ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ <χ ισχύει f(χ )<f(χ ). β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.β), όταν για οποιαδήποτε χ,χ Δ με χ <χ ισχύει f(χ )>f(χ ). Μια συνάρτηση που είναι γνησίως αύξουσα ή γνησίως φθίνουσα λέγεται γνησίως μονότονη. y y f(x ) f(x ) f(x ) f(x ) Ο x x Δ (a) x x Ο x Δ (β) x Για να δηλώσουμε ότι η f είναι γνησίως αύξουσα (αντιστοίχως γνησίως φθίνουσα) σε ένα διάστημα Δ, γράφουμε f Δ (αντιστοίχως f Δ). Παράδειγμα i) Η συνάρτηση f(x)=x με π.ο. το A=R. Στο διάστημα [0,+) είναι γνησίως αύξουσα γιατί για κάθε χ,χ [0,+) με χ <χ ισχύει χ <χ άρα f(χ )<f(χ ) ενώ στο διάστημα (-, 0] είναι γνησίως φθίνουσα γιατί για κάθε χ,χ (-,0] με χ <χ 0 ισχύει -χ >-χ 0 οπότε (-χ ) >(-χ ) χ >χ f(χ )>f(χ ).
ΑΚΡΟΤΑΤΑ Μια συνάρτηση f με π.ο. το Α παρουσιάζει: α) μέγιστο στο χ 0 Α όταν f(χ)f(χ 0 ),για κάθε χα. (f(χ 0 ) : μέγιστο της f ) β) ελάχιστο στο χ 0 Α όταν f(χ)f(χ 0 ),για κάθε χα. (f(χ 0 ) : ελάχιστο της f ) Το μέγιστο και το ελάχιστο μιας συνάρτησης,αν υπάρχουν λέγονται ακρότατα της f. Παραδείγματα i) Η συνάρτηση f(χ)= -χ + με π.ο. το Α=R παρουσιάζει μέγιστο στο χ 0 =0 το f(0)= αφού για κάθε χα ισχύει ότι χ + δηλαδή f(χ)f(0). ii) Η συνάρτηση f(χ)= (x-) + με π.ο. το Α=R παρουσιάζει ελάχιστο στο χ 0 = το f()= αφού για κάθε χα ισχύει ότι (x-) + δηλαδή f(χ)f(0). f( x) f( x 0 ) x 0 x
ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ Μια συνάρτηση f με πεδίο ορισμού το Α λέγεται : Άρτια, αν για κάθε χα ισχύει: -χα και f(-χ)=f(χ) Περιττή,,αν για κάθε χα ισχύει: -χα και f(-χ)=-f(χ). H γραφική παράσταση κάθε άρτιας συνάρτησης έχει άξονα συμμετρίας τον y y, ενώ κάθε περιττής έχει κέντρο συμμετρίας την αρχή των αξόνων Ο. Παραδείγματα α) Η συνάρτηση f(χ)=χ έχει πεδίο ορισμού το Α=R Για κάθε χα=r ισχύει ότι -χα και f(-x)=(-x) =x =f(x). Άρα η f είναι άρτια. β) Η συνάρτηση f(χ)=χ έχει π.ο. το Α=R Για κάθε χα=r ισχύει ότι -χα και f(-x)=(-x) = -x = -f(x). Άρα η f είναι περιττή.
ΑΣΚΗΣΕΙΣ ) Να μελετήσετε ως προς την μονοτονία τους τις συναρτήσεις α) f(x)= x- β) f(x)=-x+ γ) f(x)= x δ) f(x)=- x ε) f(x)= x +. -------------------------------------------------------------------------------------------------------------- ) Nα βρείτε τα ακρότατα των συναρτήσεων αν υπάρχουν α) f(x)= (x-) + β) f(x)= -x-- γ) f(x)=+ x δ) f(x)= x -------------------------------------------------------------------------------------------------------------- ) Nα βρείτε ποιες από τις συναρτήσεις είναι άρτιες και ποιες είναι περιττές. α) f(x)=x -x 6 β) f(x)= -x -x γ) f(x)= -x- δ) f(x)=x-+ ε) f(x)= x. -------------------------------------------------------------------------------------------------------------- xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
. ΚΑΤΑΚΟΡΥΦΗ ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ Kατακόρυφη μετατόπιση Η γραφική παράσταση της συνάρτησης f, με: f( x) = φ(x)+ c, όπου c, προκύπτει από μια κατακόρυφη μετατόπιση της γραφικής παράστασης της φ κατά c μονάδες. (Προς τα πάνω αν c>0 και προς τα κάτω αν c<0). Παράδειγμα: Για να γίνει η γραφ. παράσταση της y=x +, κάνω πρώτα την γραφ. παράσταση της y=x και στην συνέχεια την μετατοπίζω παράλληλα στον y y κατά μονάδες προς τα πάνω. Για να γίνει η γραφ. παράσταση της y=x -, κάνω πρώτα την γραφ. παράσταση της y=x και στην συνέχεια την μετατοπίζω παράλληλα στον y y κατά μονάδες προς τα κάτω. y=x + y=x y=x -
Οριζόντια μετατόπιση Η γραφική παράσταση της συνάρτησης f, με: f( x) = φ(x-c), όπου c, προκύπτει από μια οριζόντια μετατόπιση της γραφικής παράστασης της φ κατά c μονάδες. (Προς τα δεξιά αν c>0 και προς τα αριστερά αν c<0). Παράδειγμα: Για να γίνει η γραφική παράσταση της y=(x-), κάνω πρώτα την γραφική παράσταση της y=x και στην συνέχεια την μετατοπίζω παράλληλα στον x x κατά μονάδες προς τα δεξιά. Για να γίνει η γραφική παράσταση της y=(x+), κάνω πρώτα την γραφική παράσταση της y=x και στην συνέχεια την μετατοπίζω παράλληλα στον x x κατά μονάδες προς τα αριστερά. y=x y=(x+) y=(x -) xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 6
ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΣΥΝΑΡΤΗΣΗ f(x)=αx+β Γωνία που σχηματίζει ευθεία ε με τον άξονα x x - Συντελεστής διεύθυνσης Έστω Oxy ένα σύστημα συντεταγμένων στο επίπεδο και ε μια ευθεία που τέμνει τον άξονα x x στο σημείο Α. y y ε ε Ο ω x Α x x Ο Α ω x Τη γωνία ω που διαγράφει ο άξονας y 7 y x x όταν στραφεί γύρω από το Α κατά τη θετική φορά μέχρι να συμπέσει με την ευθεία ε τη λέμε γωνία που σχηματίζει η ε με τον άξονα x x. Αν η ευθεία ε είναι παράλληλη προς τον άξονα xx, τότε λέμε ότι σχηματίζει με αυτόν γωνία ω 0. Σε κάθε περίπτωση για τη γωνία ω ισχύει 0 0 ω. 0 80 Ως συντελεστή διεύθυνσης ή ως κλίση μιας ευθείας ε ορίζουμε την εφαπτομένη της γωνίας ω που σχηματίζει η ε με τον άξονα χ χ. Ο συντελεστής διεύθυνσης μιας ευθείας ε συμβολίζεται συνήθως με λ ε ή απλά με λ. Είναι φανερό ότι ο συντελεστής διεύθυνσης της ευθείας ε είναι: θετικός, αν η γωνία ω είναι οξεία, αρνητικός, αν η γωνία ω είναι αμβλεία και μηδέν, αν η γωνία ω είναι μηδέν. Στην περίπτωση που η γωνία ω είναι ίση με 90, δηλαδή όταν η ευθεία ε είναι κάθετη στον άξονα χ 'χ, δεν ορίζουμε συντελεστή διεύθυνσης για την ε. Η γραφική παράσταση της συνάρτησης f(x)=αx+β Η γραφική παράσταση της συνάρτησης f(x)=αx+β είναι μια ευθεία γραμμή, η οποία τέμνει τον άξονα y y στο σημείο Β(0,β) και σχηματίζει με τον άξονα x x γωνία ω, για την οποία ισχύει: εφω=α Ο αριθμός α επομένως είναι ο συντελεστής διευθύνσεως της ευθείας και καθορίζει την διεύθυνσή της. Αν α>0, τότε 0 ο <ω<90 ο Αν α<0, τότε 90 ο <ω<80 ο Αν α=0, τότε ω= 0 ο. x ε Ο y Β(0,β) y Α ω x
Δεν ορίζεται ο συντελεστής διευθύνσεως ευθείας που είναι παράλληλη στον άξονα y y. Μια τέτοια ευθεία δεν είναι γραφική παράσταση συνάρτησης. Δύο ευθείες ε και ε με εξισώσεις y=α x+β και y=α x+β αντίστοιχα είναι : παράλληλες αν α =α και κάθετες αν α α = - Ειδικές περιπτώσεις i) Αν a = 0, η συνάρτηση παίρνει την μορφή y f (x) = β και λέγεται σταθερή συνάρτηση, διότι η τιμή της είναι η ίδια για κάθε x. ε y 0 Α(x 0,y 0 ) Αν έχουμε μία τέτοια ευθεία που να διέρχεται από ένα σημείο Α(x 0,y 0 ) και να είναι παράλ- Ο x ληλη στον x x έχει εξίσωση y=y 0. ii) Αν β=0 τότε παίρνει την μορφή f(x)=αx και η γραφική της παράσταση είναι ευθεία που διέρχεται από την αρχή Ο. Ειδικότερα για α= και α= οι ευθείες y=x και y=-x είναι οι διχοτόμοι των γωνιών των αξόνων. δ y δ y=-x y=x o o Ο x iii) Οι ευθείες που είναι παράλληλες προς τον άξονα y y y, δεν είναι γραφικές παραστάσεις συναρτήσεων ε και δεν εκφράζονται με την μορφή f(x)=αx+β. Ωστόσο αν έχουμε μία τέτοια ευθεία που να Α(x 0,y 0) διέρχεται από ένα σημείο Α(x 0,y 0 ) και να είναι παράλληλη στον y y έχει εξίσωση x=x 0. Ο x (Όλα τα σημεία της έχουν τετμημένη x 0 ). xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 8
ΣΥΝΑΡΤΗΣΗ f(x)=αx, α0 Πεδίο ορισμού: Α=R Είναι άρτια συνάρτηση και επομένως η γραφ. παράστασή της έχει άξονα συμμετρίας τον y y. ΜΟΝΟΤΟΝΙΑΑΚΡΟΤΑΤΑ α>0 χ - 0 + α<0 χ - 0 + f(χ) f(0)=0:ελάχιστο f(χ) f(0)=0 μέγιστο Δηλαδή: αν α>0 είναι γνησίως φθίνουσα στο (-,0] και γνησίως αύξουσα στο [0,+) ενώ αν α<0 είναι γνησίως αύξουσα στο (-,0] και γνησίως φθίνουσα στο [0,+) ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ Η γραφική της παράσταση είναι μία παραβολή με άξονα συμμετρίας τον ψ ψ και κορυφή την αρχή Ο, όπως φαίνεται από τα παρακάτω. - - - - - - α>0 - α<0 9
ΣΥΝΑΡΤΗΣΗ f(x) = χ α, α0 Πεδίο ορισμού: Α=R * Είναι περιττή συνάρτηση και επομένως η γραφ. παράστασή της έχει κέντρο συμμετρίας την αρχή των αξόνων Ο. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ α>0 χ - 0 + f(χ) α<0 χ - 0 + f(χ) Δηλαδή: αν α>0 είναι γνησίως φθίνουσα στο (-,0) και στο (0,+) ενώ αν α<0 είναι γνησίως αύξουσα στο (-,0) και στο (0,+) Η συνάρτηση αυτή δεν έχει ακρότατα. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ Η γραφική της παράσταση είναι μία υπερβολή με κέντρο συμμετρίας το Ο και ασύμπτωτες τους άξονες χ χ και y y, όπως φαίνεται από τα παρακάτω. - - - - - - - α>0 - α<0-0
ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΕΩΝ: f(x)=αx +κ, α0. Κάνουμε την γραφική παράσταση της y=αx και στη συνέχεια μετατόπισή της παράλληλα στον y y κατά κ μονάδες (προς τα πάνω αν κ>0 και προς τα κάτω αν κ<0). Παράδειγμα: y=x + y=x Για να γίνει η γραφ. παράσταση της y=x +, κάνω πρώτα την γραφ. παράσταση της y=x και στην συνέχεια την μετατοπίζω παράλληλα στον y y κατά μονάδες προς τα πάνω. ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΕΩΝ: f(x)=α(x-ρ), α0. Κάνουμε την γραφική παράσταση της y=αx και στη συνέχεια μετατόπισή της παράλληλα στον x x κατά ρ μονάδες (προς τα δεξιά αν ρ>0 και προς τα αριστερά αν ρ<0). Παράδειγμα: y=x y=(x-) Για να γίνει η γραφ. παράσταση της y=(x-), κάνω πρώτα την γραφ. παράσταση της y=x και στην συνέχεια την μετατοπίζω παράλληλα στον x x κατά μονάδες προς τα δεξιά.
ΜΕΛΕΤΗ ΚΑΙ ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ: f(x)=αx +βx+γ, α0. Η συνάρτηση f(x)=x -8x+ παίρνει τη μορφή f(x)=(x-) - οπότε η γραφική παράσταση της προκύπτει από τη y=x, την οποία μετατοπίζουμε αρχικά κατά μονάδες παράλληλα προς τον χ χ, ώστε να προκύψει η y=(x-) και στη συνέχεια κατά - μονάδες παράλληλα στον ψ ψ οπότε προκύπτει η παραβολή με κορυφή το σημείο Κ(,-) και άξονα συμμετρίας την ευθεία χ= όπως φαίνεται στο σχήμα. gx = x qx = x- - - - fx = x- - - Κ(,-) - Με ανάλογο τρόπο ο τύπος της συνάρτησης f(x)=αx +βx+γ, α0 παίρνει τη μορφή f ( x) a x, οπότε η συνάρτηση παριστάνεται γραφικά από μια παραβολή β με άξονα συμμετρίας την ευθεία x= - α και κορυφή τo σημείο Κ( Η παραβολή αυτή τέμνει τον άξονα x x στα σημεία του που έχουν τετμημένες τις ρίζες της εξίσωσης αx +βx+γ=0 και τον άξονα y y στο σημείο (0,f(0)). β α, ).
Η μονοτονία καθώς και τα ακρότατά της φαίνονται στους παρακάτω πίνακες και η γραφική της παράσταση γίνεται άμεσα όπως στο παράδειγμα. f(x)=αx +βx+γ, α0. Πεδίο ορισμού: Α=R ΜΟΝΟΤΟΝΙΑΑΚΡΟΤΑΤΑ α>0 χ - β - α + α<0 β χ - - α + f(χ) f(χ) f( β )= α ελάχιστο f( β )= α μέγιστο ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ β Η γραφική της παράσταση είναι μία παραβολή με άξονα συμμετρίας την ευθεία x= - α και κορυφή τo σημείο Κ( β α, ), όπως φαίνεται από τα παρακάτω. Τέμνει τον άξονα x x στα σημεία του που έχουν τετμημένες τις ρίζες της εξίσωσης αx +βx+γ=0 και τον άξονα y y στο σημείο (0,f(0)). Παράδειγμα: Η συνάρτηση f(x)=x -8x+ έχει: α=>0 β = και α =-. Επομένως έχουμε τον πίνακα μεταβολών. α=>0 χ - + - - f(χ) - ελάχιστο - - - Κ(,-) fx = x- - Δηλαδή η συνάρτηση f _ είναι γνησίως φθίνουσα στο διάστημα(-,] και γνησίως αύξουσα στο [,+). _ για x= παρουσιάζει ελάχιστο το f()=- _ έχει κορυφή το σημείο K(,-) και άξονα συμμετρίας την ευθεία x=.
ΑΣΚΗΣΕΙΣ ) Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων α) y = x και y= - x στο ίδιο σύστημα αξόνων. 6 6 ------------------------------------------------------------------------------------------------------------- β) y= x και y= / x στο ίδιο σύστημα αξόνων. 6 6 --------------------------------------------------------------------------------------------------------------
) Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων: α) y = x - και y= (x-) στο ίδιο σύστημα αξόνων. 6 6 ------------------------------------------------------------------------------------------------------------ β) y = -x + και y= -(x+) στο ίδιο σύστημα αξόνων. 6 6 --------------------------------------------------------------------------------------------------------------
) Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων: x, x α) f(x)= x, x 6 8 6 6 8 6 ------------------------------------------------------------------------------------------------------, β) g(x)= x x, x, x x 6 8 6 6 8 -------------------------------------------------------------------------------------------------------------- 6 6
) Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων i) f(x)=x -x+ ii) g(x)= -x -x-0. 7 6 0 8 6 6 8 0 6 7 ) Οι παρακάτω γραφικές παραστάσεις αντιπροσωπεύουν συναρτήσεις γενικής μορφής y = αx + βx + γ, α 0. Συμπληρώστε το πρόσημο του Δ και του α στον πίνακα. Α. Β Δ Ε 6) Να γίνουν οι γραφικές παραστάσεις των συναρτήσεων Γ Α Β Γ Δ Ε Δ α i) f(x)=x -x+ ii) g(x)=x -x+ iii) h(x) =x -x+. xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 7