2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗ
|
|
- ῬαΧάβ Καζαντζής
- 8 χρόνια πριν
- Προβολές:
Transcript
1 ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ακριβώς ένα στοιχείο του συνόλου Β. Το σύνολο Α λέγεται πεδίο ορισμού της συνάρτησης και περιέχει τις δυνατές τιμές που μπορούμε να δώσουμε στη μεταβλητή. (το πεδίο ορισμού μιας συνάρτησης το συμβολίζουμε συνήθως όλες τις τιμές της ( ). Το σύνολο Β λέγεται σύνολο τιμών της και περιέχει ή για τα αντίστοιχα ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ ΣΥΝΑΡΤΗΣΗΣ ΣΥΝΑΡΤΗΣΗ ΠΕΡΙΟΡΙΣΜΟΣ P( Q ( ( Q( ( v P( P ( ) Ποιο είναι το πεδίο ορισμού των παρακάτω συναρτήσεων : i. ( ii. ( iii. ( iv. ( v. 5 ( vi. ( vii. ( i. Δεν υπάρχει κάποιος περιορισμός για το άρα ii. Πρέπει :. Άρα &. Άρα, iii. Πρέπει : iv. Πρέπει :. Άρα (,] v. Πρέπει : και. Άρα [,) (, ) ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
2 ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ vi. Πρέπει : [, ]. Άρα [, ] vii. Πρέπει : () και () Έχω Άρα επειδή θέλω [, ] () Από () & () [,) (, ]. ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ Μια συνάρτηση λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,, με, ισχύει : ( ) ( (Δηλαδή ισχύει η ισοδυναμία ) ( ) ) ( Μια συνάρτηση λέγεται γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε,, με, ισχύει : ( ) ( (Δηλαδή ισχύει η ισοδυναμία ( ) ( ). Να βρείτε τη μονοτονία των παρακάτω συναρτήσεων : i. ( 4 7 ii. ( 4 7 i. ( 4 7, Δεν υπάρχει κάποιος περιορισμός για το άρα Έστω, τότε έχουμε : ( ) ( άρα η ( είναι γνησίως αύξουσα στο ii. ( 4 7, Δεν υπάρχει κάποιος περιορισμός για το άρα Έστω, με, τότε έχουμε : ( ) ( άρα η ( είναι γνησίως φθίνουσα στο ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
3 ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ Μια συνάρτηση, με πεδίο ορισμού ένα σύνολο Α, λέμε ότι παρουσιάζει στο (ολικό) μέγιστο όταν : ( ) για κάθε ( Μια συνάρτηση, με πεδίο ορισμού ένα σύνολο Α, λέμε ότι παρουσιάζει στο (ολικό) ελάχιστο όταν : ( ) για κάθε (. (Άσκηση σελ. 8 Α ομάδας σχολικού βιβλίου) Να δείξετε ότι : i. Η συνάρτηση ( παρουσιάζει ελάχιστο για ii. Η συνάρτηση ( παρουσιάζει μέγιστο για i. ( Δεν υπάρχει κάποιος περιορισμός για το άρα ii. Για να παρουσιάζει η ( ελάχιστο για, αρκεί να αποδείξουμε ότι ( () για κάθε. Έχω : ( () ( ) που ισχύει. (, πρέπει που ισχύει για κάθε. Άρα δεν υπάρχει κάποιος περιορισμός για το άρα Για να παρουσιάζει η ( μέγιστο για, αρκεί να αποδείξουμε ότι ( () για κάθε. Έχω : ( () ( ) που ισχύει. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
4 ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ Μια συνάρτηση, με πεδίο ορισμού ένα σύνολο Α, θα λέγεται άρτια, όταν για κάθε ισχύει : και ( (. Η γραφική παράσταση μιας άρτιας συνάρτησης έχει άξονα συμμετρίας τον άξονα y y. Μια συνάρτηση, με πεδίο ορισμού ένα σύνολο Α, θα λέγεται περιττή, όταν για κάθε ισχύει : και ( (. Η γραφική παράσταση μιας περιττής συνάρτησης έχει κέντρο συμμετρίας την αρχή των αξόνων.. (Άσκηση 4 σελ. 8 Α ομάδας σχολικού βιβλίου) Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι άρτιες και ποιες είναι περιττές. 4 i. ( ii. ( iii. ( 5 5 iv. 4( v. 5 ( vi. ( i., για κάθε είναι και 4 4 ( ( 5( 5 ( για κάθε. Άρα η είναι άρτια. ii. iii. iv., για κάθε είναι και ( ( για κάθε. Άρα η είναι άρτια., για κάθε είναι και ( ( ) δεν βγαίνει ούτε ( ούτε (. Άρα η δεν είναι ούτε άρτια ούτε περιττή. 4, για κάθε είναι και ( ( ( ( ) 4( για κάθε. Άρα η 4 είναι περιττή. v. Πρέπει, για κάθε 5 είναι και 5. 5 ( Επίσης : 5 ( δεν βγαίνει ότι ούτε ( ούτε (. Άρα η δεν είναι ούτε άρτια ούτε περιττή. άρα vi. Πρέπει που ισχύει για κάθε, άρα, για κάθε είναι ( και ( ) ( ). Άρα η είναι ( περιττή. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 4
5 ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΚΑΤΑΚΟΡΥΦΗ ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ ΚΑΜΠΥΛΗΣ ΚΑΤΑΚΟΡΥΦΗ ΜΕΤΑΤΟΠΙΣΗ Η γραφική παράσταση της συνάρτησης, με ( ( c, όπου c, προκύπτει από μια κατακόρυφη μετατόπιση της γραφικής παράστασης της φ κατά c μονάδες προς τα πάνω. Η γραφική παράσταση της συνάρτησης, με ( ( c, όπου c, προκύπτει από μια κατακόρυφη μετατόπιση της γραφικής παράστασης της φ κατά c μονάδες προς τα κάτω.. (Άσκηση σελ. 45 Α ομάδας σχολικού βιβλίου) Στο ίδιο σύστημα συντεταγμένων να παραστήσετε γραφικά τις συναρτήσεις : (, (, g ( Οι γραφικές παραστάσεις των τριών συναρτήσεων φαίνονται στο παρακάτω σχήμα. Τονίζουμε ότι : η γραφική παράσταση της συνάρτησης ( προκύπτει αν μετατοπίσουμε, όλα τα σημεία της γραφικής παράστασης της συνάρτησης (, κατά μονάδες προς τα πάνω. Ενώ η γραφική παράσταση της συνάρτησης g( προκύπτει αν μετατοπίσουμε, όλα τα σημεία της γραφικής παράστασης της συνάρτησης (, κατά μονάδες προς τα κάτω. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 5
6 ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΖΟΝΤΙΑ ΜΕΤΑΤΟΠΙΣΗ Η γραφική παράσταση της συνάρτησης, με ( ( c), όπου c, προκύπτει από μια οριζόντια μετατόπιση της γραφικής παράστασης της φ κατά c μονάδες προς τα δεξιά. Η γραφική παράσταση της συνάρτησης, με ( ( c), όπου c, προκύπτει από μια οριζόντια μετατόπιση της γραφικής παράστασης της φ κατά c μονάδες προς τα αριστερά.. (Άσκηση σελ. 45 Α ομάδας σχολικού βιβλίου) Στο ίδιο σύστημα συντεταγμένων να παραστήσετε γραφικά τις συναρτήσεις : (, h (, q ( Οι γραφικές παραστάσεις των τριών συναρτήσεων φαίνονται στο παρακάτω σχήμα. Τονίζουμε ότι : η γραφική παράσταση της συνάρτησης h ( προκύπτει αν μετατοπίσουμε, όλα τα σημεία της γραφικής παράστασης της συνάρτησης (, κατά μονάδες προς τα αριστερά. Ενώ η γραφική παράσταση της συνάρτησης q ( προκύπτει αν μετατοπίσουμε, όλα τα σημεία της γραφικής παράστασης της συνάρτησης (, κατά μονάδες προς τα δεξιά. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα
7 ΚΕΦΑΛΑΙΟ Ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΣΥΝΔΙΑΣΜΟΣ ΜΕΤΑΤΟΠΙΣΕΩΝ Αν έχω ( ( c) μονάδες προς τα δεξιά και κ μονάδες πάνω Αν έχω ( ( c) μονάδες προς τα δεξιά και κ μονάδες κάτω Αν έχω ( ( c) μονάδες προς τα αριστερά και κ μονάδες πάνω Αν έχω ( ( c) μονάδες προς τα αριστερά και κ μονάδες κάτω. (Άσκηση σελ. 45 Α ομάδας σχολικού βιβλίου) Στο ίδιο σύστημα συντεταγμένων να παραστήσετε γραφικά τις συναρτήσεις : (, F (, G ( Οι γραφικές παραστάσεις των τριών συναρτήσεων φαίνονται στο παρακάτω σχήμα. Τονίζουμε ότι : η γραφική παράσταση της συνάρτησης F ( προκύπτει αν μετατοπίσουμε, όλα τα σημεία της γραφικής παράστασης της συνάρτησης (, κατά μονάδες προς τα αριστερά και μονάδα προς τα πάνω. Ενώ η γραφική παράσταση της συνάρτησης G ( προκύπτει αν μετατοπίσουμε, όλα τα σημεία της γραφικής παράστασης της συνάρτησης (, κατά μονάδες προς τα δεξιά και μονάδα προς τα κάτω. ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ Σελίδα 7
3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ
3.4 ΟΙ ΤΡΙΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Μια συνάρτηση με πεδίο ορισμού το σύνολο Α, λέγεται περιοδική, όταν υπάρχει πραγματικός αριθμός Τ>0 τέτοιος, ώστε για κάθε να ισχύει ότι και ( ) και ( ). Ο αριθμός Τ
Διαβάστε περισσότεραΣυναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις
Συναρτήσεις Θεωρία Ορισμοί - Παρατηρήσεις Ορισμός: Έστω Α, Β R. Πραγματική συνάρτηση πραγματικής μεταβλητής από το σύνολο Α στο σύνολο Β ονομάζουμε την διαδικασία κατά την οποία κάθε στοιχείο του συνόλου
Διαβάστε περισσότεραΒρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος ΜEd: «Σπουδές στην εκπαίδευση»
Μονοτονία - Ακρότατα - Συμμετρίες συνάρτησης Μονοτονία Συνάρτησης Ορισμοί Α) Μια συνάρτηση f λέγεται γνησίως αύξουσα σε ένα υποσύνολο Β του Πεδίου Ορισμού της όταν : για κάθε, B με < f( ) < f( ). Β) Μια
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ
ΑΣΚΗΣΕΙΣ Β ΛΥΚΕΙΟΥ -- ΑΛΓΕΒΡΑ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ Άσκηση η Γραμμικά συστήματα Δίνονται οι ευθείες : y3 και :y 5. Να βρεθεί το R, ώστε οι ευθείες να τέμνονται. Οι ευθείες και θα τέμνονται όταν το μεταξύ
Διαβάστε περισσότεραOΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
Ο ΚΕΦΑΛΑΙΟ : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β Έστω
Διαβάστε περισσότεραΚεφάλαιο 2 ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ
Κεφάλαιο ο ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ Σε προηγούμενες τάξεις γνωρίσαμε την έννοια της συνάρτησης και μελετήσαμε ορισμένες βασικές συναρτήσεις. Στο κεφάλαιο αυτό θα μελετήσουμε στη γενική τους μορφή ιδιότητες
Διαβάστε περισσότεραΗμερομηνία: Παρασκευή 28 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Ημερομηνία: Παρασκευή 8 Οκτωβρίου 016 Διάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α Α1. Να δώσετε τους ορισμούς των: α) Γνησίως φθίνουσα συνάρτηση β) Ολικό ελάχιστο
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ
ΜΑΘΗΜΑΤΙΚΑ Γ ΛΥΚΕΙΟΥ ΟΜΑΔΕΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ : ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΡΟΛΟΓΟΣ Σε κάθε ενότητα αυτού του βιβλίου θα βρείτε : Βασική θεωρία με τη μορφή ερωτήσεων Μεθοδολογίες και σχόλια
Διαβάστε περισσότερα2.1 ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ
. ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ ΘΕΩΡΙΑ. Η γνησίως αύξουσα Συνάρτηση f λέγεται γνησίως αύξουσα σε ένα διάστηµα του πεδίου ορισµού της, όταν για οποιαδήποτε x, x µε x < x ισχύει : f ( x ) < f ( x ). Η
Διαβάστε περισσότεραΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Ξεφυλλίζοντας τα σχολικά βιβλία της Α και Β Λυκείου θα συναντήσουμε τις παρακάτω 10 "βασικές" συναρτήσεις των οποίων τη γραφική παράσταση πρέπει να γνωρίζουμε:
Διαβάστε περισσότεραΗμερομηνία: Κυριακή 29 Οκτωβρίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ
ΤΑΞΗ: ΜΑΘΗΜΑ: Β ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ Ημερομηνία: Κυριακή 9 Οκτωβρίου 017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1 Να δώσετε τους ορισμούς των: α) Ολικό μέγιστο συνάρτησης β) Γνησίως
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ ΑΛΓΕΒΡΑ Β ΛΥΚΕΙΟΥ ) Copyright 2015 Αποστόλου Γιώργος Αποστόλου Γεώργιος apgeorge2004@yahoocom Αδεια χρήσης 3η Εκδοση, Ιωάννινα, Σεπτέµβριος 2015 Περιεχόµενα 1 Ι ΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ
Διαβάστε περισσότερα7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
7.1 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f ( ) 1. Μορφή της συνάρτησης f ( ) Ιδιότητες Έχει πεδίο ορισµού ολο το R Είναι άρτια, άρα συµµετρική ως προς τον άξονα y y Είναι γνησίως φθίνουσα στο διάστηµα (,0] Είναι γνησίως
Διαβάστε περισσότεραOΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
OΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ ΣΥΝΑΡΤΗΣΕΙΣ Έστω Α ένα υποσύνολο του Τι ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση : ΕΣΠ Β, 8B, 9 Έστω Α ένα υποσύνολο του Ονομάζουμε
Διαβάστε περισσότεραΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΑΡΤΗΣΗ. f : συνάρτηση, με f(x ) f ( x ) x x
ΣΥΝΑΡΤΗΣΗ Ορισμός: Η αντιστοιχία : A B λέγεται συνάρτηση αν για κάθε αντιστοιχίζεται ένα μόνο y : συνάρτηση, με ( ) ( ) ή ισοδύναμα : συνάρτηση, με ( ) ( ) Το σύνολο Α λέγεται σύνολο αφετηρίας ή σύνολο
Διαβάστε περισσότεραΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΗΝ ΑΛΓΕΒΡΑ Β ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός Αγαπητοί μαθητές, αυτό το βιβλίο αποτελεί ένα σημαντικό βοήθημα για την Άλγεβρα της Β Λυκείου, που είναι
Διαβάστε περισσότερα- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία
Διαβάστε περισσότεραII. Συναρτήσεις. math-gr
II Συναρτήσεις Παντελής Μπουμπούλης, MSc, PhD σελ blogspotcom, bouboulismyschgr ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική
Διαβάστε περισσότερα- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 2: ΜΟΝΟΤΟΝΙΑ ΣΥΝΑΡΤΗΣΗΣ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ [Κεφ. 1.3: Μονότονες Συναρτήσεις - Αντίστροφη Συνάρτηση σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Μονοτονία
Διαβάστε περισσότερα< και δεδομένου ότι η f είναι γνησίως μονότονη, συμπεραίνουμε ότι
_1696 α) f ( 5) = f ( 4) = 9 Αφού
Διαβάστε περισσότερα2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ
Ο ΚΕΦΑΛΑΙΟ : ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ 8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 49 ΟΡΙΣΜΟΣ 6 4 Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα Δ ; Απάντηση : Έστω μία συνάρτηση σ υ ν ε χ ή ς σ ένα
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία
ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 6 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων- Τριγωνομετρία 06-11-16 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; (4 μον.) ii. Πότε μία συνάρτηση f ονομάζεται
Διαβάστε περισσότεραΜαθηµατικά και Στοιχεία Στατιστικής Μονοτονία-ακρότατα συνάρτησης 1. Ερωτήσεις Σωστού - Λάθους - Θέµα Α
Μονοτονία-ακρότατα συνάρτησης 1 Ερωτήσεις Σωστού - Λάθους - Θέµα Α 1. Αν µια συνάρτηση είναι γνησίως αύξουσα σε ένα διάστηµα A, τότε είναι γνησίως αύξουσα σε οποιοδήποτε υποδιάστηµα του A. 2. Αν µια συνάρτηση
Διαβάστε περισσότερα7.2 ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ f(x) = x
7. ΜΕΛΕΤΗ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ () = α ΘΕΩΡΙΑ. Μορφή της συνάρτησης (Ισοσκελής υπερβολή) Ιδιότητες Πεδίο ορισµού g() = R = (, 0) (0, + ) Είναι περιττή, άρα συµµετρική ως προς την αρχή των αξόνων Είναι γν.φθίνουσα
Διαβάστε περισσότεραα) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν β) γνησίως φθίνουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.
ΜΟΝΟΤΟΝΙΑ. ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ. ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ - ΣΥΜΜΕΤΡΙΕΣ Μια συνάρτηση f λέγεται: α) γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της (Σχ.α), όταν για οποιαδήποτε χ,χ Δ με χ
Διαβάστε περισσότερα2.8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ
8 ΚΥΡΤΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ ΣΥΝΑΡΤΗΣΗΣ 49 ΟΡΙΣΜΟΣ 6 4 Πότε μια συνάρτηση λέγεται κυρτή και πότε κοίλη σε ένα διάστημα Δ ; Απάντηση : Έστω μία συνάρτηση σ υ ν ε χ ή ς σ ένα διάστημα Δ και π α ρ α γ ω γ ί
Διαβάστε περισσότεραΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2 ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ
Άλγεβρα Β Λυκείου, ο Κεφάλαιο ΘΕΩΡΙΑ ΜΑΘΗΜΑΤΙΚΑ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΙΔΙΟΤΗΤΕΣ ΣΥΝΑΡΤΗΣΕΩΝ ΟΡΙΣΜΟΣ 1 Μια συνάρτηση ƒ λέγεται γνησίως αύξουσα σε ένα διάστημα Δ του πεδίου ορισμού της, όταν για οποιαδήποτε
Διαβάστε περισσότεραΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ. f : A R και στη συνέχεια δίνουμε τον τύπο της συνάρτησης, π.χ.
Συναρτήσεις σελ ΜΕΡΟΣ 1 ΣΥΝΑΡΤΗΣΕΙΣ Α Βασικές Έννοιες Ορισμός: Έστω Α ένα υποσύνολο του συνόλου των πραγματικών αριθμών R Ονομάζουμε πραγματική συνάρτηση με πεδίο ορισμού το Α μια διαδικασία (κανόνα),
Διαβάστε περισσότεραΜελέτη της συνάρτησης ψ = α χ 2
Μελέτη της συνάρτησης ψ = α χ Η γραφική της παράσταση είναι μια καμπύλη που λέγεται παραβολή. Ανάλογα με το πρόσημο του α έχω και τα αντίστοιχα συμπεράσματα. αν α > 0 1) Η γραφική της παράσταση είναι πάνω
Διαβάστε περισσότεραΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ)
ΜΑΘΗΜΑ ΠΡΩΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ ΑΣΚΗΣΕΙΣ (ΣΥΝΑΡΤΗΣΗ ΚΑΙ ΜΕΛΕΤΗ ΑΥΤΗΣ) A. Εύρεση Πεδίου Ορισμού Συναρτήσεων-Άρτια και περιττή Συνάρτηση Η ανάλυση των πεδίων ορισμού για τις διαφορετικές πραγματικές
Διαβάστε περισσότερα6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΟΡΙΣΜΟΣ 6. ΣΥΝΑΡΤΗΣΕΙΣ 6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ Ονομάζουμε συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ένα ακριβώς
Διαβάστε περισσότεραΣυνάρτηση f, λέγεται η διαδικασία µε βάση την. Παρατηρήσεις - Σχόλια f
Συνάρτηση f, λέγεται η διαδικασία µε βάση την οποία σε κάθε στοιχείο χ ενός συνόλου Α αντιστοιχούµε ακριβώς ένα στοιχείο ενός άλλου συνόλου Β. Το σύνολο Α λέγεται πεδίο ορισµού ( ή σύνολο ορισµού ) της
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ. Να εξετάσετε αν είναι ίσες οι συναρτήσεις f, g όταν: x x 2 x x. x x g x. ln x ln x 1 και
Α ΟΜΑΔΑ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Να εξετάσετε αν είναι ίσες οι συναρτήσεις, όταν: () με R και (). Σ Υ Ν Α Ρ Τ Η Σ Ε Ι Σ Το πεδίο ορισμού της είναι A R. Επομένως A A R Α Θα εξετάσουμε αν για κάθε R ισχύει.
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ 1 ο : Όριο Συνέχεια Συνάρτησης
ΜΑΘΗΜΑΤΙΚΑ Θετικής & Τεχνολογικής Κατεύθυνσης Β ΜΕΡΟΣ (ΑΝΑΛΥΣΗ) ΚΕΦ ο : Όριο Συνέχεια Συνάρτησης Φυλλάδιο Φυλλάδι555 4 ο ο.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ.α) ΕΝΝΟΙΑ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ
Διαβάστε περισσότερα2. Ιδιότητες Συναρτήσεων
Ιδιότητες Συναρτήσεων Μονοτονία Ακρότατα Συμμετρίες Συνάρτησης Πεδίο Ορισμού Το πρώτο βήμα για τη λύση μιας άσκησης που περιέει μια συνάρτηση είναι ο προσδιορισμός του πεδίου ορισμού της α) Κάθε πολυωνυμική
Διαβάστε περισσότεραΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ. Άρτια και περιττή συνάρτηση. Παράδειγµα: Η f ( x) Παράδειγµα: Η. x R και. Αλγεβρα Β Λυκείου Πετσιάς Φ.- Κάτσιος.
ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ Πριν περιγράψουµε πως µπορούµε να µελετήσουµε µια συνάρτηση είναι αναγκαίο να δώσουµε µερικούς ορισµούς. Άρτια και περιττή συνάρτηση Ορισµός : Μια συνάρτηση fµε πεδίο ορισµού Α λέγεται
Διαβάστε περισσότεραA. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου
Διαβάστε περισσότεραA. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
8Α ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ A ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Πότε μια συνάρτηση λέγεται συνεχής σε ένα σημείο του πεδίου ορισμού o της ; Απάντηση : ( ΟΜΟΓ, 6 ΟΜΟΓ, 9 Β, ΟΜΟΓ, 5 Έστω μια συνάρτηση και ένα σημείο του πεδίου
Διαβάστε περισσότεραΣυναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. Kglykos.gr. εκδόσεις. Καλό πήξιμο. Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α
Συναρτήσεις Κώστας Γλυκός Ι δ ι α ί τ ε ρ α μ α θ ή μ α τ α 6 9 7. 0 0. 8 8. 8 8 Kglykos.gr / 9 / 0 1 6 Άλγεβρα Κεφάλαιο 78 ασκήσεις και τεχνικές σε 9 σελίδες εκδόσεις Καλό πήξιμο τηλ. Οικίας : 10-610.178
Διαβάστε περισσότερα<Πεδία ορισμού ισότητα πράξεις σύνθεση>
Συναρτήσεις 1 A Έστω μία συνάρτηση Να βρείτε το πεδίο ορισμού της συνάρτησης B Δίνεται η συνάρτηση Να βρείτε το πεδίο ορισμού των συναρτήσεων :, και Γ Να εξετάσετε
Διαβάστε περισσότεραΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ
ΛΥΜΕΝΕΣ ΑΣΚΗΣΕΙΣ ΣΤΙΣ ΣΥΝΑΡΤΗΣΕΙΣ Άσκηση 1. Έστω ότι η συνάρτηση f: R R είναι γνησίως αύξουσα στο R και η γραφική της παράσταση τέµνει τον άξονα y y στο. Να λύσετε την ανίσωση: f(x 9)
Διαβάστε περισσότεραΚατακόρυφη - Οριζόντια μετατόπιση καμπύλης
1 Κατακόρυφη - Οριζόντια μετατόπιση καμπύλης Έστω ότι έχουμε την συνάρτηση: f(x) = x + 3x 1 H γραφική της παράσταση είναι: Και την συνάρτηση f(x) = x + 3x + η οποία έχει προκύψει από την προηγούμενη αφού
Διαβάστε περισσότεραΙ. Πραγματικές ΣΥΝΑΡΤΗΣΕΙΣ πραγματικής μεταβλητής (έως και ΑΝΤΙΣΤΡΟΦΗ)
Ι. Πραγματικές ΥΝΑΡΤΗΕΙ πραγματικής μεταβλητής (έως και ΑΝΤΙΤΡΟΦΗ). Η γραφική παράσταση της συνάρτησης f βρίσκεται κάτω από τον άξονα.. Δίνεται η συνάρτηση = f (). Οι τετμημένες των σημείων τομής της C
Διαβάστε περισσότεραΟΡΙΣΜΟΣ 2 (Ισοδύναμος ορισμός που χρησιμεύει σε ασκήσεις)
ΟΡΙΣΜΟΣ Μια συνάρτηση : A λέγεται συνάρτηση -, όταν για οποιαδήποτε, A ισχύει η συνεπαγωγή: αν, τότε ( ) ( ) ΟΡΙΣΜΟΣ (Ισοδύναμος ορισμός που χρησιμεύει σε ασκήσεις) Μια συνάρτηση : A είναι συνάρτηση -,
Διαβάστε περισσότεραΣΥΝΑΡΤΗΣΕΙΣ ΣΥΝΑΡΤΗΣΗ. f : συνάρτηση, με f(x ) f ( x ) x x
ΣΥΝΑΡΤΗΣΗ Ορισμός: Η αντιστοιχία f : A λέγεται συνάρτηση αν για κάθε αντιστοιχίζεται ένα μόνο y f : συνάρτηση, με f ( ) f ( ) ή ισοδύναμα f : συνάρτηση, με f( ) f ( ) Το σύνολο Α λέγεται σύνολο αφετηρίας
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ»
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο «ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ» Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΟΡΙΟ ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ Α ΣΥΝΑΡΤΗΣΕΙΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Πεδίο
Διαβάστε περισσότεραΠαραδείγµατα συναρτήσεων: f:[0,+ ) IR, f(x)=2+ x f:ir IR: f(x)=
ΣΥΝΑΡΤΗΣΕΙΣ - 9 - ΚΕΦΑΛΑΙ ΚΕΦΑΛΑΙ ο - ΣΥΝΑΡΤΗΣΕΙΣ.. ρισµός Συνάρτηση από ένα σύνολο Α σ ένα σύνολο Β είναι ένας κανόνας µε τον οποίο κάθε στοιχείο του Α απεικονίζεται σε ένα ακριβώς στοιχείο του Β. Το
Διαβάστε περισσότεραf( x 1, x ( ) ( ) f x > f x. ( ) ( )
MONOTONIA ΑΚΡΟΤΑΤΑ ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ I MONOTONIA ΣΥΝΑΡΤΗΣΕΩΝ ΘΕΩΡΙΑ Στο διπλανό σχήµα δίνεται η γραφική παράσταση µιας συνάρτησης f στο α,β Παρατηρούµε ότι διάστηµα [ ] καθώς αυξάνουν οι τιµές του
Διαβάστε περισσότεραΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ. Όταν θα έχετε ολοκληρώσει τη μελέτη αυτού του κεφαλαίου, θα πρέπει να μπορείτε: Να κάνετε πράξεις με συναρτήσεις.
ΚΕΦΑΛΑΙΟ ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Σκοπός: Σκοπός του κεφαλαίου είναι αρχικά η υπενθύμιση βασικών εννοιών που αφορούν τον ορισμό, τις πράξεις και τη γραφική παράσταση της συνάρτησης αφ ενός και η μελέτη της
Διαβάστε περισσότεραΣΥΝΑΡΤΗΣΕΩΝ. f3 x = και
7 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση
Διαβάστε περισσότεραπ x = κπ + με κ. Στην παράγραφο αυτή θα ασχοληθούμε με συναρτήσεις οι οποίες έχουν 2
ΚΕΦΑΛΑΙΟ 2ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 3: ΣΥΝΑΡΤΗΣΗ - ΑΝΤΙΣΤΡΟΦΗ ΣΥΝΑΡΤΗΣΗ [Υποκεφάλαιο.3 Μονότονες συναρτήσεις Αντίστροφη συνάρτηση του σχολικού βιβλίου]. ΣΗΜΕΙΩΣΕΙΣ Συνάρτηση Όταν
Διαβάστε περισσότερα1.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ
.8 ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ BOLZANO A. ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΥΝΕΧΗΣ ΣΥΝΑΡΤΗΣΗ - ΟΡΙΣΜΟΣ Όταν θέλουμε να εξετάσουμε ως προς τη συνέχεια μια συνάρτηση πολλαπλού τύπου, εργαζόμαστε ως εξής
Διαβάστε περισσότεραΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΣΤΗΝ Α ΛΥΚΕΙΟΥ
Περιοδικό ΕΥΚΛΕΙΔΗΣ Β ΕΜΕ ΜΕΛΕΤΗ ΣΥΝΑΡΤΗΣΗΣ ΣΤΗΝ Α ΛΥΚΕΙΟΥ (ΑΡΤΙΑ ΠΕΡΙΤΤΗ ΣΥΝΑΡΤΗΣΗ, ΜΟΝΟΤΟΝΙΑ ΚΑΙ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ) Κώστα Βακαλόπουλου Στο ο κεφάλαιο της Άλγεβρας της Α Λυκείου γίνεται η μελέτη των
Διαβάστε περισσότεραΣΥΝΑΡΤΗΣΕΙΣ Γενικές έννοιες
ΣΥΝΑΡΤΗΣΕΙΣ Γενικές έννοιες Συνάρτηση Συνάρτηση ονομάζουμε μια διαδικασία (κανόνα) f, με την οποία κάθε στοιχείο ενός συνόλου Α (πεδίο ορισμού) αντιστοιχίζεται σε ένα ακριβώς στοιχείο κάποιου άλλου συνόλου
Διαβάστε περισσότερα( ) Ίσες συναρτήσεις. = g, Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f. όταν: Έχουν το ίδιο πεδία ορισμού Α
.5.. Ίσες συναρτήσεις ΣΥΝΑΡΤΗΣΕΙΣ 7 Ο ΜΑΘΗΜΑ Οι συναρτήσεις f, g λέμε ότι είναι ίσες και συμβολίζουμε f = g, Έχουν το ίδιο πεδία ορισμού Α Για κάθε x Α ισχύει f ( x) = g( x) Αν για τις συναρτήσεις: f:
Διαβάστε περισσότεραΗ συνάρτηση y = αχ 2. Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd
Η συνάρτηση y = αχ Βρέντζου Τίνα Φυσικός Μεταπτυχιακός τίτλος: «Σπουδές στην εκπαίδευση» ΜEd 1 Η συνάρτηση y = αχ με α 0 Μια συνάρτηση της μορφής y = α + β + γ με α 0 ονομάζεται τετραγωνική συνάρτηση.
Διαβάστε περισσότεραΖ ΕΝΟΤΗΤΑ. Μελέτη βασικών συναρτήσεων. Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Ζ.2 (7.2 παρ/φος σχολικού βιβλίου) Ζ.3 (7.3 παρ/φος σχολικού βιβλίου) 2
Ζ ΕΝΟΤΗΤΑ Μελέτη βασικών συναρτήσεων Ζ.1 (7.1 παρ/φος σχολικού βιβλίου) Μελέτη της συνάρτησης f(x) = αx Ζ. (7. παρ/φος σχολικού βιβλίου) Μελέτη της συνάρτησης f x α x Ζ.3 (7.3 παρ/φος σχολικού βιβλίου)
Διαβάστε περισσότερα2.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ
.7 ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ I. Αν μια συνάρτηση παρουσιάζει τοπικό ακρότατο σε ένα εσωτερικό σημείο του πεδίου ορισμού της και είναι παραγωγισιμη σε αυτό τότε ( ).(Θεώρημα Fermat) II.
Διαβάστε περισσότεραΚαρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης
Καρτεσιανές συντεταγμένες Γραφική παράσταση συνάρτησης Ορθοκανονικό σύστημα αξόνων ονομάζεται ένα σύστημα από δύο κάθετους άξονες με κοινή αρχή στους οποίους οι μονάδες έχουν το ίδιο μήκος. Υπάρχουν περιπτώσεις
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ
Ο ΚΕΦΑΛΑΙΟ ΑΣΚΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΣΥΝΟΛΑ ΕΡΩΤΗΣΕΙΣ ΤΥΠΟΥ «ΣΩΣΤΟ ΛΑΘΟΣ». {,3,5,7,... } { / = ν +, ν Ν} =. = {} 0 3. Αν Α Β τότε Α Β = Α 4. 5 {,3,5,7 } 5. Αν Α= {, 3,7} και Β= {,3} 7, τότε Α=Β 6.
Διαβάστε περισσότερα2.6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ
6 ΣΥΝΕΠΕΙΕΣ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ ΜΕΣΗΣ ΤΙΜΗΣ ΜΕΘΟΔΟΛΟΓΙΑ : ΣΤΑΘΕΡΗ ΣΥΝΑΡΤΗΣΗ Αν θέλουμε να δείξουμε ότι μια συνάρτηση είναι σταθερή σε ένα διάστημα Δ αποδεικνύουμε ότι η είναι συνεχής στο Δ και ότι για κάθε
Διαβάστε περισσότεραΣυναρτήσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. Άλγεβρα Κεφάλαιο 2 78 ασκήσεις. εκδόσεις. Καλό πήξιμο / 7 /
Συναρτήσεις Κώστας Γλυκός Άλγεβρα Κεφάλαιο 78 ασκήσεις και τεχνικές σε 9 σελίδες ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 0 0. 8 8. 8 8 Kgllykos..gr 0 / 7 / 0 1 8 εκδόσεις Καλό πήξιμο
Διαβάστε περισσότερα6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ
6.1 Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ ΟΡΙΣΜΟΣ ΣΥΝΑΡΤΗΣΗΣ Συνάρτηση από ένα σύνολο Α σε ένα σύνολο Β λέγεται μια διαδικασία (κανόνας), με την οποία κάθε στοιχείο του συνόλου Α αντιστοιχίζεται σε ακριβώς ένα στοιχείο
Διαβάστε περισσότεραΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ
5 ΜΕΛΕΤΗ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ Εισαγωγή Στο κεφάλαιο αυτό θα δούμε πώς, με τη βοήθεια των πληροφοριών που α- ποκτήσαμε μέχρι τώρα, μπορούμε να χαράξουμε με όσο το δυνατόν μεγαλύτερη ακρίβεια τη γραφική παράσταση
Διαβάστε περισσότεραΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 2016.
ΜΑΘΗΜΑΤ ΙΚΑ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΠΑΝΤ ΗΣΕΙΣ ΣΤ Α ΘΕΜΑΤ Α ΕΞΕΤ ΑΣΕΩΝ 16 ΘΕΜΑ Α Α1 Σχολικό Βιβλίο σελ 6 Α Σχολικό Βιβλίο σελ 141 Α Σχολικό Βιβλίο
Διαβάστε περισσότερα2.2 ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ
ΠΑΡΑΓΩΓΙΣΙΜΕΣ ΣΥΝΑΡΤΗΣΕΙΣ-ΠΑΡΑΓΩΓΟΣ ΣΥΝΑΡΤΗΣΗ ΟΡΙΣΜΟΙ Πότε μια συνάρτηση λέγεται : α Παραγωγίσιμη στο σύνολο Α β Παραγωγίσιμη στο ανοικτό διάστημα αβ γ Παραγωγίσιμη στο κλειστό διάστημα [ αβ ] Β δ Τι ονομάζουμε
Διαβάστε περισσότεραΣΥΝΑΡΤΗΣΗ ΠΕΔΙΟ ΟΡΙΣΜΟΥ
ΣΥΝΑΡΤΗΣΗ A y Ορισμός: Η αντιστοιχία : λέγεται συνάρτηση αν για κάθε x αντιστοιχίζεται ένα μόνο : συνάρτηση, με ( x ) ( x ) ή ισοδύναμα 1 2 1 2 1 2 : συνάρτηση, με (x ) ( x ) x x 1 2 1 2 1 2 Το σύνολο
Διαβάστε περισσότεραΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ
ΕΠΑΝΑΛΗΨΗ ΒΑΣΙΚΩΝ ΕΝΝΟΙΩΝ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμών αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
Διαβάστε περισσότεραΡητοί αριθμοί λέγονται οι αριθμοί που έχουν ή μπορούν να πάρουν τη μορφή
ΣΥΝΑΡΤΗΣΕΙΣ (ΕΙΣΑΓΩΓΗ)-ΘΕΩΡΕΙΑ ΠΡΑΓΜΑΤΙΚΟΙ ΑΡΙΘΜΟΙ Το σύνολο των πραγματικών αριθμών Υπενθυμίζουμε ότι το σύνολο των πραγματικών αριθμώv αποτελείται από τους ρητούς και τους άρρητους αριθμούς και παριστάνεται
Διαβάστε περισσότερα1ο Κεφάλαιο: Συστήματα
ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 3 Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ
ΜΕΘΟΔΟΛΟΓΙΑ & ΑΣΚΗΣΕΙΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Γ ΕΠΑΛ ΚΕΦΑΛΑΙΟ Ο ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ ο : ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΟΥ ΛΟΓΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ : ΠΑΡΑΓΩΓΙΣΙΜΗ
Διαβάστε περισσότεραΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων
Είμαστε τυχεροί που είμαστε δάσκαλοι ΔΙΑΓΩΝΙΣΜΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ 2 Β' Λυκείου Ον/μο:. ΕΠΑ.Λ. Ύλη: Συστήματα Ιδιότητες Συναρτήσεων 05-10-1 Θέμα 1 ο : Α.i. Τι ονομάζουμε γραμμική εξίσωση; ( μον.) ii. Πότε
Διαβάστε περισσότεραf(x) = και στην συνέχεια
ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε
Διαβάστε περισσότερα2 ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ
ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ Η ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ 8 ΟΡΙΣΜΟΣ, 9 Πότε μια συνάρτηση λέγεται παραγωγίσιμη σε ένα σημείο του πεδίου ορισμού της ; Απάντηση : Μια συνάρτηση λέμε ότι είναι παραγωγίσιμη σ ένα σημείο
Διαβάστε περισσότεραΦίλη μαθήτρια, φίλε μαθητή,
Φίλη μαθήτρια, φίλε μαθητή, Το βιβλίο αυτό, εναρμονισμένο με την πρόσφατα καθορισμένη ύλη, απευθύνεται στους μαθητές της Γ Λυκείου που έχουν επιλέξει τον προσανατολισμό Θετικών Σπουδών ή Σπουδών Πληροφορικής
Διαβάστε περισσότερα1.4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ
ΚΕΦΑΛΑΙΟ Ο : ΔΙΑΝΥΣΜΑΤΑ - ΕΝΟΤΗΤΑ 4 ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ 4 ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΣΤΟ ΕΠΙΠΕΔΟ Κάθε διάνυσμα του επιπέδου γράφεται κατά μοναδικό τρόπο στη μορφή : i j όπου i, j μοναδιαία διανύσματα με κοινή αρχή το
Διαβάστε περισσότεραΔ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης
ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ / ΕΠΑΝΑΛΗΨΗΣ Δ Ι Α Φ Ο Ρ Ι Κ Ο Σ Λ Ο Γ Ι Σ Μ Ο Σ Μονοτονία & Ακρότατα Συνάρτησης 1. Ποιους ορισμούς πρέπει να ξέρω για τη μονοτονία ; Πότε μια συνάρτηση θα ονομάζεται γνησίως αύξουσα σε
Διαβάστε περισσότεραΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΑΠΑΝΤΗΣΕΙΣ
ΠΑΝΕΛΛΑ ΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΥΤΕΡΑ 10 ΙΟΥΝΙΟΥ 2019 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. α. Ορισμός στο σχολικό βιβλίο σελίδα 15. β. i) Μια συνάρτηση
Διαβάστε περισσότεραΕισαγωγή στην ανάλυση
Εισαγωγή στην ανάλυση Η ΕΝΝΟΙΑ ΤΗΣ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ. Έστω Α ένα υποσύνολο του και Α. Τι ονομάζεται πραγματική συνάρτηση με πεδίο ορισμού το Α ; Απάντηση Πραγματική συνάρτηση με πεδίο ορισμού το Α,
Διαβάστε περισσότεραΚεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ. 2.1 Συνάρτηση
Κεφάλαιο 2 ΣΥΝΑΡΤΗΣΕΙΣ ΜΙΑΣ ΜΕΤΑΒΛΗΤΗΣ 2.1 Συνάρτηση Η έννοια της συνάρτησης είναι ϐασική σ όλους τους κλάδους των µαθη- µατικών, αλλά και πολλών άλλων επιστηµών. Ο λόγος είναι, ότι µορφοποιεί τη σχέση
Διαβάστε περισσότεραΝα βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) f(x) = 1 x. ii) f(x) = 2ln(x 2) 1 = (, 1] 1 x
. Ασκήσεις σχολικού βιβλίου σελίδας 56 57 A µάδας. Να βρείτε ποιες από τις παρακάτω συναρτήσεις είναι γνησίως αύξουσες και ποιες γνησίως φθίνουσες. i) () = ii) () = ln( ) iii) () = e + iv) () = ( ), i)
Διαβάστε περισσότεραΗ ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ 1η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ
Η ΕΝΝΟΙΑ ΤΗΣ ΣΥΝΑΡΤΗΣΗΣ η κατηγορία: ΕΥΡΕΣΗ ΠΕΔΙΟΥ ΟΡΙΣΜΟΥ Για να βρούμε το πεδίο ορισμού μιας συνάρτησης, αρκεί να βρούμε τις τιμές του χ για τις οποίες ορίζονται οι πράξεις που αναγράφονται στο τύπο
Διαβάστε περισσότεραΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ
ΜΕΛΕΤΗ ΚΑΙ ΧΑΡΑΞΗ ΓΡΑΦΙΚΗΣ ΠΑΡΑΣΤΑΣΗΣ ΣΥΝΑΡΤΗΣΗΣ Για να μελετήσουμε και να χαράξουμε τη γραφική παράταση μιας συνάρτησης ακολουθούμε τα παρακάτω βήματα: 1. Βρίσκουμε το πεδίο ορισμού της.. Εξετάζουμε την
Διαβάστε περισσότερα3.1 ΕΞΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
ΚΕΦΑΛΑΙΟ : ΕΞΙΣΩΣΕΙΣ. ΕΞΙΣΩΣΕΙΣ ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ : ΑΠΛΗ ΜΟΡΦΗ Κάθε εξίσωση που έχει ή μπορεί να πάρει τη μορφή : α+β=0 ή α=-β () λέγεται εξίσωση ου βαθμού (ή πρωτοβάθμια εξίσωση), με άγνωστο το, ενώ
Διαβάστε περισσότερα3.1 ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ
ΚΕΦΑΛΑΙΟ Ο : ΤΡΙΓΩΝΟΜΕΤΡΙΑ. ΤΡΙΓΩΝΟΜΕΤΡΙΚΗ ΑΡΙΘΜΟΙ ΓΩΝΙΑΣ ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΟΞΕΙΑΣ ΓΩΝΙΑΣ έ _ ά ί ί _ ά ί έ _ ά ί _ ά ί _ ά έ _ ά ΤΡΙΓΩΝΟΜΕΤΡΙΚΟΙ ΑΡΙΘΜΟΙ ΤΥΧΑΙΑΣ ΓΩΝΙΑΣ y y y όπου η απόσταση του
Διαβάστε περισσότεραΣΤ ΕΝΟΤΗΤΑ. Βασικές έννοιες των συναρτήσεων. ΣΤ.1 (6.1 παρ/φος σχολικού βιβλίου) ΣΤ.2 (6.2 παρ/φος σχολικού βιβλίου)
ΣΤ ΕΝΟΤΗΤΑ Βασικές έννοιες των συναρτήσεων ΣΤ. (6. παρ/φος σχολικού βιβλίου) Η έννοια της συνάρτησης ΣΤ. (6. παρ/φος σχολικού βιβλίου) Γραφική παράσταση συνάρτησης ΣΤ.3 (6.3 παρ/φος σχολικού βιβλίου) Η
Διαβάστε περισσότεραΑΣΚΗΣΕΙΣ ΘΕΜΑ Β. 0και 4 x 3 0.
ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 1: ΕΝΝΟΙΑ ΠΡΑΓΜΑΤΙΚΗΣ ΣΥΝΑΡΤΗΣΗΣ - ΓΡΑΦΙΚΗ ΠΑΡΑΣΤΑΣΗ ΣΥΝΑΡΤΗΣΗΣ. IΣΟΤΗΤΑ ΣΥΝΑΡΤΗΣΕΩΝ - ΠΡΑΞΕΙΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ - ΣΥΝΘΕΣΗ ΣΥΝΑΡΤΗΣΕΩΝ [Ενότητα
Διαβάστε περισσότερα, ο αριθμός στον οποίο αντιστοιχεί ο 2 καλείται δεύτερος όρος της ακολουθίας και τον συμβολίζουμε συνήθως με
5. ΑΚΟΛΟΥΘΙΕΣ Γενικά ακολουθία πραγματικών αριθμών είναι μια αντιστοίχιση των φυσικών αριθμών,,,...,ν,... στους πραγματικούς αριθμούς. Ο αριθμός στον οποίο αντιστοιχεί ο καλείται πρώτος όρος της ακολουθίας
Διαβάστε περισσότεραΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑΤΩΝ
ΜΑΘΗΜΑΤΙΚΑ : Σελίδα από ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ ΕΞΕΤΑΣΗΣ: /6/9 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: Μαθηματικά ΟΠ Θετικών Σπουδών & Σπουδών Οικονομίας & Πληροφορικής ΠΡΟΤΕΙΝΟΜΕΝΕΣ
Διαβάστε περισσότερα3.7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ
Ο ΚΕΦΑΛΑΙΟ : ΟΛΟΚΛΗΡΩΤΙΚΟΣ ΛΟΓΙΣΜΟΣ 7 EΜΒΑΔΟΝ ΕΠΙΠΕΔΟΥ ΧΩΡΙΟΥ 68 Να γράψετε τον τύπο που δίνει το εμβαδόν του χωρίου Ω που ορίζεται από τη γραφική παράσταση της, τις ευθείες, και τον άξονα, όταν για κάθε
Διαβάστε περισσότερα1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα
Θέμα Α Α1. Θεωρήστε τον παρακάτω ισχυρισμό: 1 ο Διαγώνισμα Ύλη: Συναρτήσεις μέχρι και τα ακρότατα 018-19 «Για κάθε ζεύγος πραγματικών συναρτήσεων,g :, 0 ή g 0» ισχύει ότι g 0 αν και μόνο αν α) Να χαρακτηρίσετε
Διαβάστε περισσότεραΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΜΑΘΗΜΑΤΙΚΑ ΓΙΑ ΟΙΚΟΝΟΜΟΛΟΓΟΥΣ Ενότητα #7: Μονοτονία- Ακρότατα-Αντιγραφή Εβελίνα Κοσσιέρη Τμήμα Λογιστικής και Χρηματοοικονομικής
Διαβάστε περισσότερα5. Η γραφική παράσταση της συνάρτησης f( x) 3 x έχει ασύμπτωτη τον θετικό ημιάξονα Οx. Σ Λ., τότε ισχύει
ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΚΑΣΤΡΙΤΣΙΟΥ ΕΠΙΜΕΛΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc 5 ΕΚΘΕΤΙΚΗ ΣΥΝΑΡΤΗΣΗ Σε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα Σ, αν ο ισχυρισμός είναι αληθής διαφορετικά
Διαβάστε περισσότερα3.4 ΤΡIΓΩΝΟΜΕΤΡΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. και g( x) 3x
1 ΓΕΝΙΚΟ ΥΚΕΙΟ ΚΑΤΡΙΤΙΟΥ ΕΠΙΜΕΕΙΑ: Kωνσταντόπουλος Κων/νος Μαθηματικός ΜSc ΤΡIΓΩΝΟΜΕΤΡΙΚΕ ΥΝΑΡΤΗΕΙ 1 ε κάθε μια από τις παρακάτω περιπτώσεις να κυκλώσετε το γράμμα, αν ο ισχυρισμός είναι αληθής διαφορετικά
Διαβάστε περισσότεραΘέμα 1 ο (ΜΑΪΟΣ 2004, ΜΑΪΟΣ 2008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Απόδειξη
ΕΚΔΟΣΕΙΣ ΚΕΛΑΦΑ 59 Θέμα 1 ο (ΜΑΪΟΣ 004, ΜΑΪΟΣ 008) Να δείξετε ότι η παράγωγος της σταθερής συνάρτησης f (x) = c είναι (c) = 0. Έχουμε f (x+h) - f (x) = c - c = 0 και για h 0 είναι f (x + h) - f (x) 0 m
Διαβάστε περισσότεραΑΛΓΕΒΡΑ B ΛΥΚΕΙΟΥ. Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΟΛΙΚΟΥ ΒΙΒΛΙΟΥ
ΑΛΓΕΒΡΑ B ΛΥΚΕΙΥ Γενικής Παιδείας ΑΠΑΝΤΗΣΕΙΣ ΛΥΣΕΙΣ ΣΧΛΙΚΥ ΒΙΒΛΙΥ Σχολικό βιβλίο: Απαντήσεις Λύσεις Κεφάλαιο ο: Συστήματα Γραμμικά συστήματα Α ΜΑΔΑΣ Έχουμε: = 4 i = 6 = + = + = = Άρα, η λύση του συστήματος
Διαβάστε περισσότεραΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 10: ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ
ΚΕΦΑΛΑΙΟ ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ : ΕΥΡΕΣΗ ΤΟΠΙΚΩΝ ΑΚΡΟΤΑΤΩΝ [Ενότητα Προσδιορισμός των Τοπικών Ακροτάτων - Θεώρημα Εύρεση Τοπικών Ακροτάτων του κεφ..7 Μέρος Β του σχολικού βιβλίου]. ΑΣΚΗΣΕΙΣ Άσκηση.
Διαβάστε περισσότερα4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ
4.1 ΑΝΙΣΩΣΕΙΣ 1 ΟΥ ΒΑΘΜΟΥ ΜΕΘΟΔΟΛΟΓΙΑ 1 : ΑΠΛΗ ΜΟΡΦΗ Για να λύσω μια ανίσωση της μορφής : 0 ή 0 1 ος τρόπος : Λειτουργώ όπως και στις εξισώσεις πρώτου βαθμού, δηλαδή χωρίζω γνωστούς από αγνώστους, και
Διαβάστε περισσότεραΕπαναληπτικά θέματα στα Μαθηματικά προσανατολισμού-ψηφιακό σχολείο ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ
ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΚΕΦΑΛΑΙΟ 1 ο -ΣΥΝΑΡΤΗΣΕΙΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ Απο το Ψηφιακό Σχολείο του ΥΠΠΕΘ Επιμέλεια: Συντακτική Ομάδα mathpgr Συντονιστής:
Διαβάστε περισσότερα3. Να δειχτει οτι α + 110 20α. Ποτε ισχυει το ισον; y = x. εξαρτάται από το α.
BAΣΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Σ υ ν α ρ τ η σ η : f ( x ) = a / x. Πεδιο Ορισμου: Α = =(-,0) (0, + ) (αφου πρεπει x 0) * 3. Να δειχτει οτι α + 0 0α. Ποτε ισχυει το ισον;. Aν α, θετικοι. Συνολο Τιμων: f(α) = (αφου,
Διαβάστε περισσότερα