγωνο, οπότε το τρίγωνο ΑΟΒ είναι ορθογώνιο στο Ο. Επομένως, από το Πυθαγόρειο θεώρημα στο τρίγωνο ΟΑΒ λαμβάνουμε:. Άρα το εμβαδόν του τετραγώνου είναι:. Το εμβαδόν του κύκλου είναι, οπότε το άθροισμα, θα είναι: ( )

Σχήμα. Επειδή είναι και, έπεται ότι η ΑΓ είναι διάμετρος του κύκλου C,. Άρα το τετράπλευρο ΑΓΗΖ είναι ορθογώνιο, οπότε. Επομένως το εμβαδόν του τετραγώνου ΕΖΗΘ είναι ίσο με 4. Άρα έχουμε: 4 4. 3. Σύμφωνα με τα προηγούμενα έχουμε: 4 4 3 443 664 3 4 3 7 3,48..., που ισχύει. 7 Α ΛΥΚΕΙΟΥ. Να βρείτε τις ακέραιες λύσεις του συστήματος: x0 x 7x0 0 x x xx 5 Έχουμε x Η εξίσωση 0 x 7x 0 0 x 0 0 ή x 7x 0 x x x x 0 ή 7 0 0. 7x0 0, έχει το πρώτο μέλος της τριώνυμο με, 7, 0, οπότε είναι 4 9 και οι ρίζες της εξίσωσης είναι x ή x 5. 0

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 36653-367784 - Fax: 36405 e-mail : info@hms.gr www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 7 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 30 ΟΚΤΩΒΡΙΟΥ 00 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ Β ΓΥΜΝΑΣΙΟΥ 3 5 3. Έστω x = 3 4 :4+ και y= 4 5 4 + 7 3. (α) Να βρεθούν οι αριθμοί x και y. (β) Να προσδιορίσετε το μεγαλύτερο θετικό ακέραιο Α, του οποίου οι αριθμοί x και y είναι πολλαπλάσια. (α) Έχουμε 3 5 x = 3 4 :4+ = 9 4 8:4+ 3= 9 3:4+ 3= 9 8+ 3= 33. 3 y = 4 5 4 + 7 3 = 4 5 64 + 7 9 = 00 64 + 63 = 99. (β) Για την εύρεση του Α αρκεί να βρούμε το μέγιστο κοινό διαιρέτη των ΜΚΔ 33,99 = 33, έπεται ότι θα είναι Α = 33. αριθμών x, y. Επειδή είναι ( ). Έστω α,β φυσικοί αριθμοί. Δίνεται ότι η Ευκλείδεια διαίρεση με διαιρετέο τον α και διαιρέτη τον β δίνει πηλίκο 6. Να βρεθεί ο αριθμός α, αν επιπλέον γνωρίζετε ότι ο α είναι πολλαπλάσιο του 7, ενώ ο αριθμός β είναι ο μέγιστος κοινός διαιρέτης των αριθμών 6, 3 και 48. Με τη γνωστή διαδικασία της διαίρεσης των δεδομένων ακέραιων με τον μικρότερό τους, βρίσκουμε το ΜΚΔ των αριθμών 6, 3 και 48. Έχουμε 6 3 48 6 0 8, οπότε είναι β= ΜΚΔ( 6, 3, 48) = 8. 0 0 8 Από την υπόθεση έχουμε: α = 86 + υ = 48 + υ, όπου υ ακέραιος με δυνατές τιμές από 0 μέχρι και 7. Δοκιμάζοντας τις δυνατές τιμές του υ στην παραπάνω σχέση διαπιστώνουμε ότι μόνο για υ =, ο αριθμός α = 49 που προκύπτει, είναι πολλαπλάσιο του 7. Άρα έχουμε α = 49 καιβ = 8.

3. Δίνεται τρίγωνο ΑΒΓ. Οι διχοτόμοι των γωνιών Β και Γ τέμνονται στο σημείο Ι. Η παράλληλη από το σημείο Ι προς την πλευρά ΑΒ τέμνει την πλευρά ΒΓ στο Δ ενώ η παράλληλη από το σημείο Ι προς την πλευρά ΑΓ τέμνει την πλευρά ΒΓ στο 0 σημείο Ε. Αν είναι ΙΔΓ ˆ 0 = 70 και ΙΕΓ ˆ = 30, να βρεθούν: α) η γωνία ˆΑ του τριγώνου ΑΒΓ. β) oι γωνίες ΒΙΔ ˆ και ΕΙΓ ˆ. o α. Εφόσον ΙΔ //ΑΒ θα ισχύει: ˆΒ= Δˆ = 70,(ως εντός εκτός επί τα αυτά των παραλλήλων ΙΔ,ΑΒ τεμνομένων από την ΒΔ ). o o o Επειδή είναι ΙΕ //ΑΓ, θα ισχύει: Γˆ = Εˆ = 80 30 = 50. (Οι γωνίες Γ, ˆ Ε ˆ είναι παραπληρωματικές ως εντός και επί τα αυτά των παραλλήλων ΙΕ,ΑΓ τεμνομένων από την ΕΓ ). Οι γωνίες Α,Β,Γ ˆ ˆ ˆ είναι γωνίες του τριγώνου ΑΒΓ, οπότε θα ισχύει: ˆ ˆ ˆ o ˆ o ˆ ˆ o o o o Α+ Β+ Γ= 80 Α = 80 Β Γ= 80 70 50 = 60. β. Επειδή η ΙΔ είναι διχοτόμος της γωνίας ˆΒ o ˆΒ 70 o, θα ισχύει: ˆΒ = = = 35. o Επίσης, επειδή ΙΔ //ΑΒ, θα ισχύει: ˆI ˆ = Β = 35, γιατί οι γωνίες ˆI,Β ˆ είναι εντός εναλλάξ στις παράλληλες ΙΔ,ΑΒ που τέμνονται από την IΒ. Σχήμα Εφόσον ΙΓ διχοτόμος της γωνίας ˆΓ o ˆΓ 50 o, θα ισχύει: ˆΓ = = = 5. o Επίσης είναι ΙE//ΑΓ, οπότε θα ισχύει: ˆI ˆ = Γ = 5, αφού οι γωνίες ˆI,Γ ˆ είναι εντός εναλλάξ στις παράλληλες ΙE,ΑΓ που τέμνονται από την ΙΓ. 4. Ένας αγρότης καλλιέργησε δύο κτήματα με ελαιόδενδρα. Το ένα κτήμα είναι δικό του και έχει 80 ελαιόδενδρα, ενώ το άλλο το μισθώνει και έχει 0 ελαιόδενδρα. Η συνολική παραγωγή λαδιού ήταν 600 κιλά λάδι. Αν είχε συμφωνήσει να δώσει στον ιδιοκτήτη του μισθωμένου κτήματος το 0% της παραγωγής λαδιού του μισθωμένου κτήματος, πόσα κιλά λάδι θα πάρει ο ιδιοκτήτης του μισθωμένου κτήματος σε καθεμία από τις παρακάτω περιπτώσεις: α. Καθένα από τα ελαιόδενδρα των δύο κτημάτων παράγει τα ίδια κιλά λάδι.

3 β. Κάθε ελαιόδενδρο του μισθωμένου κτήματος έχει απόδοση σε λάδι ίση με το 50% της απόδοσης σε λάδι κάθε ελαιόδενδρου του κτήματος του αγρότη. α. Επειδή θεωρούμε ότι τα 0+80=00 ελαιόδενδρα των δύο κτημάτων είναι της ιδίας απόδοσης σε λάδι, έπεται ότι το λάδι που παράγεται από κάθε ελαιόδενδρο είναι 600:00=3 κιλά. Επομένως τα 0 ελαιόδενδρα του μισθωμένου κτήματος παρήγαγαν 0 3 = 560 κιλά λάδι. 0 Άρα ο ιδιοκτήτης του μισθωμένου κτήματος θα πάρει 560 = 56 κιλά λάδι. 00 β. Αν υποθέσουμε ότι τα ελαιόδενδρα του κτήματος του αγρότη παράγουν x κιλά λάδι το καθένα, τότε κάθε ελαιόδενδρο του μισθωμένου κτήματος θα παράγει 50 3x x = κιλά λάδι. Σύμφωνα με τα δεδομένα του προβλήματος θα έχουμε την 00 εξίσωση 3x 600 80 x + 0 = 600 80x + 80x = 600 60x = 600 x = = 0. 60 Επομένως τα ελαιόδενδρα του μισθωμένου κτήματος θα παράγουν 30 = 5 κιλά λάδι το καθένα, οπότε το μισθωμένο κτήμα θα παράγει συνολικά 0 5 = 800 0 κιλά λάδι και ο ιδιοκτήτης του θα πάρει 800 = 80 κιλά λάδι. 00

4 Γ ΓΥΜΝΑΣΙΟΥ 4 6 6 4. Αν x+ y= 3 ( ) 3 3 και y w = 5 5 παράστασης: Α = 7x + 0y 3w 87. Έχουμε x+ y= 3 ( ) = 3 4= και, να βρεθεί η τιμή της 4 6 6 4 4 4 4 4 3 3 3 3 3 5 y w = = = 5 5 5 5 5 3 4 3 5 4 = = =. 5 3 Άρα είναι: Α = 7x+ 0y 3w 87= 7x+ 7y+ 3y 3w 87 = 7 x + y + 3 y w 87 = 7 + 3 87 = 84 + 3 87 = 0. ( ) ( ). Να βρείτε έναν τετραψήφιο φυσικό αριθμό, αν γνωρίζετε ότι ισχύουν όλα τα παρακάτω: (α) Το ψηφίο των μονάδων του είναι πολλαπλάσιο του 4, (β) Το ψηφίο των δεκάδων του είναι το μισό του ψηφίου των μονάδων του, (γ) Το ψηφίο των εκατοντάδων του είναι διαιρέτης του 5, (δ) Το ψηφίο των χιλιάδων του είναι ίσο με το ψηφίο των εκατοντάδων του μειωμένο κατά. Έστω xyzw = 000 x + 00 y + 0 z + w ο ζητούμενος τετραψήφιος φυσικός αριθμός. Τότε, σύμφωνα με το (α) θα είναι w = 0 ή 4 ή 8, οπότε σύμφωνα με το (β) θα είναι z= 0 ή ή 4, αντίστοιχα. Επίσης, σύμφωνα με το (γ) θα είναι y= ή 5. Έτσι οι δυνατές μορφές του αριθμού είναι: x00, x4, x48, x500, x54, x548. Λαμβάνοντας υπόψη και το (δ) καταλήγουμε στους αριθμούς 4500, 454, 4548, αφού το πρώτο ψηφίο τετραψήφιου φυσικού αριθμού δεν μπορεί να είναι το 0. 3. Δίνεται τρίγωνο ΑΒΓ με ˆΑ = 0 0. Στο εσωτερικό της γωνίας Α φέρουμε ημιευθείες Αx και Αy κάθετες στις πλευρές ΑΓ και ΑΒ, αντίστοιχα, που τέμνουν την 0 πλευρά ΒΓ στα σημεία Δ και Ε, αντίστοιχα. Αν ΑΔΒ ˆ 0 = 0, ΑΕΔ ˆ = 60 και το ύψος ΑΗ έχει μήκος 3 μονάδες μήκους, τότε: α. Να αποδείξετε ότι το τρίγωνο ΑΔΕ είναι ισόπλευρο. β. Να αποδείξετε ότι το τρίγωνο ΑΒΓ είναι ισοσκελές. γ. Να βρείτε το λόγο των περιμέτρων των τριγώνων ΑΒΓ και ΑΔΕ..

5 o α. Η γωνία ˆΔ είναι παραπληρωματική της γωνίας Δˆ ˆ = ΑΔΒ= 0, οπότε θα o o είναι ˆΔ = 60. Από τα δεδομένα όμως έχουμε ότι ˆΕ = 60. Άρα το τρίγωνο ΑΔΕ είναι ισόπλευρο. Σχήμα β. Εφόσον οι ημιευθείες ΑΔ (Αx) και ΑE (Αy) είναι κάθετες προς τις ΑΓ και 0 o ΑΒ, θα ισχύει: Αˆ ˆ ˆ = Α3 = ΑΒΓ 90 = 0 90 = 30. Τα τρίγωνα ΑΒΔ και ΑΓΕ έχουν: ΑΔ = ΑΕ (από το ισόπλευρο τρίγωνο ΑΔΕ ), ˆ ˆ o o Δ = Ε = 0 και Αˆ ˆ = Α3 = 30. Επομένως τα τρίγωνα ΑΒΔ, ΑΓΕ είναι ίσα και συνεπώς ΑΒ = ΑΓ. Στο ίδιο συμπέρασμα καταλήγουμε από τα ορθογώνια τρίγωνα ΑΕΒ και ΑΔΓ που έχουν ΑΕΒ ˆ = 60 = ΑΔΓ ˆ 0, οπότε θα είναι Βˆ = Γˆ = 30, δηλαδή ΑΒΓ ισοσκελές. γ. Έστω μ το μήκος της πλευράς του ισοπλεύρου τριγώνου ΑΔΕ και κ το μήκος των ίσων πλευρών του ισοσκελούς τριγώνου ΑΒΓ. Από το ορθογώνιο τρίγωνο ΑHΔ έχουμε: μ 3μ ΑΔ = ΑΗ + ΔΗ δηλαδή μ = + ( 3) = μ = 4. 4 4 Από το ορθογώνιο τρίγωνο ΑHΒ έχουμε: 3μ = +, δηλαδή κ = + ( 3) ΑΒ ΑΗ ΗΒ κ = 48 κ = 4 3. Η περίμετρος του τριγώνου ΑΒΓ είναι + 8 3. Η περίμετρος του τριγώνου ΑΔΕ είναι, οπότε ο λόγος του θα είναι 3 + 3 3 4. Στο παρακάτω σχήμα το τετράγωνο ΑΒΓΔ έχει πλευρά ρ.ονομάζουμε Χ το χωρίο που αποτελείται από τα τέσσερα κυκλικά τμήματα του κύκλου C( Ο,ΟΑ ) που ορίζονται από τις χορδές ΑΒ, ΒΓ, ΓΔ και ΔΑ. Επίσης ονομάζουμε Χ το χωρίο που βρίσκεται εξωτερικά του κύκλου C( Ο,ρ) και εσωτερικά του τετραγώνου ΑΒΓΔ. α. Να βρείτε το εμβαδόν του κυκλικού δακτυλίου Δ( Ο,ρ,ΟΑ ) που ορίζεται από τους κύκλους C( Ο,ρ ) και C( Ο,ΟΑ ). β. Να αποδείξετε ότι τα εμβαδά Ε( Χ) και Ε( Χ) των χωρίων Χ και Χ,.

6 Ε( Χ ) αντίστοιχα έχουν λόγο μεγαλύτερο του 3 Ε( Χ ) 5. γ. Να προσδιορίσετε την ακτίνα x του κύκλου C( Ο,x ) που χωρίζει τον κυκλικό δακτύλιο Δ( Ο,ρ,ΟΑ ) σε δύο κυκλικούς δακτύλιους ίσου εμβαδού. Σχήμα 3 (α) Από το ορθογώνιο και ισοσκελές τρίγωνο ΟΑΕ με εφαρμογή του Πυθαγόρειου θεωρήματος λαμβάνουμε ΟΑ = ρ + ρ ΟΑ = ρ ΟΑ= ρ, οπότε είναι ( ( )) ( ) ΕΔΟ,ρ, ΟΑ = π ρ πρ = πρ πρ = πρ. (β) Το εμβαδόν του χωρίου Χπροκύπτει από το εμβαδόν του κυκλικού δίσκου κέντρου Ο και ακτίνας ρ, αν αφαιρέσουμε το εμβαδόν του τετράγωνο ΑΒΓΔ. Άρα είναι ( ) ( ) ( ) ( ) Ε Χ = π ρ ρ = πρ 4ρ = π 4 ρ. Το εμβαδόν του χωρίου Χ προκύπτει από το εμβαδόν του τετράγωνο ΑΒΓΔ, αν αφαιρέσουμε το εμβαδόν του κυκλικό δίσκου κέντρου Ο και ακτίνας ρ, δηλαδή ( ) ( ) ( ) ( ) = ( ) και ισχύει ότι: Ε Χ = ρ πρ = 4ρ πρ = 4 π ρ. Ε Χ π 4 Άρα είναι Ε Χ 4 π Ε( Χ ) π 4 3 7 = > 5π ( 4) > 3( 4 π) 3π > 7 π > 3,304, Ε Χ 4 π 5 3 ( ) το οποίο είναι αληθές, αφού είναι π 3,4. (γ) Θα πρέπει να είναι ρ < x < ρ και τα εμβαδά των δύο κυκλικών δακτύλιων που ορίζονται να είναι ίσα, δηλαδή π ( ρ ) x = π( x ρ ) ρ x = x ρ. 3ρ 3 x = 3ρ x = x = ρ.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 36653-0367784 - Fax: 0 36405 e-mail : info@hms.gr www.hms.gr ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 70 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 009 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ ο 3 5 Αν a = 4 και b = 5 +, να υπολογίσετε την τιμή παράστασης: 5. Είναι 4 0 9 a = 4 = = = και 5 5 5 5 5 οπότε η παράσταση Α γίνεται: A = a: b b. 5a 009 3 5 3 5 8 b = 5+ = 5 = 5 = 5 4=, 9 9 9 76 3 5a 5 9 5 5 9 5 9 45 45 5 009 009 A= a: b b = : = : = = =. ΘΕΜΑ ο Έστω α θετικός ακέραιος τον οποίο διαιρούμε με 4. (i) Ποιες είναι οι δυνατές μορφές του παραπάνω θετικού ακέραιου α; (ii) Ποιες είναι οι δυνατές τιμές που μπορεί να πάρει ο αριθμός α, αν είναι περιττός μεγαλύτερος από 39 και μικρότερος από 50, και διαιρούμενος με το 4 δίνει υπόλοιπο. (i) (ii) Οι δυνατές μορφές του ακέραιου αριθμού α είναι οι εξής: α = 4ρ, όπου ρ θετικός ακέραιος, ή α = 4ρ + ή α = 4ρ + ή α = 4ρ + 3 όπου ρ μη αρνητικός ακέραιος. Σύμφωνα με την υπόθεση είναι α = 4ρ +, οπότε έχουμε: 39 < 4ρ + < 50 38< 4ρ < 49 9,5 < ρ <, 5 Επομένως, αφού ο ρ είναι μη αρνητικός ακέραιος, έπεται ότι ρ = 0 ή ρ = ή ρ = και α = 4 ή α = 45 ή α=49.

ΘΕΜΑ 3 ο 0 Δίνεται ένα τρίγωνο ABΓ του οποίου οι γωνίες ˆΒ και ˆΓ έχουν άθροισμα 40 και είναι ανάλογες με τους αριθμούς και 6, αντίστοιχα. α) Να βρεθούν οι γωνίες του τριγώνου. β) Να υπολογίσετε τη γωνία που σχηματίζουν το ύψος και η διχοτόμος του τριγώνου ΑΒΓ που αντιστοιχούν στην πλευρά του ΒΓ. α) Κατ αρχή έχουμε: ˆ ( ˆ ˆ) 0 0 0 0 80 80 40 40. Α= Β+Γ = = Βˆ Γˆ Σύμφωνα με τις υποθέσεις έχουμε: και ˆ ˆ 40 6 Βˆ Γˆ = = λ Β= ˆ λ Γ= ˆ λ λ+ λ = λ = 6 0 0 Άρα είναι: Β= ˆ 0 και Γ= ˆ 0. 0 = Β+Γ=, οπότε θα έχουμε: 0 0, 6 και 6 40 0. Σχήμα β) Έστω ΑΔ το ύψος και ΑΕ η διχοτόμος της γωνίας Α του τριγώνου ΑΒΓ. Τότε το σημείο Γ βρίσκεται μεταξύ των σημείων Β και Δ, αφού διαφορετικά το τρίγωνο ΑΓΔ 0 θα είχε άθροισμα γωνιών μεγαλύτερο των 80. Έτσι έχουμε: ˆ ˆ ˆ ˆ ( 90 ˆ Α ΔΑΕ = ΔΑΓ + ΓΑΕ = ΔΓΑ ) +. () 0 Επειδή είναι ˆ 0 0 0 Α= 40, ΔΓΑ ˆ = 80 0 = 60, από τη σχέση () λαμβάνουμε ΔΑΕ ˆ = 50 0. ΘΕΜΑ 4 ο Από τους μαθητές ενός Γυμνασίου, το 4 ασχολείται με το στίβο, το 5 ασχολείται με το μπάσκετ, το 8 ασχολείται με το βόλεϊ και περισσεύουν και 80 μαθητές που δεν ασχολούνται με κανένα από αυτά τα αθλήματα. Δεδομένου ότι οι μαθητές του Γυμνασίου οι ασχολούμενοι με τον αθλητισμό, ασχολούνται με ένα μόνο άθλημα, εκτός από μαθητές που ασχολούνται και με το μπάσκετ και με το βόλεϊ, να βρείτε: α) Ποιος είναι ο αριθμός των μαθητών του Γυμνασίου;

β) Πόσοι είναι οι μαθητές του Γυμνασίου που ασχολούνται μόνο με το μπάσκετ; ( ος τρόπος) α) Έχουμε + + = 3. Όμως στα 3 των μαθητών του Γυμνασίου έχουν 4 5 8 40 40 υπολογιστεί δύο φορές οι μαθητές που ασχολούνται με μπάσκετ και βόλεϊ. Άρα οι 40 3 7 80 -=68 μαθητές είναι τα = των μαθητών του Γυμνασίου. Έτσι όλο το 40 40 40 σχολείο έχει : 7 40 68: = 68 = 4 40 = 60 μαθητές. 40 7 β) Μόνο με το μπάσκετ ασχολούνται 60 = 3 = 0 μαθητές. 5 ος τρόπος α) Αν x είναι ο αριθμός των μαθητών του Σχολείου, τότε, σύμφωνα με τα δεδομένα του προβλήματος, έχουμε την εξίσωση: x x x + + + 80 = x, 4 5 8 η οποία είναι ισοδύναμη με την εξίσωση 0x+ 8x+ 5x+ 300 480 = 40x 7x = 70 x= 60. x 60 β) = = 0 μαθητές ασχολούνται μόνο με το μπάσκετ. 5 5 Γ ΓΥΜΝΑΣΙΟΥ ΘΕΜΑ ο Αν ν είναι θετικός ακέραιος, να υπολογίσετε την αριθμητική τιμή της παράστασης: v+ 3v v ( ) ( ) A= 4 ( ) + 7. 5 5 v+ 3 v ( ) 3 v ( ) ( ) v ( ) A= 4 ( ) + 7 = 4 ( ) + 7 5 5 5 5 ν ν v 7 ( ) 7 ν 3 ( ) = 4() = 4 ( ) =, 5 5 5 5 5 οπότε διακρίνουμε τις περιπτώσεις: 3 Αν ν άρτιος, τότε Α= =. 5 5 Αν ν περιττός, τότε Α= 3. ΘΕΜΑ ο O θετικός ακέραιος α είναι περιττός και όταν διαιρεθεί με το 5 δίνει υπόλοιπο. Να βρείτε το τελευταίο ψηφίο του αριθμού α. ν 3

Αφού ο α διαιρούμενος με το 5 αφήνει υπόλοιπο, θα είναι της μορφής α = 5λ +, όπου λ μη αρνητικός ακέραιος. Όμως, αν ο λ ήταν άρτιος, τότε ο α επίσης θα ήταν άρτιος, που αντίκειται στην υπόθεση. Άρα ο λ είναι περιττός, δηλαδή είναι λ = κ +, όπου κ μη αρνητικός ακέραιος. Επομένως, έχουμε α = 5 ( κ + ) + = 0κ + 7, σχέση που δείχνει ότι ο θετικός ακέραιος α διαιρούμενος με το 0 αφήνει υπόλοιπο 7, δηλαδή με άλλα λόγια, το τελευταίο ψηφίο του α είναι 7. Διαφορετικά θα μπορούσαμε να πούμε ότι ο α έχει κ δεκάδες και 7 μονάδες, οπότε το τελευταίο του ψηφίο είναι 7. ΘΕΜΑ 3 ο Δίνονται δυο ευθείες ε, ε οι οποίες τέμνονται στο σημείο Α. Η ευθεία ε διέρχεται από την αρχή των αξόνων και έχει κλίση 4, ενώ η ευθεία ε είναι παράλληλη προς την ευθεία ( η ): y = x και διέρχεται από το σημείο Γ(0,6). α) Να βρείτε τις εξισώσεις των παραπάνω ευθειών καθώς και το κοινό τους σημείο Α. β) Να βρείτε το εμβαδόν του τριγώνου ΟΑΒ, όπου Ο είναι η αρχή συστήματος ορθογωνίων αξόνων Ο xy, Α το κοινό σημείο των ευθειών και Β το σημείο όπου η ευθεία ε τέμνει τον άξονα x x. α) Η ευθεία ε έχει εξίσωση y = 4x, ενώ η ευθεία ε έχει εξίσωση y = x+ β, αφού είναι παράλληλη με την (η). Όμως διέρχεται από το σημείο Β(0,6), οπότε θα ισχύει 6= 0+ β β = 6. Άρα η εξίσωση της ευθείας ε είναι y = x+ 6. Λύνοντας το σύστημα των εξισώσεων των δύο ευθειών βρίσκουμε ότι το κοινό σημείο τους είναι το Α 3,. ( ) Σχήμα β) Η ευθεία Β 3, 0, οπότε η τη βάση του τριγώνου έχει μήκος 3, ενώ το ύψος του ίσο με. Άρα έχουμε: ε τέμνει τον άξονα των x στο σημείο ( ) 4

Ε(ΟΑΒ) = 3 8 = τ.μ. ΘΕΜΑ 4 ο Τρεις κύκλοι έχουν το ίδιο κέντρο Ο και ακτίνες r, r, r 3 με 0 < r< r< r3. Έστω Δ ο κυκλικός δακτύλιος που ορίζεται από τους κύκλους κέντρου Ο και ακτίνες r, r και Δ ο κυκλικός δακτύλιος που ορίζεται από τους κύκλους κέντρου Ο και ακτίνες r, r 3. Αν Ε( Δ ) είναι r r = r3 r και r3 = 3r, να βρείτε το λόγο Ε Δ και Ε( Δ ) είναι τα εμβαδά των δακτυλίων Δ και Δ, αντίστοιχα. Ε( Δ ), όπου ( ) Έχουμε ( ) ( ) ( ) ( ) Σχήμα 3 ( )( ) ( )( ) Ε Δ π r r r r r + r r + r = = = Ε Δ π r r r r r + r r + r 3 3 3 3, () r+ r3 αφού δίνεται ότι r r = r 3 r. Από την ίδια σχέση προκύπτει ότι r =, οπότε, r+ 3r λόγω τη σχέσης r 3 = 3r λαμβάνουμε r = = r. Έτσι η σχέση () γίνεται Ε( Δ ) r + r 3r 3r 3 = = = =. Ε( Δ ) r3 + r 3r+ r 5r 5 r+ 3r Διαφορετικά, θα μπορούσαμε να βρούμε πρώτα τη σχέση r = = r και στη συνέχεια να εργαστούμε με το λόγο ( ) ( ) ( ) Ε Δ π r r π r r 3r 3 = = = =. Ε( Δ) π ( r3 r ) π ( 3r) ( r) 5r 5 5

ΕΠΙΤΡΟΠΗ ΔΙΑΓΩΝΙΣΜΩΝ 69 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, ΝΟΕΜΒΡΙΟΥ 008 ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ B ΓΥΜΝΑΣΙΟΥ. Να υπολογίσετε την τιμή της παράστασης: 3 Α= 4 5 + 008: 4 + (3 5 ) 49 0 4 3 4 Α= 4 5 + 008: 4 + (3 5 ) 49 0 = 4 5 + 50 + 7 5 49 0 ( ) ( ) = + + = + + = 00 50 49 0000 0000 50 498 0000 000. Στο διπλανό σχήμα η ευθεία A y είναι παράλληλη προς την πλευρά ΒΓ του τριγώνου ΑΒΓ και διχοτόμος της γωνίας ΓAx ˆ. Δίνεται ακόμη ότι ΒAΓ=6 ˆ και ΑΒ = ΑΔ. (α) Να βρείτε τις γωνίες ˆΒκαιΓˆ του τριγώνου ΑΒΓ. (β) Να εξηγήσετε γιατί η ΒΔ είναι διχοτόμος της γωνίας ΑΒΓ ˆ. 4 Σχήμα (α) Επειδή η Αy είναι διχοτόμος της γωνίας ΓAˆ x θα είναι ΓΑΔ ˆ = ΔΑ ˆx. Όμως είναι 0 0 0 0 ΓΑΔ ˆ + ΔΑ ˆx = 80 ΒΑΓ ˆ = 80 6 = 8, οπότε καθεμία από τις γωνίες ΓΑ ˆΔ και ΔΑˆx είναι 59. Επειδή είναι Αy ΒΓ έχουμε τις ισότητες γωνιών 0 Β=ΔΑ ˆ ˆ x = 59 και Γ= ˆ 0 ΓΑΔ= ˆ 59. (β) Επειδή είναι ΑΒ = ΑΔ. έπεται ότι το τρίγωνο ΑΒΔ είναι ισοσκελές με ΑΒΔ ˆ = ΑΔΒ. ˆ () Λόγω της παραλληλίας των ευθειών ΒΓ και Αy έχουμε ότι ΑΔΒ ˆ = ΔΒΓ ˆ (εντός εναλλάξ γωνίες) () Από τις () και () έπεται ότι: ΑΒΔ ˆ = ΔΒΓ ˆ, οπότε η ΒΔ είναι διχοτόμος της γωνίας ΑΒΓ ˆ.

3. Αν για το θετικό ακέραιο αριθμό α ισχύει: σης Α= α + 5(4 + α) + 3( α 4) + 99. 4 < <, να βρεθεί η τιμή της παράστα 5 α 4 Έχουμε: 4 4 4 4 8 5 < α α < 4 0 < α < 8 < < 0, οπότε θα είναι α = 9, αφού α θετικός ακέραιος. Άρα είναι: Α= 9 + 5(4 + 9) + 3(9 4) + 99 = 9 + 5 3+ 3 5 + 99 = 008. 4. Ένα Γυμνάσιο συμμετέχει στην παρέλαση για την επέτειο μιας Εθνικής Εορτής με το 60% του αριθμού των αγοριών και το 80% του αριθμού των κοριτσιών του. Τα αγόρια που συμμετέχουν, αν παραταχθούν σε τριάδες, τότε δεν περισσεύει κανείς, ενώ, αν παραταχθούν σε πεντάδες ή επτάδες, τότε και στις δύο περιπτώσεις περισσεύουν από τρεις. Όλα τα αγόρια του Γυμνασίου είναι περισσότερα από 00 και λιγότερα από 00. Αν το 80% των κοριτσιών είναι αριθμός διπλάσιος από τον αριθμό που αντιστοιχεί στο 60% του αριθμού των αγοριών, να βρείτε το συνολικό αριθμό των κοριτσιών και αγοριών του Γυμνασίου. Αν είναι Α ο αριθμός των αγοριών που συμμετέχουν στην παρέλαση, τότε ο Α είναι πολλαπλάσιο του 3 και επιπλέον έχουμε Α = πολ.5 + 3 Α 3 = πολ.5, Α = πολ.7 + 3 Α 3 = πολ.7 οπότε ο αριθμός Α 3 είναι κοινό πολλαπλάσιο των αριθμών 5 και 7. Τότε ο αριθμός Α 3 θα είναι πολλαπλάσιο του ΕΚΠ(5,7)=35, δηλαδή θα είναι ένας από του αριθμούς 35, 70, 05, 40,..., Επομένως ο αριθμός Α θα είναι κάποιος από τους αριθμούς 38, 73, 08, 43,... Αν Α είναι ο αριθμός των αγοριών του Γυμνασίου, τότε από την υπόθεση είναι 60 60 60 00 <Α< 00 00 < Α< 00 60 <Α < 0, 00 00 00 οπότε οι αποδεκτές τιμές για τον αριθμό Α είναι οι 73 και 08. Επειδή ο αριθμός Α είναι και πολλαπλάσιο του 3, έπεται ότι Α = 08, οπότε ο αριθμός των αγοριών του Γυμνασίου είναι: 00 Α= 08 = 80. 60 Από την υπόθεση έχουμε ότι τα κορίτσια που συμμετείχαν στην παρέλαση ήταν 08 = 6, οπότε ο αριθμός Κ των κοριτσιών του Γυμνασίου είναι: 00 Κ= 6 = 70. 80 Άρα συνολικά το Γυμνάσιο έχει 80+70=450 μαθητές και μαθήτριες.

3. Δίνονται οι παραστάσεις: 4 Γ ΓΥΜΝΑΣΙΟΥ 3 4 4 3 + x ( ) + ( ) x A =, B= + 005 0 ( ) 5 Αν είναι A = B, να προσδιορίσετε την τιμή του x. Επειδή Επίσης έχουμε ( ) ( ) ( ) 009 009 = = 0 έχουμε =, οπότε: Επομένως έχουμε 4 3 4 4 + 3 x 4 3 4 4 A= = 3 + x = x. 005 0 4 ( ) ( ) ( ) 4 ( ) + x + x x B= + = + = 5+. 5 5 x Α=Β x= 5 + x= 0 + x x= 0.. Το σημείο Α ( λ +,4λ ) ), όπου λ θετικός ακέραιος, βρίσκεται στο πρώτο τεταρτημόριο ενός συστήματος ορθογωνίων αξόνων Ox y. Να βρεθούν: (α) ο θετικός ακέραιος λ, (β) το μήκος του ευθυγράμμου τμήματος ΟΑ, (γ) το εμβαδόν του τετραπλεύρου ΟΒΑΓ, όπου Β, Γ είναι τα ίχνη των καθέτων από το σημείο Α προς τους θετικούς ημιάξονες Ox και Oy, αντίστοιχα. (α) Σύμφωνα με τις υποθέσεις πρέπει να συναληθεύουν οι ανισότητες: λ+ > 0 και 4λ > 0 λ < και λ >, 4 από τις οποίες, αφού ο λ είναι θετικός ακέραιος, έπεται ότι λ =. (β) Για λ = είναι Α (, 3), οπότε (γ) ΟΑ = + 3 = 0. ΕΟΑΒΓ= ( ) 3 = 3 3. Στο παρακάτω σχήμα δίνονται ορθογώνιο ΑΒΓΔ με πλευρές ΑΒ= α, ΑΔ= α και τέσσερα ημικύκλια εξωτερικά του ορθογωνίου. Ο εξωτερικός κύκλος έχει κέντρο το σημείο τομής Ο των διαγωνίων του ορθογωνίου. Να υπολογιστεί συναρτήσει του α το εμβαδόν του γραμμοσκιασμένου χωρίου. Από το σχήμα διαπιστώνουμε ότι: 0

4 Ο μεγάλος κύκλος έχει ακτίνα 3 α α, τα μικρά ημικύκλια έχουν ακτίνα και τα μεγάλα ημικύκλια έχουν ακτίνα α. Το εμβαδόν του γραμμοσκιασμένου χωρίου προκύπτει από το εμβαδόν του μεγάλου κύ- 3α 9πα κλου π =, αν αφαιρέσουμε το εμβαδόν του ορθογωνίου ΑΒΓΔ που είναι α, 4 τα εμβαδά των δύο μικρών ημικυκλίων ημικυκλίων α πα π = και τα εμβαδά των δύο μεγάλων 4 Σχήμα πα = πα. Άρα το ζητούμενο εμβαδόν είναι: 9πα πα 4πα 8α Ε= πα α = = ( π ) α. 4 4 4 ν ν 45 4. Αν ισχύει = 900, όπου ν θετικός ακέραιος, να βρεθεί η τιμή της παράστασης ν 6 003 ( ) ν ( ) ν + 4 ( ) ν + Α= +. Έχουμε ν ν ν ν ν 45. 45 4 45 4 ν = 900 900 30 3 5 ν ν = = 6 6 6. ( ) ν ν ν 30 = 3 5 30 = 30 30 =, από την οποία προκύπτει ότι ν = 0 ν =, αφού για κάθε άλλη τιμή του ν η τιμή της δύναμης 30 ν δεν μπορεί να είναι. Άρα έχουμε: + + Α= 003 ( ) ( ) + 4( ) = 003 + 4 = 003+ + 4 = 008.. ( )

ΕΝΔΕΙΚΤΙΚΕΣ ΛΥΣΕΙΣ ΘΕΜΑΤΩΝ 68 ου ΘΑΛΗΣ 4 Νοεμβρίου 007 Β ΓΥΜΝΑΣΙΟΥ ( 00 :8 00) 00 : ( 8 ) 76 ( ) ( ) ( ) 3 007. Α= + + + + + + ( 5 00) ( 00 :0 76) ( ) ( ) 5 ( 0 76) ( ) = + + + + + = + + = 5 + 78 = 007.. Αν ω είναι ο αριθμός των μαθητών του Γυμνασίου, τότε ο ω είναι ΕΚΠ 6,8,0 = 0, κοινό πολλαπλάσιο των αριθμών 6, 8 και 0. Επειδή [ ] έπεται ότι ω { 0, 40,360, 480,... } και αφού 300 ω 400 < <, θα είναι ω = 360. Αν x, yz, είναι ο αριθμός των μαθητών της Α, Β και Γ τάξης, αντίστοιχα, τότε θα έχουμε x y z = = = λ και x+ y+ z = 360. 5 4 3 Άρα είναι x= 5 λ, y = 4 λ, z = 3λ και 5λ+ 4λ+ 3λ = 360 λ = 360 λ = 30. Άρα είναι: x= 5 30 = 50, y = 4 30 = 0, z = 3 30 = 90. 3. Ο έμπορος πλήρωσε για την αγορά 00 3 = 600 ευρώ. 0 Η απώλεια του σε κιλά ήταν 00 = 0 κιλά, οπότε του έμειναν 00 00 0=80 κιλά. Για να έχει κέρδος 0% επί της τιμής αγοράς πρέπει να εισπράξει 0 600 + 600 = 70 ευρώ. 00 Άρα πρέπει να πουλήσει το κιλό 70 :80 = 4 ευρώ. 4. (α) Αν x =ΒΓ, y =ΑΔ και ΑΕ = υ, τότε x = y και ( x+ y) υ Ε =Ε= ( ΑΒΓΔ) 3y υ = Ε y υ = y υ = 00cm. 3 Άρα έχουμε Ε( ΑΒΔ ) = y υ = 00 cm = 00 cm. (β) ( ΑΒΚΓ ) = ( ΑΒΓ ) = y υ = ( y υ) = 00 = 400 cm.

Διαφορετικά Το τετράπλευρο ΑΒΚΓ έχει καθέτους διαγώνιους, οπότε έχει εμβαδόν ( ΑΒΚΓ ) = ΒΓ ΑΚ = y υ = ( y υ) = 00 = 400 cm.

3 Γ ΓΥΜΝΑΣΙΟΥ Α= : 4 + 4 : = :4 + 4 : 8 4 8 4 4 = :( ) 4 + : = ( : + 4 ) : 4 4 = + 4 : = 3:6=. 8 4 8 4. ( ) ( ) ( ) ( ) ( ) ( x ) ( y ) x( y ) y( x ) x 3 3y ( xy x yx 3y) B= 3 3 4 + 3 = + + = x 3y+ 5 xy+ x+ xy+ 3y = x+ 5. Α>Β > x+ 5 x> 7 x< 7.. (α) ΖΓ ˆx = ΑΖΓ ˆ (ως εντός εναλλάξ στις παράλληλες ΒΓ και ε ). Επειδή η δ είναι μεσοκάθετη της ΑΓ το τρίγωνο ΑΓΖ είναι ισοσκελές με ΖΓΑ ˆ = ΖΑΓ ˆ. Όμως, από την παραλληλία των ευθειών ε και ΒΓ προκύπτει ότι ΖΑΓ ˆ = Γ ˆ. Από το ισοσκελές τρίγωνο ΑΒΓ με Α= ˆ 40 προκύπτει ότι 80 ˆ ˆ ˆ Α 80 40 Β=Γ= = = 70. Άρα έχουμε ΖΓΑ ˆ = ΖΑΓ ˆ = Γ ˆ = 70, οπότε θα είναι ˆ ΑΖΓ = 80 70 = 40 ΖΑ ˆ x = 40. (β) Επειδή η δ είναι μεσοκάθετη της ΑΓ, το τρίγωνο ΚΑΓ είναι ισοσκελές με ΚΑ = ΚΓ, οπότε η ΚΕ είναι η διχοτόμος της γωνίας ΑΚΓ. Άρα έχουμε AKZ ˆ =ΓΚΖ ˆ. Επειδή είναι ε ΒΓ θα έχουμε AZΚ ˆ =ΓΚΖ ˆ, οπότε θα είναι και AKZ ˆ =ΑΖΚ ˆ, οπότε το τρίγωνο ΚΑΖ είναι ισοσκελές με ΚΑ = AΖ. 3. (α) Από τον κανόνα πολλαπλασιασμού δύο φυσικών αριθμών έπεται ότι το τελευταίο ψηφίο του γινομένου τους είναι το τελευταίο ψηφίο του γινομένου των ψηφίων των μονάδων τους. Θεωρώντας τα τετράγωνα των μονοψήφιων φυσικών αριθμών διαπιστώνουμε ότι αυτά λήγουν σε 0,, 4, 5, 6, 9, οπότε το τελευταίο ψηφίο κάθε τετραγώνου φυσικού αριθμού ανήκει Σ= 0,, 4,5, 6,9. στο σύνολο { } (β) Σύμφωνα με το πρώτο ερώτημα θα πρέπει b { 0,, 4,5, 6,9} και αφού ο αριθμός είναι περιττός πρέπει b {, 5, 9}. Επειδή ο Α διαιρείται με το 9 πρέπει να ισχύει ότι: 3a+ b= πολλαπλάσιο του 9. ()

4 Για b = λαμβάνουμε 3a + = πολ.9, αδύνατο. Για b = 5 λαμβάνουμε 3a + 0 = πολ.9, αδύνατο. Για b = 9 λαμβάνουμε 3a + 8 = πολ.9, οπότε προκύπτει ότι a { 3, 6,9}. Άρα είναι Α= 33399 ή Α = 66699 ή Α = 99999. 4. (α) Παρατηρούμε ότι ΒΟΓ ˆ = Α ˆ = 60, οπότε το τρίγωνο ΟΒΓ είναι 80 30 ισόπλευρο και ισχύει ότι R =ΒΓ= α. Επιπλέον ˆ ˆ Β=Γ= = 75. Άρα είναι ΑΟΓ ˆ = 75 = 50, οπότε θα έχουμε 50 5πα E κτομ. έ α ( ΟΑΕΓ ) = πα =. 360 (β) Επειδή είναι ΔΑΓ=Γ= ˆ ˆ 75 (εντός εναλλάξ στις παράλληλες ΑΔ και ΒΓ με τέμνουσα την ΑΓ) και ΑΓΔ= ˆ 90 ΟΓΑ= ˆ 90 ΟΑΓ=ΔΑΓ= ˆ ˆ 75, τα τρίγωνα ΑΒΓ και ΔΑΓ είναι όμοια. (γ) Επειδή είναι ΟΑ ΑΔ και ΑΔ ΒΓ θα είναι και ΟΑ ΒΓ, οπότε η ΟΑ περνάει από το μέσο Μ της πλευράς ΒΓ. Από το τρίγωνο ΟΜΓ έχουμε α 3α α 3 ΟΜ = ΟΓ ΜΓ ΟΜ = α ΟΜ = ΟΜ =. 4 3 Άρα είναι ΑΜ = ΑΟ + ΟΜ = α + και α 3 α ( + 3) ( ΑΒΓ ) = α α + =. 4.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ Πανεπιστημίου (Ελευθερίου Βενιζέλου) 34 06 79 ΑΘΗΝΑ Τηλ. 0 36653-0367784 - Fax: 0 36405 e-mail : info@hms.gr www.hms.gr GREEK MATHEMATICAL SOCIETY 34, Panepistimiou (Εleftheriou Venizelou) Street GR. 06 79 - Athens - HELLAS Tel. 0 36653-0367784 - Fax: 0 36405 e-mail : info@hms.gr www.hms.gr ΕΠΙΤΡΟΠΗ ΙΑΓΩΝΙΣΜΩΝ 67 ος ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΙΑΓΩΝΙΣΜΟΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Ο ΘΑΛΗΣ ΣΑΒΒΑΤΟ, 9 ΕΚΕΜΒΡΙΟΥ 006 Λύσεις Β Γυμνασίου. Εκτελούμε τις πράξεις και βρίσκουμε Α= ( 44 :) :+ = ( ) :+ = 99 :+ = 9 + = 0. Επειδή ο 00 λήγει σε 0 και τα πολλαπλάσια του 0 λήγουν σε 0, θα πρέπει και ο αριθμός που εκφράζει τα νομίσματα των να λήγει σε 0. Άρα τα νομίσματα των θα είναι 5 ή 0 ή 5. Όμως παρατηρούμε ότι δεν μπορεί να είναι 5 ή 5. Άρα θα είναι 0. Πράγματι 0 + 8 0 = 00. 3. Έχουμε: 6 4 α = β οπότε α = β. Έτσι έχουμε 00 00 3 9 β 3β 3 6β 3β 3β κ = = = = 6 β β 4β β 3β 3 4. Αφού η Γx είναι διχοτόμος της γωνίας ΑΓΔ ˆ θα ισχύει = και αφού ω = φ. Επειδή Γx//ΑB θα ισχύει φ θ

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΛΥΣΕΙΣ ΑΒ=ΒΓ θα είναι θ = ρ. Άρα ω = φ = θ = ρ, και Άρα ω φ ρ 0 + + = 80, οπότε ˆ ˆ ˆ 60 0 Α=Β=Γ=. ω = φ = ρ = 0 60. Έχουμε Λύσεις Γ Γυμνασίου ˆ ˆ 0 0 80 3 4 80 7 ΔΓΕ = ΑΓΒ = x x= x ˆ ˆ 0 0 ΔΕΓ = ΗΕΖ = 80 x 6x= 80 8x Έτσι, έχουμε, στο τρίγωνο ΓΔΕ: ˆ ˆ ˆ 0 ΔΓΕ + ΔΕΓ + Δ = 80 οπότε 0 0 0 80 7x+ 80 8x+ 5x= 80 0 0x= 80 0 x= 8. γ γ. Α= α ( β) ( ) = α 4β = α β γ = 4 = = = ( αβγ ) 0 00. 3. Έστω Α=7p+. Για p= έχουμε Α=7 +=55=5, ενώ για p o 7p είναι περιττός οπότε ο Α είναι άρτιος.

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ ΛΥΣΕΙΣ 3 4. Αν υπήρχαν τέτοιοι αριθμοί τότε 3 0 aβ + a β = 9, οπότε 3 9 00 a β + a β + 0 = 9 οπότε 4 9 9 00 a β + a β = 9 0=, πουδεν ισχύει. 4 9 ΛΥΣΕΙΣ Α τάξη Λυκείου. Έστω ότι α,β,γ,δ,ε είναι οι αριθμοί των μαθητών των πέντε αυτών τμημάτων. Έτσι έχουμε: 0( α + β + γ + δ + ε) = 090 α + β + γ + δ + ε = 09 () Έστω ότι οι αριθμοί των μαθητών των τμημάτων αυτών είναι ανά δύο διαφορετικοί και έστω ότι: α και α,β,γ,δ,ε α < β < γ < δ < ε. Επειδή 0 φυσικοί έχουμε: β > α 0 β > 0 β γ > β γ > γ δ > γ δ > δ 3 ε > δ 3 ε > 3 ε 4