Moments of Structure Functions in Full QCD

Σχετικά έγγραφα
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

AdS black disk model for small-x DIS

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

O(a 2 ) Corrections to the Propagator and Bilinears of Wilson / Clover Fermions

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3


Hadronic Tau Decays at BaBar

CT Correlation (2B) Young Won Lim 8/15/14

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Example Sheet 3 Solutions

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Finite difference method for 2-D heat equation

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Second Order Partial Differential Equations

Homework 8 Model Solution Section

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Congruence Classes of Invertible Matrices of Order 3 over F 2

Mechanics of Materials Lab

L. F avart. CLAS12 Workshop Genova th of Feb CLAS12 workshop Feb L.Favart p.1/28

Constitutive Relations in Chiral Media

ADVANCED STRUCTURAL MECHANICS

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

6.4 Superposition of Linear Plane Progressive Waves

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Hartree-Fock Theory. Solving electronic structure problem on computers

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Three coupled amplitudes for the πη, K K and πη channels without data

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Graded Refractive-Index

Math221: HW# 1 solutions

Iterative Monte Carlo analysis of spin-dependent parton distributions

Wavelet based matrix compression for boundary integral equations on complex geometries

Dr. D. Dinev, Department of Structural Mechanics, UACEG


wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

D Alembert s Solution to the Wave Equation

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

A NLO Calculation of pqcd: Total Cross Section of P P W + + X. C. P. Yuan. Michigan State University CTEQ Summer School, June 2002

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

4.4 Superposition of Linear Plane Progressive Waves

Ανελαστική Σκέδαση. Σπύρος Ευστ. Τζαµαρίας Σωµατιδιακή Φυσική

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

The Pohozaev identity for the fractional Laplacian

Srednicki Chapter 55

Kaon Weak Matrix Elements in 2+1 Flavor DWF QCD

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Ειδική διάλεξη 2: Εισαγωγή στον κώδικα της εργασίας

Lifting Entry (continued)

Neutrino emissivities in quark matter

Abstract Storage Devices

6.3 Forecasting ARMA processes

PHOS π 0 analysis, for production, R AA, and Flow analysis, LHC11h

4.6 Autoregressive Moving Average Model ARMA(1,1)

Solutions to Exercise Sheet 5

Section 8.3 Trigonometric Equations

Probability and Random Processes (Part II)

Sampling Basics (1B) Young Won Lim 9/21/13

Other Test Constructions: Likelihood Ratio & Bayes Tests


What happens when two or more waves overlap in a certain region of space at the same time?

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Electronic structure and spectroscopy of HBr and HBr +

Andreas Peters Regensburg Universtity

Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square

TMA4115 Matematikk 3

Lecture 21: Scattering and FGR

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Summary of the model specified

Second Order RLC Filters

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Quantum Electrodynamics

Homework 3 Solutions

Biostatistics for Health Sciences Review Sheet

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

for fracture orientation and fracture density on physical model data

UV fixed-point structure of the 3d Thirring model

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Introduction to the ML Estimation of ARMA processes

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Large β 0 corrections to the energy levels and wave function at N 3 LO

NLO BFKL and anomalous dimensions of light-ray operators

Section 7.6 Double and Half Angle Formulas

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

EE512: Error Control Coding


Spectrum Representation (5A) Young Won Lim 11/3/16

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ECE 468: Digital Image Processing. Lecture 8

Transcript:

Moments of Structure Functions in Full QCD John W. Negele Lattice 2000 Collaborators MIT Dmitri Dolgov Stefano Capitani Richard Brower Andrew Pochinsky Jefferson Lab Robert Edwards Wuppertal SESAM Klaus Schilling Thomas Lippert Outline Salient aspects of deep inelastic scattering Details of lattice calculation Results Quenched Full QCD at β =5.6 and 5.5 Cooled full QCD Comparison with phenomenology Summary and future work

Deep Inelastic Scattering k' e(k)+n(p ) e(k )+X k q q Q 2 def = q 2 =4EE sin 2 θ 2 > 0 P X ν def = P q = M(E E ) x def = Q 2 /2ν Cross section determined by hadronic tensor W µν A 2 4π = α2 W Q 4lµν µν W µν = 1 PS J µ X (2π) 4 δ (4) (P + q P X ) X J ν PS 4π X = d 4 ξe iqξ PS [J µ (ξ),j ν (0)] PS Unpolarized scattering measures symmetric part with 2 structure functions: W {µν} =( g µν + qµ q ν q )F 1(ν, Q 2 ) + 1 2 ν [(P µ ν )(P ν ν )]F q 2qµ q 2qν 2 (ν, Q 2 ) Polarized scattering measures antisymmetric part with 2 structure functions: W [µν] = iɛ µνλρ q λ ( S ρ ν (g 1(ν, Q 2 ) + g 2 (ν, Q 2 )) q SP ρ ν 2 g 2 (ν, Q 2 )) In parton model F 1 = 1 e 2 2 q (q (x)+q (x)) F 2 =2xF 1 g 1 = 1 e 2 2 q (q (x) q (x)) g 2 =0 q q 2

Sketch of Operator Product Expansion Im (ω) ω 1 x i 1 1 Re (ω) T µν (ν, q 2 )=i Forward Compton amplitude d 4 ξe iqξ P T (J µ (ξ)j ν (0)) P Dispersion relation, ω = 1/x i W (ω, q 2 )= 1 4π Im T (ω, q2 ) n n T (ω, q 2 )=4 1 dω ω W (ω,q 2 ) ω 2 ω 2 q µ1 q µn C n Q 2n P ψγ {µ1 Dµ2... D µn } ψ P =4 ω n even n 1 dω (ω ) n 1 W (ω,q 2 ) ( ) 2p q n C n Q 2 v n =4 x n 1 dx even n 0 xn 1 W (x, q 2 ) C n v n 1 0 dx xn 1 W (x, q 2 ) 3

Moments of Structure Functions 1 dx 0 xn 1 F 1 (x, Q 2 )= 1 2 Cv n(q 2 /µ 2 )v n (µ) v n x n 1 q 1 dx 0 xn 2 F 2 (x, Q 2 )=Cn v (Q2 /µ 2 )v n (µ) 1 dx 0 xn g 1 (x, Q 2 )= 1 4 Ca n (Q2 /µ 2 )a n (µ) 1 2 a n x n q 1 dx 0 xn g 2 (x, Q 2 )= 1 n 4n +1 (Cd n (Q2 /µ 2 )d n (µ) Cn a (Q2 /µ 2 )a n (µ)) 2 v n P µ1...p µn = 1 2 S PS ( i 2)n 1 ψγ {µ1 Dµ 2... D µn } ψ PS a n S {σ P µ1...p µn } = PS ( i 2) n ψγ 5 γ {σ Dµ1... D µn } ψ PS d n S [σ P {µ1 ]...P µ n } = PS ( i 2) n ψγ 5 γ [σ D{µ1 ]... D µn } ψ PS 4

Calculation of Connected Diagrams R αα (t i,t o,t f )= = d 3 x f e ipx f d 3 y J α (x f,t f )O(y, t o ) J α (x i,t i ) V d 3 x f e ipx f J α (x f,t f ) J α (x i,t i ) t i t 0 f P 0 P 8 7 Nucleon source: J α = u α au β b (Cγ 5) ββ d β c ɛabc Use upper two components of J <R 2 > 1/2, lattice units 6 5 4 3 2 Dirichlet boundary conditions for quarks in t-direction Gauge-invariant Wuppertal smearing of sources 1 250 200 150 Number of Iterations 100 50 0 0 10 20 Alpha 30 40 50 ψ(x, t) (1 + α 3 i=1 [U(x, i)δ x,x+î + U (x î, i)δ x,x î ])N ψ(x, t) 5

Sequential Source x x o y o y D/ zx S(x) = δ(z) D/ yx S(x) =S(y)S(y) D/ = γ 5 D/ γ 5 D/ yx S(x) =γ 5 S (y)s (y) e ipy x x o y o y J O J = S (x) γ 5 O(x) S(x) S(x, x 0 ) W (x, x ) S(x,x 0 ) W (x 0,x 0) 6

2-point function with equal source and sink J(t)J(0) = J n 2 e E nt n A = J n 2 n Overlap with Ground State A B B = J 0 2 B A = A B B = J 0 2 n J n 2 70% n 0 J n 2 J 0 2 T 10 5 10 4 10 3 (AB)/B 10 2 10 1 10 0 10 1 0.0 2.0 4.0 6.0 8.0 <r 2 > 1/2, lattice units 7

Consistency checks point-point, point-smeared, smeared-point, and smeared-smeared source-sink combinations give consistent results N =0,N = 20, and N = 100 sink-source smearings give consistent results 8

Consistency checks Dirichlet boundary conditions vs. periodic boundary conditions Discrepancy between double-precision a 0 and single-precision a 0 with different CG stopping residues 9

Increase in error bars with source-sink separation Sink-source separation T = 14 Sink-source separation T = 12 10

Summary of Production Parameters Name QCD L 3 x L t β κ sea κ val Sample size SESAM full 16 3 32 5.6 0.1560 = κ sea O(200) 0.1565 O(200) 0.1570 O(200) 0.1575 O(200) SCRI full 16 3 32 5.5 0.1596 = κ sea O(100) 0.1600 O(100) 0.1604 O(100) DD60Q quenched 16 3 32 6.0 0.1530 O(200) 0.1540 O(200) 0.1550 O(200) SESAM50CXK full 16 3 32 5.6 0.1560 0.1235 O(100) (cooled) 0.1570 0.1246 O(100) 11

Autocorrelation Functions C O (τ) = 1 T τ +1 T τ t=0 O(t)O(t + τ) ( 1 T τ +1 T τ t=0 )( 1 O(t) T τ +1 T t=τ ) O(t) SESAM configurations (κ = 0.1575) skip 25 trajectories SCRI configurations (κ = 0.1600) skip 10 trajectories, alternate front and back 12

More convenient notation moments of Parton Distribution Functions (PDFs) x n q x n q x n δq 1 0 dx xn (q (x)+q (x)) 1 0 dx xn (q (x) q (x)) 1 0 dx xn (q (x) q (x)) Relation to a (q) n x n q = v (q) n+1 x n q = 1 2 a(q) n and v (q) n 1 13

H(4) mixes p lattice operator xq (a) v 6 + 3 no 0 qγ {1 D4} q xq (b) v 3 + 1 no 0 qγ 4 D4 q 1 3 ( qγ 1 x 2 q v 8 1 yes 0 qγ {1 D1 D4} q 1 2 (γ {2 D 1 q + qγ 2 D2 q + qγ 3 D3 q) D 2 D4} +γ {3 D3 D4} )q x 3 q v 2 + 1 yes 0 qγ {1 D1 D4 D4} q + qγ {2 D2 D3 D3} q (3 4) q v 4 + 4 no 0 qγ 5 γ 3 q x q (a) v 6 3 no 0 qγ 5 γ {1 D3} q x q (b) v 6 3 no 0 qγ 5 γ {3 D4} q x 2 q v 4 + 2 no 0 qγ 5 γ {1 D3 D4} q δq v 6 + 1 no 0 qγ 5 σ 34 q xδq v 8 1 no 0 qγ 5 σ 3{4 D1} q d 1 6 + 1 no 0 qγ 5 γ [3 D4] q d 2 8 2 no 0 qγ 5 γ [1 D{3] D4} q 14

Renormalization: From lattice to MS Oi MS (Q 2 )= j To convert lattice result to the MS renormalization scheme ( δ ij + g2 0 Nc 2 1( γ MS 16π 2 ij log(q 2 a 2 ) (Bij LAT T 2N c Bij MS ) )) Oj LAT T (a 2 ) γ B LAT T B MS Z(β =6.0) Z(β =5.6) xq (a) 16/3 3.16486 40/9 0.9892 0.9884 xq (b) 16/3 1.88259 40/9 0.9784 0.9768 x 2 q 25/3 19.57184 67/9 1.1024 1.1097 x 3 q 157/15 35.3519 2216/225 1.2153 1.2307 q 0 15.79628 0 0.8666 0.8571 x q (a) 16/3 4.09933 40/9 0.9971 0.9969 x q (b) 16/3 4.09933 40/9 0.9971 0.9969 x 2 q 25/3 19.56159 67/9 1.1023 1.1096 δq 1 16.01808 1 0.8563 0.8461 d 2 7/3 15.6774 35/18 1.1159 1.1242 Renormalization Constants 15

Plateaus for SESAM (κ =0.1560) p =0 16

Plateaus for SESAM (κ =0.1560) p 0 17

Unpolarized Quenched PDF: DD60Q (open) and QCDSF (solid) 18

Polarized Quenched PDF: DD60Q (open) and QCDSF (solid) 19

Unpolarized PDF: Full QCD (open), quenched (solid) 20

Polarized PDF: Full QCD (open), quenched (solid) 21

Transversity and d n : Full QCD (open), quenched (solid) 22

World plot of a N versus β =6/g 2 0 for dynamical Wilson 0.25 0.20 LANL HEMCGC SCRI SESAM (quadratic) SESAM (linear) 0.15 a N (fm) 0.10 0.05 0.00 5.20 5.30 5.40 5.50 5.60 5.70 5.80 β 23

Scaling behavior from SESAM (β =5.6) and SCRI (β =5.5) configurations 1.0 0.8 0.8 0.6 u d x u x d 0.6 xd xd 0.4 0.4 0.2 0.0 0.2 0.2 0.4 0.00 0.05 0.10 0.15 0.20 a N (fm) First two moments of polarized PDF 0.0 0.00 0.05 0.10 0.15 0.20 a N (fm) First moment of unpolarized PDF 24

Unpolarized PDF: Full QCD (open), cooled full QCD (solid) 25

Polarized PDF: Full QCD (open), cooled full QCD (solid) 26

Transversity and d n : Full QCD (open), cooled full QCD (solid) 27

Comparison with Phenomenology QCDSF QCDSF(a =0) Wuppertal DD60Q SESAM (4 pts) SESAM (3 pts) Phenom. (q val ) xu c 0.452(26) 0.454(29) 0.504(18) 0.459(29) 0.284 xd c 0.189(12) 0.203(14) 0.213(11) 0.190(17) 0.104 xu c xd c 0.263(17) 0.251(18) 0.291(14) 0.269(23) 0.180 x 2 u c 0.104(20) 0.119(61) 0.158(44) 0.176(63) 0.083 x 2 d c 0.037(10) 0.029(32) 0.0251(209) 0.0314(303) 0.025 x 3 u c 0.022(11) 0.037(36) 0.0500(247) 0.0685(392) 0.032 x 3 d c 0.001(7) 0.009(18) 0.00472(1179) 0.00989(1529) 0.008 u c 0.830(70) 0.889(29) 0.816(20) 0.888(80) 0.719(48) 0.860(69) 0.918 d c 0.244(22) 0.236(27) 0.237(9) 0.241(58) 0.179(31) 0.171(43) 0.339 u c d c 1.074(90) 1.14(3) 1.053(27) 1.129(98) 0.898(57) 1.031(81) 1.257 x u c 0.198(8) 0.215(25) 0.243(17) 0.242(22) 0.150 x d c 0.048(3) 0.054(16) 0.0347(86) 0.0290(129) 0.055 x 2 u c 0.087(14) 0.027(60) 0.113(34) 0.116(42) 0.050 x 2 d c 0.025(6) 0.003(25) 0.00551(1936) 0.00142(2515) 0.016 δu c 0.93(3) 0.980(30) 1.01(8) 0.898(46) 0.963(59) δd c 0.20(2) 0.234(17) 0.20(5) 0.213(29) 0.202(36) d u 2 0.206(18) 0.233(86) 0.224(60) 0.228(81) d d 2 0.035(6) 0.040(31) 0.0658(222) 0.0765(310) 28

Summary Moments of structure functions in full QCD β =5.6, a n =0.085 fm β =5.5, a n =0.115 fm Close agreement between full QCD and quenched connected diagrams Principal Puzzles xu xd 0.24 0.28 (0.18) u d 1.0 1.1 (1.26) General agreement between full QCD and cooled at small m q instanton and zero-mode dominance Future Disconnected diagrams (exploiting zero-mode dominance) Gluon matrix elements Chiral fermions Finite volume corrections 29