STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

Delta Inconel 718 δ» ¼

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

2 SFI

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

v w = v = pr w v = v cos(v,w) = v w

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

Ανώτερα Μαθηματικά ΙI

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

Blowup of regular solutions for radial relativistic Euler equations with damping

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

Œ.. ÉÊ Í± 1,.. Ö Õ²Ö 1,.. Šμ Î ±μ,.. Š Îʱ,.. ŠÊÎ ±,..Œμ Î,.. ³ μ,.. μ³êéμ,. A. Ìμ ± 1

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Protective Effect of Surface Coatings on Concrete

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Ανώτερα Μαθηματικά ΙI

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

16 1 Vol. 16 No ELECTROCHEMISTRY Feb MnO 6 Bir-Co5% Bir-Co10% Bir-Co15% Bir-Co20%. 3 3 Li mol L - 1 MgCl 2.

p din,j = p tot,j p stat = ρ 2 v2 j,

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

þÿ ɺÁ Ä ÅÂ, ±»Î¼ Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

ˆŒˆ ˆŸ ˆ Œ ƒ LEPTO/JETSET Ÿ ˆ ƒ

Quick algorithm f or computing core attribute

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Εφαρμοσμένα Μαθηματικά

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

ER-Tree (Extended R*-Tree)

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

P ƒ. Œ. ʳ Ö,. É ±, ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ² μ. Š -ŒˆŠ Š : Œ ˆ, œ,

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

Transcript:

Ó 49 µ Ó 11 Vol.49 No.11 2013 11 Æ Ó 1369 1373 ACTA METALLURGICA SINICA Nov. 2013 pp.1369 1373 Ý Er Ù Nb TiAl Đß Æ ¹ ¾º ½ ( Ź Å Å, 100124) ± ½Þ Cu ÛÀ ÊÚ Ti 46Al 8Nb È Ti 46Al 8Nb 0.1Er Ì. ¼² ÚÆÆ, «Ì XRD, SEM È EDS ¹«²Æ͵ Ó Ì ÆÛÛ, Ì 900 ½É Å. «ß, 2 Ì É 100 h, 100 cyc Đ «, Ti 46Al 8Nb 0.1Er Ti 46Al 8Nb ¾ Ì ½ Å, Ô Ì Al 2O 3 Í, È ½ Ó ÌÅ«Ì ß² ÐÌ Ó Þ. Er Ì Ó, ˺ O ÅÆ, Î TiAl Al 2O 3, Ë Ý TiAl ÓÌ ½É Å. Û Ñ TiAl, É, Er, ³ Ô Þ TG164 «A ² Þ 0412 1961(2013)11 1369 05 STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM GONG Ziqi, CHEN Ziyong, CHAI Lihua, XIANG Zhilei, NIE Zuoren Department of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 Correspondent: CHEN Ziyong, professor, Tel: (010)67392280, E-mail: czy@bjut.edu.cn Supported by Beijing Municipal Education Commission High level Talents Training Project (No.00900054R8002) and Beijing University of Technology Doctoral and Scientific Research Fund Project (No.009000543113527) Manuscript received 2013 07 10, in revised form 2013 08 04 ABSTRACT Ti 46Al 8Nb and Ti 46Al 8Nb 0.1Er alloys were prepared by the cold crucible induction levitation melting method. The oxidation behavior experiment was done in air at 900 up to one hundred times. Based on the oxidation kinetic analysis and the phase constitution, microstructure and the interface of the oxidation film and the matrix were investigated by means of XRD and SEM equipped with EDS, the cyclic oxidation resistance of TiAl based alloys was explored. The results showed that no spallation of layer occurs in both alloys, and Ti 46Al 8Nb 0.1Er comparing with Ti 46Al 8Nb exhibits more excellent oxidation resistance, oxides formed on the surface consist of mainly Al 2 O 3, the continuous compact oxidation film with a good combination with the matrix significantly decreases the oxidation rate, the mass gain and the oxide film thickness. The addition Er purifies the alloy matrix and prevents the inward diffusion of oxygen atoms, thereby improves the cyclic oxidation resistance of TiAl based alloy. KEY WORDS TiAl, cyclic oxidation, Er, oxide layer TiAl ÔÍ Ç Í Øµ Í º Ý Ü ÈÍ «, ÙÑØß µ ²ß µ ²ß ÍÆ ¾ * Ï É ¼ ¾ 00900054R8002 È Æ³Ë Í ÚÓ ¾ 009000543113527 Ä Á : 2013 07 10, : 2013 08 04 Ð : Æ,, 1987 ÆÁ, ³ËÁ DOI: 10.3724/SP.J.1037.2013.00394 «, ÍÄ Ä µ û, Ä ÛÕÑË Â ÔØ Ä Õ µ Ö µ ëÜß±, Å Í ÛÕß Ë É ¼» [1,2]., TiAl ÔÍ º Ð Õ Í Ð Õ ÔØÎ À ÉÎ Ü Î Ü» ³, TiAl Ô Í É 850 Ô ¾ «Ç ÊÎ

1370 Ä Ó 49 µ ß Ð Í Ä Ä Üß [3]. ß, ÏÎ. Öà ͻ ² ÃÎ Ð, Ü Í ĐÞÍ Òɳ Î È TiAl ÔÍ ß, ÓÔ ÇÝÜß ÇÇ «[4]. TiAl ÔÍ µ ¾ Ê ß. ±, 2 É TiAl ÔÍ µ ¾ «: (1) TiAl ÔÍ Ü Û, Å ÜÍ É Û, Í Ü Ü, Ã Í Î Ü Û, Þµ TiAl ÔÍ Üµ «É «; (2) ÐÍ, Ñ Ü Í Ð, Ù ĐÞ» Í ÒÔÞµ TiAl ÔÍ Ð «Éµ ¾ [5 8]. Í Ó ±Þµ TiAl ÔÍ µ ¾ «Î. µ Î, Í Ò V, Mn, Cr Ð «ÞÏ, Mo, Nb, Hf, Zr, Cr, W «Þµ ¾ [9]. Nb «³ Þµ γ TiAl É α 2 Ti 3 Al Í ¾ [10 13]. Wu [14] Î ÃÏ Y Ti 50Al Í ¾ ݽ, µîï Y «Þ µ Ti 50Al Í ¾. ß ÐÌ Ò Er «Y º [15]. Ò Er TiAl ÔÍ ¾ «Î. Ð Þµ TiAl ÔÍ µ ¾ «, Î Ò Nb É Er Í TiAl ÔÍ µ ¾ «ßغÜÕ. Ç Ti 46Al 8Nb É Ti 46Al 8Nb 0.1Er Í 900 ± ÛÇÇØ ÉÔÐ ÜÎ Î, Nb É Er TiAl Í µ ݽ, ÙÚà Er µ Nb TiAl Í ¾ «ßÕ. 1 ÕÓ ¾ß Cu ±ÜÁ Ë Ð Ti 46Al 8Nb É Ti 46Al 8Nb 0.1Er(«Ç, %) Í. ¾ß «ÁÚ Ti(99.9%), µè Al (99.99%), Al Nb Í É Al Er Í. Æ ²Í, Ø Ë 3 ʱ 900 ± 48 h ÅÐÅ. ¾ß Ð ³, Ì¾Å Ø ÜÉ ³» 15 mm 10 mm 1 mm Á, 6 ¹ ÜÜ SiC ¼ĐÍ 600 Ç, ½ ± À² 20 min ±. Ø Ê Ç SX2 10 13»É Ì, ß ±1, ß 900.» 10 ml, È Æ Ö ( ) Ä, ÔÈ 6 ¹ Ü À. Ê Ê 100 cyc, Õ Ê Å 900 Æ 1 h, à 10 min, Ê Ê 2, 5, 10, 25, 50 É 100 cyc Å Ï Ï. Ï TG328A ( ß 0.1 mg), Æ²Ç ³ ¼, Õ Í ß 3 ¹, Ç Õ. ß D8 ADVANCE ÂÀ Ö X Ò (XRD) Í ºÎ, : CuK α (λ=0.154157 nm), 40 ma, Ë 40 kv, ÝÅ 20 90, Ý É¾ßÉ, ÝÔ 2.0 /min. Äß HITACHI S 3400N Ý Ç³ (SEM) ÜÉ Ü, Link ISIS «Ò (EDS) ÙÏ, Ô¼Ù Î ÃÏØ. 2 Ü Å 2.1 ÐÒ 1 ³Ê Ti 46Al 8Nb É Ti 46Al 8Nb 0.1Er Í 900 100 h, 100 cyc ÛÇǺ. 2 Í ÛÇǺ º, ¾, µãîñ Ô, µüô «Ð. Ti 46Al 8Nb Í 1.7 mg/cm 2, Ti 46Al 8Nb 0.1Er Í 1.2 mg/cm 2, ± 70.6%. Er ĐÞ Ñ Ti 46Al 8Nb Ô, Í ¾ «. À [16] Î Ã Y Í Ti 45Al 5Nb 0.3Y 900, 80 h Ê, ÛÇǺ 1 Ê, Ò Er Ò Y Ð ÍÆ ¾ «Ç. 2.2 ÐÒ ÖÐ Í Ô Ôß [17 19] : M n = k p t (1), M, mg/cm 2 ; n Ù¹ ; k p ÜÔ ; t Å, h. n=1 Å, º Mass gain, mg/cm 2 1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 Ti-46Al-8Nb Ti-46Al-8Nb-0.1Er Ti-45Al-5Nb-0.3Y [16] 0.0 0 10 20 30 40 50 60 70 80 90 100 Time, h 1 Ti 46Al 8Nb, Ti 46Al 8Nb 0.1Er È Ti 45Al 5Nb 0.3Y [16] Ì 900 ÚÆƹ Fig.1 Kinetic curves of oxidation of Ti 46Al 8Nb, Ti 46Al 8Nb 0.1Er and Ti 45Al 5Nb 0.3Y [16] alloys at 900

Ó 11 Å :  Er ³ Nb TiAl ÒË ¼È Ì 1371, Å ±, ¾ ; n=2 Å, º, Å ±, Æ ¾ ; n 3 Å, n Ê Å ±, Æ ¾. É (1) λ, : lg M = 1 n lgt+ 1 n lgk p (2) lgt lg M º ³Ö Í, 2 Í 900 Ê 100 h, 100 cyc Ù¹ n É Ô k p : Ti 46Al 8Nb Í, M 1.91 = 5.68 10 4 t (3) Ti 46Al 8Nb 0.1Er Í, M 1.93 = 4.96 10 4 t (4) ½³É (3) É (4) ÜÕ, Ti 46Al 8Nb É Ti 46Al 8Nb 0.1Er Í n Ü 2, Å ±, 2 Í Ô Ñ, Æ ¾. µ, Ti 46Al 8Nb 0.1Er Ù¹ (n=1.93) Ti 46Al 8Nb Í Ù¹ (n=1.91), µ ÜÔ (k p =4.96 10 4 ) Ti 46Al 8Nb Í Ô (k p =5.68 10 4 ), Ti 46Al 8Nb 0.1Er Í Ô, Õ Æ Đ. Er ĐÞ Ñ Í Ô, Í ¾ «. 2.3 Ð 2 Ti 46Al 8Nb É Ti 46Al 8Nb 0.1Er Í Ü ÓØ XRD. 2 Í 900, 100 h Ü Óº, Ð Ö, Ü ÃÐ Á Å, EDS Í ÏÄ TiO 2. Ti 46Al 8Nb Í Ü, µðù ĐÜÐ Á, µ Á»Ù, «ÎÆÒ Ð, ÅĐ Đ, ÖÕ Â ÐÃ. Ti 46Al 8Nb 0.1Er Í (b) TiO 2 TiAl Al 2 O 3 20 30 40 50 60 70 80 2, deg (d) TiO 2 TiAl Al 2 O 3 20 30 40 50 60 70 80 2, deg 2 Ti 46Al 8Nb È Ti 46Al 8Nb 0.1Er Ì Û Ò XRD Fig.2 Morphologies (a, c) and XRD patterns (b, d) of outer oxide layer of Ti 46Al 8Nb (a, b) and Ti 46Al 8Nb 0.1Er (c, d) alloys

1372 Ä Ó 49 µ (c) Al O Nb Ti Matrix (d) Al O Ti Matrix Nb 0 2 4 6 8 10 12 14 Distance, m 0 2 4 6 8 10 12 14 Distance, m 3 Ti 46Al 8Nb È Ti 46Al 8Nb 0.1Er Ì 900, 100 h ÅÛ͵ º Ñ µ Fig.3 Cross section microstructures (a, c) and elements line distributions (c, d) of the Ti 46Al 8Nb (a, c) and Ti 46Al 8Nb 0.1Er (b, d) alloys oxidized at 900 for 100 h TiO 2 Å, Í Ü «Æ. 2 Í XRD ºÎ º, TiO 2, Al 2 O 3 ÉTiAl, ±µüôtio 2. Ï TiAl º, «ÍÚ Î, X Æ ÔÐ. Ö Í: Er O «Ç Ö ² Í«Ç, ±Õ Er 2 O 3 (   f H Θ m(er 2 O 3 )= 1897.86 kj/mol) [20], ĐÞ Er XRD Er, «Er ÃÏ. 2.4 Ð ÚØ Ti 46Al 8Nb É Ti 46Al 8Nb 0.1Er Í 900, 100 h Ü 3 Ê. Í Ò ³, 2 Í Ì Ñ Ê TiO 2 /Al 2 O 3 +TiO 2 / Ti(Nb) /ÔÐ. Ì Ô»Ã, Ti 46Al 8Nb Í µ Đ, ß 9 µm, ÔÐ Ä, µïá õ µ, Đ ÉÔÐ ÜÇ, Đ Ð¾, ÖÕ¾ÏÁ Ê Â. Ti 46Al 8Nb 0.1Er Í ß 5 µm, Ü Đ ³ µ, ÔÐ Í Á ÍÆ, ÏÁ Ô Ô Ãµ µ, Đ ÔÐ Ä [15]. Er ĐÞ Í ÔÐ, Ñ Í O ÃÏ, Ì ÐÙ ß Al, Ï ÜÕ Í É ¾Ø Al 2 O 3, Þ µ Í ¾ «[21 23]. ÅÞ Er Í Í, /ÔÐ Å Ð Ì, Ì» ÔÐÅ, Í µ ¾. 3 Å (1) Ti 46Al 8Nb É Ti 46Al 8Nb 0.1Er Í Ü ÍÆ µ ¾, ± µã Ñ Ô É. (2) Er ĐÞ Ñ ÏÁ ß, Í Õº É Ð.

Ó 11 Å :  Er ³ Nb TiAl ÒË ¼È Ì 1373 (3) Er ĐÞ Í ÔÐ, Ñ Í O ÃÏ, Ï Õ Í É ¾Ø Al 2 O 3, Þµ Í µ ¾ «. [1] Djanarthany S, Viala J C, Bouix J. Mater Chem Phys, 2001; 72: 301 [2] Wu X H. Intermetallics, 2006; 14: 1114 [3] Kim Y W. JOM, 1994; 46(7): 30 [4] Dimiduk D M. Mater Sci Eng, 1999; A263: 281 [5] Yang M R, Wu S K. Acta Mater, 2002; 50: 691 [6] Xin L, Shao G, Wang F, Tsakiropoulos P, Li T. Intermetallics, 2003; 11: 651 [7] Nishimoto T, Izumi T, Hayashi S, Narita T. Intermetallics, 2003; 11: 225 [8] Sun J, Wu J S, Zhao B, Wang F. Mater Sci Eng, 2002; A329 331: 713 [9] Perez P, Jimenez J A, Frommeyer G, Adeva P. Mater Sci Eng, 2000; A284: 138 [10] Leyens C, Peters M, translated by Chen Z H. Titanium and Titanium Alloys. Beijing: Chemical Industry Press, 2005: 183 (Leyens C, Peters M, Ø. Ì. : Æ Â, 2005: 183) [11] Zhao L L, Lin J P, Wang Y L, Ye F, Chen G L. Acta Metall Sin, 2008; 44: 557 ( ÂÃ,, Â,, Ì. Æ, 2008; 44: 557) [12] He S F, Lin J P, Xu X J, Gao J F, Wang Y L, Song X P, Chen G L. Rare Met Mater Eng, 2006; 35: 257 (ÊÑ,, ¹,, Â, Ð, Ì. º, 2006; 35: 257) [13] Lin J P, Zhao L L, Li G Y, Zhang L Q, Song X P, Ye F, Chen G L. Intermetallics, 2011; 19: 131 [14] Wu Y, Hagihara K, Umakoshi Y. Intermetallics, 2004; 12: 519 [15] Zhu Y M. Master Thesis, Harbin Institute of Technology, 2011 ( Þ. À Æ ËÆ, 2011) [16] Li B H. PhD Dissertation, Harbin Institute of Technology, 2007 (. À ƳËÆ, 2007) [17] Lu X, He X B, Zhang B, Qu X H, Zhang L, Guo Z X, Tian J J. J Alloys Compd, 2009; 478: 220 [18] Zhao L L, Li G Y, Zhang L Q, Lin J P, Song X P, Ye F, Chen G L. Intermetallics, 2010; 18: 1586 [19] Zhao B, Wu J S, Sun J, Tu B J, Wang F. Mater Lett, 2002; 56: 533 [20] Zhang X Y. Practical Manual of Chemical. Beijing : National Defence Industry Press, 1986: 232 (. ÆÞ Æ. : Æ Â, 1986: 232) [21] Pérez P, Jiménez J A, Frommeyer G, Adeva P. Mater Sci Eng, 2000; A284: 138 [22] Yang R, Cui Y Y, Dong L M, Jia Q. J Mater Process Technol, 2003; 135: 179 [23] Yoshihara M, Miura K. Intermetallics, 1995; 3: 357 (»: µ ¼)