MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

Σχετικά έγγραφα
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM



RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

Delta Inconel 718 δ» ¼

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

Effects of Retained Austenite Characteristics on Delayed Fracture Properties of Ultra High-Strength TBF Steels

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Supporting Information

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

2 SFI

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

PACS: Pj, Gg

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Quick algorithm f or computing core attribute

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

ER-Tree (Extended R*-Tree)

v w = v = pr w v = v cos(v,w) = v w

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

Ανώτερα Μαθηματικά ΙI

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

3D PHASE FIELD SIMULATION OF MECHATRONIC COUPLE FOR PZT FERROELECTRIC CERAMICS

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Blowup of regular solutions for radial relativistic Euler equations with damping

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

Base Metal + Alloying Elements

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

EFFECT OF PRECURSOR MICROSTRUCTURE ON MORPHOLOGY FEATURE AND MECHANICAL PROPERTY OF C Mn Si STEEL

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä É ³μ μ μé ³ ±μ²² μ Í LHCb ˆ É ÉÊÉ Ë ± Ò μ± Ì Ô Í μ ²Ó μ μ ² μ É ²Ó ±μ μ Í É ŠÊ Î Éμ ± É ÉÊÉ, μé μ, μ Ö

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Grain orientation evolution and texture fluctuation effect of pure copper during equal channel angular pressing

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

(organic light emitting

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Georgiou, Styliani. Neapolis University. þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

Transcript:

45 2 Vol.45 No.2 29 2 156 16 ACTA METALLURGICA SINICA Feb. 29 pp.156 16 Ï ÄÑ ÇÚÉÛØÒÄ II. Ë «Ï Al ÏÙ Ü Đ 1) ÞßÝ 1) 2) Ð 1) 1) 1) Ô Ã ÄÏÒ, 183 2) Ô Ã Ô Å, 183 Ö Ô ÞÜ Gleeble 15» Ìż Ð, Ù Al Æ Ð Ê Ì Ì½» (α+θ) Û Ú. Æ :, Al Æ Ð Ìû Ì ÒÐ Ã Ù Ð Û ; Ê, Ù Al Å Fe C ÚÂ, ±µì Ì Ð, Ò Ì Ð Ù, ̽» (α+θ) Û. È Ð, Ê, Ì,, Al Ù ËÎ TG142.1 ÐÅ A à 412 1961(29)2 156 5 MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al CHEN Wei 1), LI Longfei 1), YANG Wangyue 2), SUN Zuqing 1), ZHANG Yan 1) 1) State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 183 2) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 183 Correspondent: YANG Wangyue, professor, Tel: (1)62334919, E-mail: wyyang@mater.ustb.edu.cn Supported by National Natural Science Foundation of China (No.547192) and Doctoral Fund of Ministry of Education of China (No.25817) Manuscript received 28 6 6, in revised form 28 8 25 ABSTRACT The effects of Al on the spheroidization of cementite and the formation of ultrafine (α+θ) microstructure of hypereutectoid steel during isothermal spheroidizing and warm deformation were investigated by uniaxial hot compression simulation experiment. The results indicate that during isothermal spheroidizing, the fine grained cementite particles and ferrite are obtained by addition of Al. Ultrafine (α+θ) microduplex microstructures can be formed by warm deformation in a very short time. During warm deformation, the diffusion of carbon and iron atoms are impeded with the addition of Al, the spheroidization of lamellar cementite and the coarsening of cementite particles are retarded. And the re precipitation of cementite particles in ferrite matrix is also restricted, resulting in a more ultrafine (α+θ) microduplex microstructure. KEY WORDS hypereutectoid steel, warm deformation, cementite, spheroidization, Al ¹ ¾¼ µ, Ý ¼Ã Ü Ñ Í¾¼ (α+θ) Ü» ÕÔ [1 6]. ¼Ã Ü µ, ßĐË ÂÝ ² Í, Í Ë ¾ Û µ * Õ ¹ 547192,  ¹ 25817 Å Ó ¹ ÐÉ : 28 6 6, ÐÉÏÞ : 28 8 25 Á Ì :,, 1979 Î, Î Đ [7], «Ë ² Í ¼± ÄÑ Ë [7 11]., ÐĐ ¹, Ó± Ê ¾ ¹Í Ë, µà Ú Al [12 15], Al ÀР˾¼ Þ Î ßÅ ÂÝ,», µ Al ÀоÜÎ ÛÕ [9,16,17], Ò Ç «Đ Al Ð ¹ µ Ë µ² Í Í È Æ¹ ÆÆ. [18] ºÆ, º Al Ð ¹ µ Ð µ Ë µ²

^2* 3 #Z : + ' Q 7'VE a 9U 7!U"Yw. 1 otr _ey + -~Y!\5t (& tr, %) ": 1 ~ () T1 ~), C.97, Si.26, Mn.31, P.56, S.4, Fe ; 2 ~ ( 1 ~Y. N.95% Y Al), C 1., Si.27, Mn.31, P.56, S.4, Al.95, Fe. ) S m *5 [18] ) p ;. " ) SY&*U Y7! 9l, kf bd )[U \)7! *, \))h" 65, \) YB" 5 min 2 h. ) S8\)7! * Ykf k `)O1 q D( l, a K_ y 3% 4% Fy f ` 1Z, { y ZEISS Supra 55.o QL b b (SEM) [U3 G +. S7L & Image Tool Ct -IH, ym9p( v ^~;I U o~l H <U ~=r. o^z 2 + - ~ a g!, 65 \ ) 5 min U G 4ge2 (F 1). -), 1 ~Y "2 ` g ^R N Y 2-9U, G 1a ) G ; n 2 ~ ){ Al Y H, o% 9U YS5 (F 1b ) G ),! 2 &*Bi, G "2 ` g ^R N Y 2 - v. -), 1 2 ~2 &*Bit " (.32±.6) (.27±.5) µm. { &*2 \V,, /'y7! * m _-7!, {M~%Y \V.?n) 7! * m Xg Y Y B, G, l d y + ~, 65 \ ) 7 h &, U. 7! Y G ( 2). 7! G ), 1 ~Y U o~ ;I L " EL ( 2a), ' k ;I " (.52±.22) µm, v. ^~ EL; n 2 ~ ){ Y v Al Y HD U o~ye!,! U ~=;I, 'k;i" (.46±.19) µm( 2b), Y L H Y v ^~ G. \)7!;, ) S 3F[2 Y7!. C *5 [18] YO r, +~ 65,.1 s H1 s! 1.61 ( " 16 s) Y, 9,U7!Y2 (α+θ) x ;G. Ux ;G ), 1 ~Y v ^~ ' k ; I" (.61±.23) µm, n 2 ~" (.44±.14) µm; +~YU o~;ik6sut (F 3). -), j +U o~t v ^RN, 4ge{&*U E j 7! UR; j+ t v ^, 4ge{ S 9 )F P Y U ~ =Æ-?UR. (U 2 ~)^R ^ U o~'km t " (.14±.5) (.7±.2) µm, k H 1 ~ ^R ^ U o ~ ' km (t " (.19±.8) (.8±.2) µm); n, 2 ~YN & 2 U ~ =Ar " 15.1 [12 15] [12,13] II. R V4 5 Al Vt= 157 g 1 *,} 65 [( 5 min X SEM B Fig.1 SEM images of hypereutectoid steels No.1 (a) and No.2 (b) after isothermal transformation at 65 for 5 min (arrows in Fig.1a indicating cementite laths at boundary of pearlite, arrows in Fig.1b indicating no cementite) 1 [19 22] g 2 *,} 65 [( 7 h X6 F Fig.2 SEM images showing spheroidized microstructures of hypereutectoid steels No.1 (a) and No.2 (b) after isothermal annealing at 65 for 7 h 1 ~Y 11.36 1 mm. + ~ \ )7! ) S 9 ) Y 7! f \; 9G 4a b. \)7! 9), ;9kv S P 16 mm 2, 6 2

158 Î Ñ 45 Frequency, % Frequency, % 3 25 2 15 1 5 3 25 2 15 1 5 (a) Cementite located at the grain boundaries, d gb Cementite at grain interiors, d gi d gb = (.19.8) m d gi = (.8.2) m 5 1 15 2 25 3 35 4 45 Cementite particle size, nm (b) d gb = (.14.5) m d gi = (.7.2) m 5 1 15 2 25 3 35 4 45 Cementite particle size, nm 3 Ð 65,.1 s 1, Ö ε=1.61 Ì ÒÐ À Fig.3 Distributions of the size of cementite in hypereutectoid steels No.1 (a) and No.2 (b) deformed at 65,.1 s 1 and ε=1.61 (dash dot line indicating the bimodal distribution of cementites) ÆÆ, 2 Û Ä, Ç µ 7 h. µ, µ Ë ² Í., 65,.1 s 1 À ½ Ë, 1 s ÀÐ Ë ¾ º, µ Ë ¾ Û µ Ø 4 Ö. µ Ë, 2 Û Ä. ß 4b Ö, µ µ, Ʋ ¾ Í Ö ¾ Æ Ç, µ, ÓÏ Í ; Ò µ Ë µ, Ʋ ¾ Í Ö ĐĐ µ. ß, 1 Ʋ ¾ Í Ö ¾ À; Ç 2 Ë µ, Ʋ ¾ Í Ö. Å, 4c µ ÖÐÑ, µ Ë 1 Ê Í Ö ½Á, ÓÏ ; Ò Ë µ, 2 Ʋ ¾ Í Ö, ε=.96», Í Ö Đ 1, Ê Ö Đ 1 ; Ç ε=.96, Í Ö Ø Ö ĐĐ 1. Volume fraction of spheroidized pearlite, % N, 1 6 mm -2 N gb, N gi, 1 6 mm -2 12 1 8 6 4 2 16 12 8 4 1 8 6 4 (a) 1 s 65 o C,.1 s -1 65 o C, no deformed 7 h 1 1 1 1 2 1 3 1 4 1 5 1 6 (b) (c) 65 o C,.1 s -1 65 o C, no deformed 1 1 1 1 2 1 3 1 4 1 5 1 6 65 o C,.1 s -1 2,, 2 4 6 8 1 12 14 16 18 4 Ð Ê µ Đ Å ± ½ Ì Ð Õ (N) ű ½ É Ì Ð Õ (N gb, N gi ) Þ Fig.4 Kinetics of spheroidization of pearlite (a), evolutions of total amounts of cementite particles per unit area (N) (b) and amounts of cementite particles at ferrite grain boundaries and in ferrite grains (N gb and N gi ) per unit area (c) for the two hypereutectoid steels N gi N gb during hot deformation and isothermal annealing 3 Í Õ ¾ ² Í Ú Ê, ß Gibbs Thomson Á Ö, À Í ² Ý Ú º C ĐĐÄ ² Ý Ú º µ C, ß Ë C, C ßĐ ÛÃ, Ò

2 : ³ É ³Î II. Ê ÅÎ Al ÎØ 159 Í ², ² Í Ð ² ² Í µ [8]. µ, ßĐ² Í µ Ç, Ð ² Ç, ÕÒƲ ¾ Í Ö ÄÇ ( 4b), Ò¼ C Ê ÛÃ, Û [7]. µ Ë Õ ² Í Ð ² [9], Å Õ Đ Fe C Ûà [8], Ò ¾. µ, µ ËÍ Ê µí Ó Á ÙØ, ¹µØ Ú ÊÄ Ä Í Ó ß² Í Đ Í, Ò Ú ¼ÀÍ Ó ² Í, Ûà C Ú ÐÍ Ë Æ¹ Ë. µ ¹ µ Ë µ Ê [21,23,24]. µ Ë µ, Â Ú Í Ë, Ú µ¹ïä ² Â, C ØÛÛÃ Ë [23 25], Í µ C À²Â, ²Â» Ë Cottrell º, Á, È Í È [25] ; ß Ú ²Ü ÆÇ Í, Ú ²Â Á, C ÐÍ Ë Æ Ú º ºÆ¹ [23,24]. µ µ, ßĐ Ú µ²â, ³ÓÏ. 65,.1 s 1 À½ Ë 5 Đ. Ë, 2 «ĐĐ 1, Ç Al À Đ ± Ë «. ßÝ Ë µ Û À½Đ Í Ù, [26] ÍÈ ÕÔÍÊ µ 1 Ë 314.95 kj/mol, Ú Ë Ë (3 kj/mol [26] ), Ò 2 Ë 416.32 kj/mol., Ú Al À Đ Fe Ûà Á Fe Û ÃºÖ «[14,27]. Ò¼ Al À C Û Ã [28 3], Õ, Ë 2 µ² Í Û True stress, MPa 5 4 3 2 1 65 o C,.1 s -1 Steel No.1 No.2..4.8 1.2 1.6 True strain 5 Ð 65,.1 s 1 Ê ÖĐ Ö Fig.5 True stress strain curves of hypereutectoid steels during warm deformation at 65,.1 s 1. Õ Ú Æ¹ Í Ë Ú ²Ü ÆÇ ÓÏ «, 1, 2 Ë Đ, Ú ²Ü ÆÇ ÍÄ Ù, È Æ¹ Í Ö ÄÇ. Ç, ßĐ 2 «ĐĐ 1 ( 5), 2 Ú µ ²Â Đ, ßĐ Fe C ÛÃ, Õ Ë 2 ² Í ĐØ. Å Õ, Ë, 1 µ Í ÓÏ, Ú Ê Í Ö ½Á. Ò 2 µ в Í Èƹ, Í, Õ Ë 2 µ Ú Ê Í Ö Đ Đ 1. 2 µ ¾ ² ¼À, Í Ó ÁÄÀ, Ʋ ¾ Í Ö Ñ, ± µ Ë µ Ú, 2 ͼ À Ú. 4 (1) 65,.1 s 1 À½ Ë, µ, µ Ë ¹ ¾, Û Đ 4 Ö, ¼ ;¼ (α+θ) Ü. (2) Ú Al À Fe C ÛÃ, Đ ¹ Ë, ² Í Í Ú Æ¹, ¼Ó±Í, ¼ µ Ë Í ¾¼ (α+θ) Ü. (3) µ, Al À ¹ Ü µí Ó Ú Ä ¼À. Æ Ð [1] Sherby O D, Walser B, Young C M, Cady E M. Scr Metall, 1975; 9: 569 [2] Sherby O D, Oyama T, Kum D W, Walser B, Wadsworth J. J Met, 1985; 37(6): 5 [3] Oyama T, Sherby O D, Wadsworth J, Walser B. Scr Metall, 1984; 18: 799 [4] Furuhara T, Mizoguchi T, Maki T. ISIJ Int, 25; 45: 392 [5] Lesuer D R, Syn C K, Goldberg A, Wadsworth J, Sherby O D. JOM, 1993; 45(8): 4 [6] Syn C K, Lesuer D R, Goldberg A, Tsai H C, Sherby O D. Mater Sci Forum, 27; 539 543: 4844 [7] Chattopadhyay S, Sellars C M. Acta Metall, 1982; 3: 157 [8] Robbins J L, Shepard O C, Sherby O D. J Iron Steel Inst, 1964; 22: 84 [9] Harrigan M J, Sherby O D. Mater Sci Eng, 1971; 7: 177 [1] Paqueton H, Pineau A. J Iron Steel Inst, 1971; 29: 991 [11] Kaspar R, Kapellner W, Lang C. Steel Res, 1988; 59: 492 [12] Peng H F, Song X Y, Gao A G, Ma X L. Mater Lett, 25; 59: 333 [13] Lesuer D R, Syn C K, Whittenberger J D, Sherby O D. Metall Mater Trans, 1999; 3A: 1559 [14] Frommeyer G, Jimenez J A. Metall Mater Trans, 25; 36A: 295

16 Î Ñ 45 [15] Tsuzaki K, Sato E, Furimoto S, Furuhara T, Maki T. Scr Mater, 1999; 4: 675 [16] Fukuyo H, Tsai H C, Oyama T, Sherby O D. ISIJ Int, 1991; 31: 76 [17] Hernandez D, Jimenez, J A, Frommeyer G. Mater Trans, 1996; 37: 1758 [18] Chen W, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 29; 45: 151 (, Ý Ö,,. Ó, 29; 45: 151) [19] Chen G A, Yang W Y, Sun Z Q. Acta Metall Sin, 27; 43: 27 ( Å,,. Ó, 27; 43: 27) [2] Chen W, Li L F, Yang W Y, Sun Z Q. Chin J Mater Res, 28; 22: 374 (, Ý Ö,,., 28; 22: 374) [21] Huang Q S, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 27; 43: 724 (±¾Ø, Ý Ö,,. Ó, 27; 43: 724) [22] Chen W, Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 28; 44: 626 (, Ý Ö,,. Ó, 28; 44: 626) [23] Song R, Ponge D, Raabe D, Kaspar R. Acta Mater, 25; 53: 845 [24] Chen G A, Yang W Y, Sun Z Q, Zhang X Y. Acta Metall Sin, 27; 43: 785 ( Å,,, Ô. Ó, 27; 43: 785) [25] Gavriljuk V G. Mater Sci Eng, 23; A345: 81 [26] Li L F, Yang W Y, Sun Z Q. Acta Metall Sin, 23; 39: 419 (Ý Ö,,. Ó, 23; 39: 419) [27] Wang B Q, Song X Y, Peng H F. Mater Des, 27; 28: 562 [28] Zuidema B K, Subramaanyam, Leslie W C. Metall Trans, 1987; 18A: 1629 [29] Laxar B F H, Frame J W, Blickwede D J. Trans ASM, 1961; 53: 683 [3] Leslie W C, Rauch G C. Metall Trans, 1978; 9A: 343