(Statistical Machine Translation: SMT [1])

Σχετικά έγγραφα
(Statistical Machine Translation: SMT[1]) [2]

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;

(String-to-Tree ) KJ [11] best 1-best 2. SMT 2. [9] Brockett [2] Mizumoto [10] Brockett [2] [10] [15] ê = argmax e P(e f ) = argmax e M m=1 λ

An Analysis of Problems in Grammatical Error Correction of ESL Writings Using a Large Learner Corpus of English

,.,,., [1], [3], [4], [5] [6]. [2]. ,,, Tree-to-String. 1,f) input 1 (Python) : if x % 5 == 0: output 2 (Comment): # y x 5

: Active Learning 2017/11/12

[15], [16], [17] [6] [2] [5] Jiang [6] 2.1 [6], [10] Score(x, y) y ( 1) ( 1 ) b e ( 1 ) b e. O(n 2 ) Jiang [6] (word lattice reranking)

1,a) 1,b) 2 3 Sakriani Sakti 1 Graham Neubig 1 1. A Study on HMM-Based Speech Synthesis Using Rich Context Models

Faruqui [7] WordNet [15] FrameNet [2] PPDB [8]

Η Αυτοματοποιημένη και μη-αυτοματοποιημένη αξιολόγηση συστήματος Στατιστικής Μηχανικής Μετάφρασης για το γλωσσικό ζεύγος Ελληνικά - Ιταλικά

ER-Tree (Extended R*-Tree)


2. N-gram IDF. DEIM Forum 2016 A1-1. N-gram IDF IDF. 5 N-gram. N-gram. N-gram. N-gram IDF.

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Buried Markov Model Pairwise

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)


An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

A hybrid approach to compiling bilingual dictionaries of medical terms from parallel corpora

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΩΝ ΥΠΟΛΟΓΙΣΤΩΝ. Διπλωματική Εργασία Μεταπτυχιακού Διπλώματος Ειδίκευσης

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Stabilization of stock price prediction by cross entropy optimization

Maude 6. Maude [1] UIUC J. Meseguer. Maude. Maude SRI SRI. Maude. AC (Associative-Commutative) Maude. Maude Meseguer OBJ LTL SPIN

Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters


3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,

ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Από το CUDOS και το Semion στον οργανισμό Creative Commons και στο Open Knowledge Foundation

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

Area Location and Recognition of Video Text Based on Depth Learning Method

Tunable Diode Lasers. Turning Laser Diodes into Diode Lasers. Mode selection. Laser diodes

Παράλληλος προγραμματισμός περιστροφικών αλγορίθμων εξωτερικών σημείων τύπου simplex ΠΛΟΣΚΑΣ ΝΙΚΟΛΑΟΣ

{takasu, Conditional Random Field

Applying Markov Decision Processes to Role-playing Game

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

(C) 2010 Pearson Education, Inc. All rights reserved.

ΟΡΓΑΝΙΣΜΟΣ ΒΙΟΜΗΧΑΝΙΚΗΣ ΙΔΙΟΚΤΗΣΙΑΣ

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

Transient Voltage Suppressor

(1) (2) MFA/SFA: material flow analysis/ substance flow analysis MFA/SFA

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :

Αρχιτεκτονική Σχεδίαση Ασαφούς Ελεγκτή σε VHDL και Υλοποίηση σε FPGA ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Yahoo 2. SNS Social Networking Service [3,5,12] Copyright c by ORSJ. Unauthorized reproduction of this article is prohibited.

[2] T.S.G. Peiris and R.O. Thattil, An Alternative Model to Estimate Solar Radiation

Ηλεκτρονικά σώματα κειμένων και γλωσσική διδασκαλία: Διεθνείς αναζητήσεις και διαφαινόμενες προοπτικές για την ελληνική γλώσσα

Simplex Crossover for Real-coded Genetic Algolithms

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

NOB= Dickey=Fuller Engle-Granger., P. ( ). NVAR=Engle-Granger/Dickey-Fuller. 1( ), 6. CONSTANT/NOCONST (C) Dickey-Fuller. NOCONST NVAR=1. TREND/NOTREN

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Text Mining using Linguistic Information

Computing the Gradient

6.3 Forecasting ARMA processes

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Automatic extraction of bibliography with machine learning

Minimum Spanning Tree: Prim's Algorithm

A research on the influence of dummy activity on float in an AOA network and its amendments

Research of Han Character Internal Codes Recognition Algorithm in the Multi2lingual Environment

Quick algorithm f or computing core attribute

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Comparison of Discriminant Analysis in Ear Recognition

C F E E E F FF E F B F F A EA C AEC


ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΛΕΩΝΙΔΑΣ Α. ΣΠΥΡΟΥ Διδακτορικό σε Υπολογιστική Εμβιομηχανική, Τμήμα Μηχανολόγων Μηχανικών, Πανεπιστήμιο Θεσσαλίας.

Detection and Recognition of Traffic Signal Using Machine Learning

070-A

ΕΥΧΑΡΙΣΤΙΕΣ. Θεσσαλονίκη, Δεκέμβριος Κώστας Δόσιος

Η μετεπιμέλεια της αυτόματης μετάφρασης ως μεταφραστική πράξη

Probabilistic Approach to Robust Optimization

FX10 SIMD SIMD. [3] Dekker [4] IEEE754. a.lo. (SpMV Sparse matrix and vector product) IEEE754 IEEE754 [5] Double-Double Knuth FMA FMA FX10 FMA SIMD

Κβαντική Επεξεργασία Πληροφορίας

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

Ψηφιακή Επεξεργασία Φωνής

Παρουσίαση ιπλωµατικής

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Research on vehicle routing problem with stochastic demand and PSO2DP algorithm with Inver2over operator

ΣΥΝΔΥΑΣΤΙΚΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Transcript:

1,a) Graham Neubig 1,b) Michael Paul 2,c) 1,d) n-gram 1. (Statistical Machine Translation: SMT [1]) (Active Learning) [2][3][4][5][6][7] [2] 1 Nara Institute of Science and Technology 2 ATR-Trek a) miura.akiba.lr9@is.naist.jp b) neubig@is.naist.jp c) michael.paul@atr-trek.co.jp d) s-nakamura@is.naist.jp (a) n-gram (n =4) (b) (c) 1 n-gram [5] 2 1 (a) c 2015 Information Processing Society of Japan 1

( ) n =4 any one of the () 1(b) ( ) [8] 1(c) () 2. Algorithm 1 1: Init: 2: SrcPool 3: Translated 4: Oracle 5: Loop Until : 6: TM TrainTranslationModel(Translated) 7: NewSrc SelectNextPhrase(SrcPool,Translated,TM) 8: NewTrg GetT ranslation(oracle, NewSrc) 9: Translated Translated { NewSrc,NewTrg } 1 4 SrcPool Translated Translated Oracle 5 5 9 5 6 Translated 7 SrcPool, Translated, TM 3. n-gram n-gram 3.1 n-gram n-gram n n-gram n-gram Bloodgood n =4 n-gram 80% BLEU [9] [5] 3.2 3.2 n-gram n-gram 3.1 n c 2015 Information Processing Society of Japan 2

Bloodgood n-gram BLEU [5] 1 n =4 n =5 4. 4.1 n-gram Okanohara [8] s 1 s 2 α, β : s 1 = αs 2 β occ(s 1 )=occ(s 2 ) (1) s 1,s 2,α,β 0 occ( ) p 1 = one of the preceding, occ(p 1) = 200, 000 p 2 = one of the preceding claims, occ(p 2) = 200, 000 p 3 = any one of the preceding claims, occ(p 3) = 190, 000 p 1 = αp 2 β α = β = claims p 1 p 2 p 2 p 3 p 1 p 2 occ(p 1 )=occ(p 2 ) = 200, 000 1 p 1 p 2 p 2 p 3 occ(p 2 ) = 200, 000 190, 000 = occ(p 3 ) p 2 p 3 1 s 1 s 1 s 2 s 2 s 1 s 1 p 1 p 2 p 1 p 2 p p p 2 p 2 [10] 2 p 1 p 2 p 1 p 2 p 3 p 2 p 3 p 2 p 3 1 s 1 s2 α, β : s 1 = αs 2 β occ(s 1) 2 <occ(s 2 ) (2) 2 4.2 4.1 2 n-gram c 2015 Information Processing Society of Japan 3

2 (a) are proposed (b) are proposed two methods are proposed are proposed 2(b) are proposed 2 n-gram 4.1 5. 5.1 4 / En-Ja En-Fr 1 414k () Train En: 6.72M ( ) Train Test Dev Ja: 9.69M 1.87M En: 46.4M Ja: 57.6M 1790 1790 1.89M () Train En: 47.6M ( ) Train Test Dev Fr: 49.4M 15.5M En: 393M Fr: 418M 1000 500 ( 3 ) ASPEC *1 WMT2014 *2 Europarl EMEA PatTR Wikipedia KyTea 60 1 [11] GIZA++ inc-giza-pp *3 Moses MMSAPT(Memory-mapped Dynamic Suffix Array Phrase Tables) KenLM [12] n =5 n-gram MERT [13] BLEU [9] 8 *1 http://lotus.kuee.kyoto-u.ac.jp/aspec/ *2 http://statmt.org/wmt14/ *3 https://code.google.com/p/inc-giza-pp/ c 2015 Information Processing Society of Japan 4

3 BLEU ( : 10 : 100: 10: 100 ) (sent-rand): (4gram-rand): 4 4-gram (sent-by-4gram-freq): 4 (3.1 ) 4-gram (4gram-freq): 4 (3.2 ) (maxsubst-freq): (4.1 ) (struct-freq): (4.2 ) (reduced-maxsubst-freq): (4.1 ) (reduced-struct-freq): (4.1, 4.2 ) 1 Ckylark [14] 5.2 10 100 3 4gram-freq c 2015 Information Processing Society of Japan 5

1 sent-by-4gram-freq 1.28M 33.6M 26.3 560 17.8 4gram-freq 8.48M 26.0M 3.07 4.70k 2.13 En-Ja maxsubst-freq 7.29M 25.8M 3.54 4.51k 2.22 reduced-maxsubst-freq 6.06M 21.7M 3.58 4.76k 2.10 struct-freq 1.45M 4.85M 3.34 6.64k 1.51 reduced-struct-freq 1.10M 3.33M 3.03 6.73k 1.49 sent-by-4gram-freq 10.6M 269M 25.4 310 32.1 4gram-freq 40.1M 134M 3.34 3.62k 2.76 En-Fr maxsubst-freq 62.4M 331M 5.30 2.39k 4.17 reduced-maxsubst-freq 45.9M 246M 5.36 2.95k 3.39 struct-freq 14.1M 94.2M 6.68 4.01k 2.49 reduced-struct-freq 7.33M 41.3M 5.63 4.55k 2.20 2 ( 3 ) 1-gram / 4-gram [%] 1 10 100 sent-rand 94.81 / 5.63 95.99 / 6.59 97.54 / 10.06 4gram-rand 94.80 / 5.38 96.10 / 5.46 97.67 / 5.98 sent-by-4gram-freq 95.10 / 5.84 96.28 / 7.23 97.64 / 11.39 En-Ja 4gram-freq 94.36 / 5.38 95.64 / 5.97 96.87 / 7.14 97.97 / 10.43 maxsubst-freq 95.59 / 5.96 96.83 / 7.07 97.91 / 10.20 reduced-maxsubst-freq 95.73 / 6.00 96.97 / 7.19 98.00/10.57 struct-freq 96.60 / 5.44 97.80 / 5.79 98.58 / 7.02 reduced-struct-freq 96.64 / 5.44 97.84 / 5.80 98.61 / 7.14 sent-rand 92.93 / 10.60 93.73 / 10.71 95.94 / 11.30 4gram-rand 92.95 / 10.60 93.99 / 10.60 96.42 / 10.64 sent-by-4gram-freq 92.95 / 10.60 93.96 / 10.72 96.25 / 11.55 En-Fr 4gram-freq 92.72 / 10.60 92.92 / 10.60 94.46 / 10.66 96.60 / 11.16 maxsubst-freq 92.79 / 10.60 93.61 / 10.62 95.99 / 10.92 reduced-maxsubst-freq 92.92 / 10.60 94.38 / 10.66 96.55 / 11.13 struct-freq 93.63 / 10.60 96.15 / 10.65 97.84 / 11.28 reduced-struct-freq 94.02 / 10.60 96.38 / 10.69 98.00 / 11.38 3 maxsubst-freq struct-freq reduced-struct-freq 4gram-freq 4 50 100 maxsubst-freq reduced-maxsubst-freq struct-freq reducedstruct-freq 1 2 c 2015 Information Processing Society of Japan 6

n-gram 4-gram 3.03 3.58 5.30 6.68 2 1 1 1 1 10 100 1-gram 4-gram 3 reduced-struct-freq 1-gram 4-gram 3 sent-by-4gram-freq 1 4-gram 4 1-gram 4-gram 6. 4-gram ( )ATR-Trek [1] Peter F. Brown, Vincent J.Della Pietra, Stephen A. Della Pietra, and Robert L. Mercer. The Mathematics of Statistical Machine Translation: Parameter Estimation. Computational Linguistics, Vol. 19, pp. 263 312, 1993. [2] Matthias Eck, Stephan Vogel, and Alex Waibel. Low Cost Portability for Statistical Machine Translation based in N-gram Frequency and TF-IDF. In Proc. IWSLT, pp. 61 67, 2005. [3] Gholamreza Haffari and Anoop Sarkar. Active Learning for Multilingual Statistical Machine Translation. In Proc. ACL, pp. 181 189, August 2009. [4] Sankaranarayanan Ananthakrishnan, Rohit Prasad, David Stallard, and Prem Natarajan. A Semi-Supervised Batch-Mode Active Learning Strategy for Improved Statistical Machine Translation. In Proc. CoNLL, pp. 126 134, July 2010. [5] Michael Bloodgood and Chris Callison-Burch. Bucking the Trend: Large-Scale Cost-Focused Active Learning for Statistical Machine Translation. In Proc. ACL, pp. 854 864, July 2010. [6] Jesús González-Rubio, Daniel Ortiz-Martínez, and Francisco Casacuberta. Active learning for interactive machine translation. In Proc. EACL, pp. 245 254, April 2012. [7] Spence Green, Sida I. Wang, Jason Chuang, Jeffrey Heer, Sebastian Schuster, and Christopher D. Manning. Human Effort and Machine Learnability in Computer Aided Translation. In Proc. EMNLP, pp. 1225 1236, October 2014. [8] Daisuke Okanohara and Jun ichi Tsujii. Text Categorization with All Substring Features. In Proc. SDM, pp. 838 846, 2009. [9] Kishore Papineni, Salim Roukos, Todd Ward, and Wei- Jing Zhu. Bleu: a Method for Automatic Evaluation of Machine Translation. In Proc. ACL, pp. 311 318, July 2002. [10] Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-Time Longest- Common-Prefix Computation in Suffix Arrays and Its Applications. In Proc. CPM, pp. 181 192, 2001. [11] Phillip Koehn, Franz Josef Och, and Daniel Marcu. Statistical Phrase-Based Translation. In Proc. HLT, pp. 48 54, 2003. [12] Kenneth Heafield. KenLM: Faster and Smaller Language Model Queries. In Proc, WMT, July 2011. [13] Franz Josef Och. Minimum Error Rate Training in Statistical Machine Translation. In Proc. ACL, pp. 160 167, 2003. [14] Yusuke Oda, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura. Ckylark: A More Robust PCFG-LA Parser. In Proc. NAACL, pp. 41 45, June 2015. c 2015 Information Processing Society of Japan 7