6.642 Continuum Electromechanics

Σχετικά έγγραφα
6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities

6.642 Continuum Electromechanics

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Α Ρ Ι Θ Μ Ο Σ : 6.913

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation.

T : g r i l l b a r t a s o s Α Γ Ί Α Σ Σ Ο Φ Ί Α Σ 3, Δ Ρ Α Μ Α. Δ ι α ν ο μ έ ς κ α τ ο ί κ ο ν : 1 2 : 0 0 έ ω ς 0 1 : 0 0 π μ

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Second Order Partial Differential Equations

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Ν Κ Π 6Μ Θ 5 ϑ Μ % # =8 Α Α Φ ; ; 7 9 ; ; Ρ5 > ; Σ 1Τ Ιϑ. Υ Ι ς Ω Ι ϑτ 5 ϑ :Β > 0 1Φ ς1 : : Ξ Ρ ; 5 1 ΤΙ ϑ ΒΦΓ 0 1Φ ς1 : ΒΓ Υ Ι : Δ Φ Θ 5 ϑ Μ & Δ 6 6

F19MC2 Solutions 9 Complex Analysis


ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ. Εµβαδά., x 1 x f

Gradient Descent for Optimization Problems With Sparse Solutions

Note: Please use the actual date you accessed this material in your citation.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

ΚΥΚΛΟΙ ΚΑΤΕΡΓΑΣΙΑΣ. κατά τον άξονα Ζ.

= df. f (n) (x) = dn f dx n

Finite Field Problems: Solutions

Livros Grátis. Milhares de livros grátis para download.

6.641, Electromagnetic Fields, Forces, and Motion Prof. Markus Zahn Lecture 7: Polarization and Conduction

Constitutive Relations in Chiral Media

Προβολές και Μετασχηματισμοί Παρατήρησης

6.003: Signals and Systems. Modulation

Τύπος TAYLOR. f : [a, b] R f (n 1) (x) συνεχής x [a, b] f (n) (x) x (a, b) ξ μεταξύ x και x 0. (x x 0 ) k k! f(x) = f (k) (x 0 ) + R n (x)

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

D Alembert s Solution to the Wave Equation

SPECIAL FUNCTIONS and POLYNOMIALS


f a o gy s m a l nalg d co h n to h e y o m ia lalg e br coh the oogy lagebr

ΑΡΧΕΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΣΤΟΙΧΕΙΩΝ Αγωγιμότητα σε ημιαγωγούς

Dark matter from Dark Energy-Baryonic Matter Couplings

Galatia SIL Keyboard Information


(i) f(x, y) = xy + iy (iii) f(x, y) = e y e ix. f(z) = U(r, θ) + iv (r, θ) ; z = re iθ

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

Veliine u mehanici. Rad, snaga i energija. Dinamika. Meunarodni sustav mjere (SI) 1. Skalari. 2. Vektori - poetak. 12. dio. 1. Skalari. 2.

Ε Π Ι Μ Ε Λ Η Τ Η Ρ Ι Ο Κ Υ Κ Λ Α Δ Ω Ν


Α θ ή ν α, 7 Α π ρ ι λ ί ο υ

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

Finite difference method for 2-D heat equation

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

ΤΥΧΑΙΑ ΔΙΑΝΥΣΜΑΤΑ F(x) 1, x n. 2. Η F είναι μη φθίνουσα και δεξιά συνεχής ως προς κάθε μεταβλητή. 3.

Μικροκυματικές Επικοινωνίες & Τεχνολογίες Χιλιοστομετρικών Κυμάτων

!"!# ""$ %%"" %$" &" %" "!'! " #$!

Srednicki Chapter 55

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

< = ) Τ 1 <Ο 6? <? Ν Α <? 6 ϑ<? ϑ = = Χ? 7 Π Ν Α = Ε = = = ;Χ? Ν !!! ) Τ 1. Ο = 6 Μ 6 < 6 Κ = Δ Χ ; ϑ = 6 = Σ Ν < Α <;< Δ Π 6 Χ6 Ο = ;= Χ Α

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018


Discretization of Generalized Convection-Diffusion

ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ., x 1

Higher Derivative Gravity Theories

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Επομένως ο γεωμετρικός τόπος των εικόνων του z είναι ο κύκλος με κέντρο

Zadatak 2 Odrediti tačke grananja, Riemann-ovu površ, opisati sve grane funkcije f(z) = z 3 z 4 i objasniti prelazak sa jedne na drugu granu.

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

1. Functions and Operators (1.1) (1.2) (1.3) (1.4) (1.5) (1.6) 2. Trigonometric Identities (2.1) (2.2) (2.3) (2.4) (2.5) (2.6) (2.7) (2.8) (2.

Déformation et quantification par groupoïde des variétés toriques

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011

Durbin-Levinson recursive method

! # % &! ( )! % +,.! / 0 1 )2 3

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

MÉTHODES ET EXERCICES

Α Δ Ι. Παρασκευή 13 Δεκεμβρίου 2013

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

z k z + n N f(z n ) + K z n = z n 1 2N

Α Ρ Η Θ Μ Ο : ΠΡΑΞΗ ΣΡΟΠΟΠΟΙΗΗ ΠΡΑΞΗ ΚΑΣΑΘΕΗ ΟΡΩΝ

Basic Formulas. 8. sin(x) = cos(x π 2 ) 9. sin 2 (x) =1 cos 2 (x) 10. sin(2x) = 2 sin(x)cos(x) 11. cos(2x) =2cos 2 (x) tan(x) = 1 cos(2x)

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

TeSys contactors a.c. coils for 3-pole contactors LC1-D

# % % % % % # % % & %

XAΡ Τ Η Σ Ε Τ Α Ι ΡΙ ΚΗ Σ Δ Ι Α Κ Υ Β Ε Ρ Ν Η ΣΗ Σ ΤΗΣ V I O H A L C O SA

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ

Παράγωγος Συνάρτησης. Ορισμός Παραγώγου σε ένα σημείο. ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗΣ σε ένα σημείο ξ είναι το όριο (αν υπάρχει!) f (ξ) = lim.

x3 + 1 (sin x)/x d dx (f(g(x))) = f ( g(x)) g (x). d dx (sin(x3 )) = cos(x 3 ) (3x 2 ). 3x 2 cos(x 3 )dx = sin(x 3 ) + C. d e (t2 +1) = e (t2 +1)

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

m i N 1 F i = j i F ij + F x

Chapter 1 Fundamentals in Elasticity

Πανελλαδικές εξετάσεις 2015

Κβαντομηχανική Ι 2o Σετ Ασκήσεων. Άσκηση 1

ΜΑΘΗΜΑΤΙΚΑ κατεύθυνσης Γ ΛΥΚΕΙΟΥ

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

( () () ()) () () ()

! # !! # % % & ( ) + & # % #&,. /001 2 & 3 4

1 Γραμμικές συναρτήσεις

Solutions to Exercise Sheet 5

Note: Please use the actual date you accessed this material in your citation.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ - Θ. BOLZANO - Θ. ΕΝΔΙΑΜΕΣΩΝ ΤΙΜΩΝ. , ώστε η συνάρτηση. æ η γραφική της παράσταση να διέρχεται από το σημείο Mç

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Homework 8 Model Solution Section

RS306 High Speed Fuse for Semiconductor Protection

Fourier Transform. Fourier Transform

Transcript:

MIT OpenCourseWre http://ocw.mit.edu 6.64 Continuum Electromechnics Fll 8 For informtion out citing these mterils or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.64, Continuum Electromechnics, Fll 4 Prof. Mrus Zhn Lecture 8: Electrohdrodnmic nd Ferrohdrodnmic instilities I. Mgnetic Field Norml Instilit Courtes of MIT Press. Used with permission. A. Equilirium ( ξ ) μ H μh ; Poe Pod + H H μ μ ρ gx + Pod x > Po ( x) ρ gx + Poe x <. Perturtions: e j( ω t zz) H H ix+ h, H H ix+ h coth h c xc sinh Ψ h d xd coth Ψ sinh coth h e xe sinh Ψ h f xf coth Ψ sinh 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge of 3

C. oundr Conditions v v xc xf Ψ Ψ c f v xd,e + vd,e + vzd,e vxd vxe jωξ t n i i i x z i x i iz z + + e i ij j pn T n γ nni ξ ξ n + i x n n i x P + P' Txx nx + Tx n + Txz ξ nz + γ + perturtion perturtion Hh μ Hh μ x x z Equilirium ( ξ ) second order P Txx P od Poe H H μ μ Perturtions P P H h H h μ ' d ξ ' e ξ μ ' d ξ ' e ξ γ ξ dp P P P P g P od ' ( ξ ) ( ξ ) + ξ + ρ ξ + ( ) ' ' ' d od d d d x ' ' dp ' ' Pe Poe Pe Pe g Pe x oe ( ξ ) ( ξ ) + ξ + ρ ξ + 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge of 3

coth c p v c jωρ sinh x p d d coth v sinh x coth e p v e jωρ sinh x p f f coth v sinh x jωρ d ω ρ p coth v coth ξ d x jωρ e ω ρ Pe coth v coth ξ x h h xd xe d coth Ψ e coth Ψ ni i i i i ( ) i + ( μ h μ h ) i + ( μ h μ h ) i x z x xd xe x d e h h i + μ zd μ ze z μ h μ h xd xe n h ix i iz ( H H ) ix + ( hxd hxe ) ix + ( hd he ) i + ( hzd hze ) iz i h h i h h + H H i H H i z d e zd ze z d ( e) hd he H H + j Ψ Ψ j H H ξ d ( e) h h H H + j Ψ Ψ j H H zd ze z z ( H H ) Ψ Ψ + ξ d e μ coth Ψ μ cothψ d 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 3 of 3 e ξ

μ coth Ψ d Ψ μ coth μ coth Ψe ( H H ) ξ μ coth H H ξ μ coth ( ) Ψ e μ coth + μ ( ) Ψ d + μ coth + μ e coth H H ξ μ coth coth D. Dispersion Eqution ωρ ωρ ρgξ coth ξ + ρ gξ coth ξ μh coth H H μ coth ξμh coth H H ξμ coth γ ξ μ coth + μ coth ω ( ) ( μ μ) ( ρ coth + ρ coth ) ( ρ ρ ) g + γ μ coth+ μ coth H H cothcoth H, H H H ( μ μ ) μ μ μ μ μμ ω μ μ ( ρ coth + ρ coth ) g( ρ ρ ) + γ μμ μ +μ tnh tnh E. Short Wvelength Limit (, ) tnh tnh ω g ( μ μ ) ρ + ρ ρ ρ + γ μμ μ +μ f Incipience of Instilit 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 4 of 3

f df d ( μ μ ) γc μμ μ +μ c ( μ μ ) γμμ μ +μ μ μ μ μ g( ρ ρ ) + γ γμμ μ + μ μμ μ + μ γ ( μ μ ) 4g ( ρ ρ) γ μμ μ +μ 4g( ρ ρ ) γ γ c g ( ρ ρ ) γ Courtes of MIT Press. Used with permission. 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 5 of 3

Courtes of MIT Press. Used with permission. II. Electric Field Norml Instilit A. Polriztion Forces Courtes of MIT Press. Used with permission. μ μ ε ε D 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 6 of 3

ω D ε ε ( ρ coth + ρ coth ) g ( ρ ρ ) + γ + εε ε ε tnh tnh. Perfectl conducting lower fluid ( ε ) Courtes of MIT Press. Used with permission. V coth coth g coth ω ( ρ + ρ ) ( ρ ρ ) + γ ε 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 7 of 3

Courtes of MIT Press. Used with permission. III. Tngentil Grdient Fields Courtes of MIT Press. Used with permission. 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 8 of 3

A. Equilirium V V x V E i i + ;r R x;e θ θ r θ r R θ R i E x + R lim Δ P x ρ gx + P Po Po + Txx o o P x ρ gx + P o o T ε xx E εe T ( ) E ε ε P P xx o o. Perturtions α e coth Δ x α sinh Δ Φ β coth β e Δ Φ x sinh Δ lim Δ e e x x Φ Φ coth α α p Δ j sinh v ωρ Δ x β p coth v β Δ sinh x Δ v α v β j ωξ x x P jωρ ω ρ vx ξ 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 9 of 3

P jωρ ω ρ vx ξ C. oundr Conditions n i i i x z z n E i i i x z ( ex ex ) i + x ( e e ) i + ( ez ez ) i z z ( ) ( z z ) i e e i e e e e j Φ j Φ Φ Φ Φ e z ez jz Φ jz Φ ni εe i i i x zi E ( ε ε) i + ( εex εex) i + x ( εe εe) i e e j E + ξ ε ε ε ε x x j E ε ε ε ε Φ + + ξ ξ je ( ε ε) Φ ( ε + ε ) + ( εez εez) i z pn T n + γ + n i ij j i i x, nx p T + T n + T n γ ξ xx x xz z Txx ε Ex E Ez ε E + e E + Ee ε T T εe e x x ε e e xz x z 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge of 3

T x n second order T xz n third order z T d ( ξ ) ε ( E ) xx x de εe ξε Ee ξ ε E e de T εe xx ξ ε Ee de ε ξ jφε E E T ( ε ε ) E ξ j E Φ ( ε ε ) xx de p ξ + p P P g( ρ ρ ) T dp de P P g ρ ρ ξ ε ε E ξ j ΦE ( ε ε) γ ξ ω ( ρ + ρ) ξ g( ρ ρ) ξ ξ de ( ε ε) E ξ γ ξ j E ( ε ε ) ( j E ) ( ε ε ) ( ε + ε ) ξ ( ε ε ) ( ε ε ) ω de E ( ρ + ρ ) g( ρ ρ ) + γ + ( ε ε) E + + E R Uniform tngentil field lws stilizes. Grdient field stilizes, if higher permittivit fluid is in stronger electric field. Sstem stle even if hevier fluid ove if de ( ε ε ) E > g( ρ ρ ) 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge of 3

Courtes of MIT Press. Used with permission. 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge of 3

Courtes of MIT Press. Used with permission. 6.64, Continuum Electromechnics Lecture 8 Prof. Mrus Zhn Pge 3 of 3