Φυσική για Μηχανικούς

Σχετικά έγγραφα
Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ Ο ΝΟΜΟΣ ΤΟΥ GAUSS

Φυσική για Μηχανικούς

Κεφάλαιο Η2. Ο νόµος του Gauss

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

ΝΟΜΟΣ ΤΟΥ GAUSS ΚΕΦ.. 23

Ηλεκτρική ροή. Εμβαδόν=Α

Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Ηλεκτρομαγνητισμός

ΔΙΑΛΕΞΗ 2 Νόμος Gauss, κίνηση σε ηλεκτρικό πεδίο. Ι. Γκιάλας Χίος, 28 Φεβρουαρίου 2014

Ηλεκτρομαγνητισμός. Ηλεκτρικό πεδίο νόμος Gauss. Νίκος Ν. Αρπατζάνης

sin(30 o ) 4 cos(60o ) = 3200 Nm 2 /C (7)

Φυσική για Μηχανικούς

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ. Ενότητα 2: Ο νόμος του Gauss. Αν. Καθηγητής Πουλάκης Νικόλαος ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Τ.Ε.

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Εφαρμογές Νόμος Gauss, Ηλεκτρικά πεδία. Ιωάννης Γκιάλας 7 Μαρτίου 2014

Φυσική για Μηχανικούς

ΔΥΝΑΜΙΚΟ ΔΙΑΦΟΡΑ ΔΥΝΑΜΙΚΟΥ

Κεφάλαιο 22 Νόµος του Gauss. Copyright 2009 Pearson Education, Inc.

Φυσική για Μηχανικούς

Ηλεκτρική ροή. κάθετη στη ροή ή ταχύτητα των σωματιδίων

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς

Ορίζοντας την δυναμική ενέργεια σαν: Για μετακίνηση του φορτίου ανάμεσα στις πλάκες: Ηλεκτρικό Δυναμικό 1

Φυσική για Μηχανικούς

Ενημέρωση. Η διδασκαλία του μαθήματος, όλες οι ασκήσεις προέρχονται από το βιβλίο: «Πανεπιστημιακή

Φυσική για Μηχανικούς

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΠΗΓΕΣ ΜΑΓΝΗΤΙΚΟΥ ΠΕΔΙΟΥ

Δυναμική Ενέργεια σε Ηλεκτρικό πεδίο, Διαφορά ηλεκτρικού δυναμικού. Ιωάννης Γκιάλας 14 Μαρτίου 2014

Φυσική για Μηχανικούς

E = E 0 + E = E 0 P ϵ 0. = 1 + χ r. = Q E 0 l

Εξίσωση Laplace Θεωρήματα Μοναδικότητας

Ασκήσεις 2 ου Κεφαλαίου, Νόμος του Gauss

Πυκνότητα φορτίου. dq dv. Μικρή Περιοχή. φορτίου. Χωρική ρ Q V. Επιφανειακή σ. dq da Γραµµική λ Q A. σ = dq dl. Q l. Γ.

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΕΠΑΓΩΓΗ

Φυσική για Μηχανικούς

Το βαρυτικό πεδίο της Γης.

Πρόβλημα 4.9.

Ηλεκτρική δυναμική ενέργεια

Ηλεκτρική Μετατόπιση- Γραμμικά Διηλεκτρικά

ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΡΙΚΟ ΠΕΔΙΟ

ΗΛΕΚΤΡΙΚΟ ΥΝΑΜΙΚΟ (ΚΕΦΑΛΑΙΟ 23)

ΣΗΜΕΙΩΣΕΙΣ ΣΤΟΙΧΕΙΑ ΔΙΑΝΥΣΜΑΤΙΚΗΣ ΑΝΑΛΥΣΗΣ

πάχος 0 πλάτος 2a μήκος

Α) Η επιφάνεια Gauss έχει ακτίνα r μεγαλύτερη ή ίση της ακτίνας του κελύφους, r α.

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

Φυσική για Μηχανικούς

Το ηλεκτρικό ρεύμα. και. πηγές του. Μια διαδρομή σε μονοπάτια. Φυσικής Χημείας. Επιμέλεια: Διονύσης Μάργαρης

ΦΥΕ 14 6η ΕΡΓΑΣΙΑ Παράδοση ( Οι ασκήσεις είναι ϐαθµολογικά ισοδύναµες)

Φυσική για Μηχανικούς

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ ΦΥΣΙΚΗ ΙΙ

Ηλεκτρομαγνητισμός. Ηλεκτρικό δυναμικό. Νίκος Ν. Αρπατζάνης

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

Φυσική για Μηχανικούς

E = P t = IAt = Iπr 2 t = J (1)

ΠΑΡΑΡΤΗΜΑ Γ. Επικαμπύλια και Επιφανειακά Ολοκληρώματα. Γ.1 Επικαμπύλιο Ολοκλήρωμα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. (συνέχεια) ΝΟΜΟΣ GAUSS ΓΙΑ ΤΟ ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. H ηλεκτρική ροή που διέρχεται δια µέσου µιας (τυχούσας) επιφάνειας Α είναι r r

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΔΥΝΑΜΙΚΟ

Φυσική για Μηχανικούς

1.Η δύναμη μεταξύ δύο φορτίων έχει μέτρο 120 N. Αν η απόσταση των φορτίων διπλασιαστεί, το μέτρο της δύναμης θα γίνει:

Φυσική για Μηχανικούς

ΦΥΣΙΚΗ ΓΙΑ ΜΗΧΑΝΙΚΟΥΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΗΛΕΚΤΡΙΣΜΟΣ ΜΑΓΝΗΤΙΣΜΟΣ

Ασκήσεις κέντρου μάζας και ροπής αδράνειας. αν φανταστούμε ότι το χωρίζουμε το στερεό σώμα σε μικρά κομμάτια, μόρια, μάζας m i και θέσης r i

Φυσική IΙ. Ενότητα 3: Ο Νόμος του Gauss. Κουζούδης Δημήτρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

ΜΑΓΝΗΤΙΚΟ ΠΕ ΙΟ. Παράδειγµα: Κίνηση φορτισµένου σωµατιδίου µέσα σε µαγνητικό πεδίο. z B. m υ MAΓΝΗTIKΟ ΠΕ ΙΟ

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. Ν. Τράκας, Ι. Ράπτης 2/4/2018

Όταν ένα δοκιµαστικό r φορτίο r βρεθεί µέσα σε ένα ηλεκτρικό πεδίο, δέχεται µια ηλεκτρική δύναµη: F = q E. Η ηλεκτρική δύναµη είναι συντηρητική.

Ηλεκτρομαγνητισμός. Μαγνητικό πεδίο. Νίκος Ν. Αρπατζάνης

1. Νόμος του Faraday Ορισμός της μαγνητικής ροής στην γενική περίπτωση τυχαίου μαγνητικού πεδίου και επιφάνειας:

Φυσική για Μηχανικούς

ΕΡΓΑΣΙΑ 6. Ημερομηνία Παράδοσης: 29/6/09

(α) 1. (β) Το σύστημα βρίσκεται υπό διαφορά δυναμικού 12 V: U ολ = 1 2 C ολ(δv) 2 = J.

Φυσική για Μηχανικούς

Κλασική Hλεκτροδυναμική

Hλεκτρικό. Πεδίο. Ζαχαριάδου Αικατερίνη Γενικό Τμήμα Φυσικής, Χημείας & Τεχνολογίας Υλικών Τομέας Φυσικής ΤΕΙ ΠΕΙΡΑΙΑ

R 1. e 2r V = Gauss E + 1 R 2

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Λύσεις στο επαναληπτικό διαγώνισμα 3

ΓΕΩΔΑΙΣΙΑΚΕΣ ΚΑΜΠΥΛΕΣ ΣΕ ΕΠΙΦΑΝΕΙΕΣ ΜΕΣΩ ΤΟΥ ΘΕΩΡΗΜΑΤΟΣ CLAIRAUT

Δομή Διάλεξης. Ορισμός Ηλεκτρικού Δυναμικού και συσχέτιση με το Ηλεκτρικό Πεδίο

ΘΕΜΑ 1 2 Ι =Ι. ομοιόμορφα στη διατομή του αγωγού θα ισχύει: = 2. Επομένως Β = μbοb r / 2παP P, για r α. I π r r

Υπενθύμιση (από τη Μηχανική) /Εισαγωγή:

Φυσική για Μηχανικούς

Ισχύει όταν κινούνται ; Ισχύει όταν κινείται μόνο το ένα δηλαδή η δύναμη αλληλεπίδρασης περιγράφεται σωστά από το νόμο Coulomb

1. Ηλεκτρικό Φορτίο. Ηλεκτρικό Φορτίο και Πεδίο 1

ΗΛΕΚΤΡΙΚΟ ΠΕ ΙΟ. HΛEKTPIKO ΦOPTIO: είναι το αίτιο των ηλεκτρικών δυνάµεων (εµπειρική αντίληψη).

ΣΧΟΛΗ ΕΜΦΕ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΦΥΣΙΚΗ ΙΙ (ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΣΜΟΣ Ι) η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ, Αγωγοί Διηλεκτρικά. Ν. Τράκας, Ι. Ράπτης Ζωγράφου 27.3.

ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΗ ΘΕΩΡΙΑ ΗΛΕΚΤΡΙΚΟ ΦΟΡΤΙΟ ΚΑΙ ΗΛΕΚΤΙΚΟ ΠΕΔΙΟ

Λύση: Η δύναμη σε ρευματοφόρο αγωγό δίνεται από την

Μαθηματικά για μηχανικούς ΙΙ ΑΣΚΗΣΕΙΣ

Transcript:

Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss, δείχνουμε ότι το ηλεκτρικό πεδίο που περιβάλλει μια ομοιόμορφα φορτισμένη σφαίρα είναι όμοιο με αυτό γύρω από ένα σημειακό φορτίο.

Φυσική για Μηχανικούς Ο νόμος του Gauss Εικόνα: Σε μια επιτραπέζια μπάλα πλάσματος, οι χρωματιστές γραμμές που βγαίνουν από τη σφαίρα αποδεικνύουν την ύπαρξη ισχυρού ηλεκτρικού πεδίου. Με το νόμο του Gauss, δείχνουμε ότι το ηλεκτρικό πεδίο που περιβάλλει μια ομοιόμορφα φορτισμένη σφαίρα είναι όμοιο με αυτό γύρω από ένα σημειακό φορτίο.

Ως τώρα, θεωρήσαμε το φαινόμενο των δυναμικών γραμμών ποιοτικά Τώρα, θα το μελετήσουμε πιο «ποσοτικά» Έστω ένα ομογενές ηλεκτρικό πεδίο Οι δυναμικές γραμμές περνούν κάθετα την επιφάνεια εμβαδού A Θυμηθείτε: πυκνότητα γραμμών ανάλογη του μέτρου του πεδίου Ο αριθμός γραμμών είναι ανάλογος του γινομένου EA Αυτό το γινόμενο ονομάζεται ηλεκτρική ροή Φ E

Ηλεκτρική Ροή Αν η επιφάνεια δεν είναι κάθετη τότε η ηλεκτρική ροή δίνεται ως Φ E = EA = EA cos(θ) Επίσης, το πεδίο μπορεί να μην είναι ομογενές. Μπορεί να μεταβάλλεται με την απόσταση ή με την επιφάνεια Ο παραπάνω ορισμός έχει νόημα για μικρές επιφάνειες με σταθερό ηλεκτρικό πεδίο Το EA cos θ πρέπει να σας θυμίζει κάτι Εσωτερικό γινόμενο διανυσμάτων! Το E είναι διάνυσμα πράγματι Το Α είναι εμβαδό (αριθμητική τιμή)!!

Ηλεκτρική Ροή Μια γενική επιφάνεια μπορεί να χωριστεί σε πολύ μικρά στοιχεία επιφάνειας καθένα με εμβαδό ΔΑ Ας ορίσουμε το διάνυσμα ΔA i του οποίου το μέτρο ισούται με το εμβαδόν του i-οστού στοιχείου Το διάνυσμα αυτό είναι κάθετο στο στοιχείο εμβαδού ΔΑ i της επιφάνειας Έστω ότι το ηλεκτρικό πεδίο είναι E i στη θέση αυτή και σχηματίζει γωνία θ i με το διάνυσμα ΔA i

Ηλεκτρική Ροή Η ηλεκτρική ροή μέσα από την επιφάνεια αυτή είναι Φ Εi = E i (ΔΑ i ) cos θ i Το παραπάνω μπορεί να γραφεί ως Φ Εi = E i ΔA i που είναι το γνωστό μας εσωτερικό γινόμενο Αθροίζοντας την ηλεκτρική ροή για κάθε μικρό στοιχείο Φ E = lim Φ Ε ΔA i da i = i επιφανεια E d A

Ηλεκτρική Ροή Μας ενδιαφέρουν οι κλειστές επιφάνειες για τον υπολογισμό της ροής Μια κλειστή επιφάνεια χωρίζει το χώρο σε μια εσωτερική και μια εξωτερική περιοχή, χωρίς να μπορεί κάποιος να κινηθεί από τον ένα χώρο στον άλλο χωρίς να διασχίσει την επιφάνεια του χώρου Π.χ. η επιφάνεια μιας σφαίρας Ας δούμε τρεις διαφορετικές περιπτώσεις

Ηλεκτρική Ροή

Ηλεκτρική Ροή Για τον υπολογισμό της ηλεκτρικής ροής σε μια κλειστή επιφάνεια Φ E = E d A = E n da με E n τη συνιστώσα του ηλεκτρικού πεδίου κάθετη στην επιφάνεια

Παράδειγμα: Θεωρήστε ένα ομοιόμορφο ηλεκτρικό πεδίο E με προσανατολισμό στο x-άξονα του χώρου. Ένας κύβος με μήκος ακμής l τοποθετείται στο πεδίο, όπως στο σχήμα. Βρείτε την ηλεκτρική ροή διαμέσου της επιφάνειας του κύβου.

Παράδειγμα - Λύση: Βρείτε την ηλεκτρική ροή διαμέσου της επιφάνειας του κύβου.

Ο νόμος του Gauss Υπάρχει άραγε κάποια σχέση μεταξύ της ηλεκτρικής ροής σε μια κλειστή επιφάνεια και ενός φορτίου που περικλείεται σε αυτήν; Η απάντηση είναι ΝΑΙ, και αυτή η σχέση ονομάζεται νόμος του Gauss Είναι θεμελιώδους σημασίας στη μελέτη ηλεκτρικών πεδίων Είναι το ισοδύναμο του νόμου του Coulomb για ηλεκτρικά πεδία σημειακών φορτίων, αλλά εφαρμόζεται σε συνεχείς κατανομές φορτίων πολύ πιο εύκολα απ ότι ο νόμος του Coulomb Μπορεί να εφαρμοστεί σε κινούμενα φορτία κάθε ταχύτητας Αποτελεί ένα περισσότερο θεμελιώδη νόμο για τα ηλεκτρικά πεδία από το νόμο του Coulomb Η κλειστή επιφάνεια λέγεται πολλές φορές και γκαουσιανή (Gaussian)

Ο νόμος του Gauss Έστω ένα θετικό φορτίο q στο κέντρο μιας σφαίρας ακτίνας r Το μέτρο του ηλεκτρικού πεδίου είναι E = k e q r 2 Οι δυναμικές γραμμές είναι παντού κάθετες στην επιφάνεια της σφαίρας Άρα το ηλ. πεδίο E είναι παράλληλο στο διάνυσμα Δ A Άρα η ηλεκτρική ροή θα είναι Φ E = E d A = EdA = E da

Ο νόμος του Gauss Το ολοκλήρωμα da ισούται με το εμβαδόν της γκαουσιανής επιφάνειας da = 4πr 2 Άρα Φ E = E da = k e q r 2 4πr2 = 4πk e q Όμως k e = 1/4πε 0 Άρα τελικά Φ E = q ε 0

Ο νόμος του Gauss Και τι θα συμβεί αν η επιφάνεια δεν είναι σφαιρική; Είπαμε ότι η ηλεκτρική ροή είναι ανάλογη του αριθμού των δυναμικών γραμμών που περνούν μέσα από μια επιφάνεια Το σχήμα δείχνει ότι ο αριθμός αυτός είναι ίδιος σε όλες τις επιφάνειες! Η S 1 είναι σφαιρική, άρα Φ E = q ε 0 Άρα η ηλεκτρική ροή διαμέσου οποιασδήποτε κλειστής επιφάνειας γύρω από ένα σημειακό φορτίο q είναι Φ E = q ε 0 και είναι ανεξάρτητη από το σχήμα της.

Ο νόμος του Gauss Και τι θα συμβεί το φορτίο είναι έξω από την επιφάνεια; Κάθε δυναμική γραμμή που εισέρχεται στην επιφάνεια βγαίνει από κάποιο άλλο μέρος της Ο αριθμός των γραμμών που μπαίνουν ισούται με αυτόν που βγαίνουν Άρα η ηλεκτρική ροή διαμέσου μιας κλειστής επιφάνειας που δεν περιέχει φορτίο είναι μηδέν!

Ο νόμος του Gauss Ας επεκτείνουμε τα αποτελέσματά μας σε δυο γενικές περιπτώσεις: 1) Πολλά σημειακά φορτία 2) Συνεχής κατανομή φορτίου

Ο νόμος του Gauss Για πολλά (έστω Μ) σημειακά φορτία, έχουμε Φ E = E d A = Παράδειγμα: Φ E = Φ E = q 1 M i=1 E i d A ε 0 για την επιφάνεια S (q 2 +q 3 ) ε 0 για την S Φ E = 0 για την S Το φορτίο q4 δε συνεισφέρει ηλεκτρική ροή σε καμιά επιφάνεια

Ο νόμος του Gauss Φ E = E d A = q in ε 0 όπου E το ηλεκτρικό πεδίο σε οποιοδήποτε σημείο της επιφάνειας και q in το συνολικό φορτίο εντός της επιφάνειας Προσοχή στο εξής: το E είναι το ηλεκτρικό πεδίο που προέρχεται από συνεισφορές από φορτία τόσο εντός όσο και εκτός της επιφάνειας!

Ο νόμος του Gauss Ο νόμος του Gauss μπορεί να φανεί χρήσιμος για την εκτίμηση του ηλεκτρικού πεδίου όταν η κατανομή φορτίου είναι συμμετρική Αυτό συμβαίνει με κατάλληλη επιλογή γκαουσιανής (κλειστής) επιφάνειας όπου το διάνυσμα da στο ολοκλήρωμα ορίζεται και υπολογίζεται απλά Επιπλέον, πρέπει να εκμεταλλευόμαστε τη συμμετρία της κατανομής φορτίου για να βγάλουμε το ηλεκτρικό πεδίο E εκτός ολοκληρώματος Αν δεν μπορούμε να βρούμε μια τέτοια επιφάνεια, ο νόμος του Gauss ισχύει ακόμα, αλλά δε μας είναι χρήσιμος στην εύρεση του ηλεκτρικού πεδίου

Ο νόμος του Gauss Πρέπει λοιπόν να επιλέξουμε μια επιφάνεια η οποία να ικανοποιεί μια ή περισσότερες από τις παρακάτω συνθήκες: 1. Η τιμή του ηλεκτρικού πεδίου μπορεί να θεωρηθεί σταθερή λόγω συμμετρίας επάνω σε όλη την επιφάνεια 2. Το εσωτερικό γινόμενο του νόμου του Gauss μπορεί να εκφραστεί ως απλό αλγεβρικό γινόμενο EdA, δηλ. τα E και da είναι παράλληλα 3. Το εσωτερικό γινόμενο είναι μηδέν γιατί τα παραπάνω διανύσματα είναι κάθετα 4. Το ηλεκτρικό πεδίο είναι μηδέν σε ένα τμήμα επιφάνειας

Παράδειγμα: Μια μονωμένη στερεή σφαίρα ακτίνας α έχει ομοιόμορφη πυκνότητα φορτίου ρ σε όλο τον όγκο της και φέρει συνολικό θετικό φορτίο Q. A) Υπολογίστε το μέτρο του ηλεκτρικού πεδίου σε ένα σημείο εκτός της σφαίρας Β) Υπολογίστε το μέτρο του ηλεκτρικού πεδίου σε ένα σημείο εντός της σφαίρας

Παράδειγμα Λύση: Μια μονωμένη στερεή σφαίρα ακτίνας a έχει ομοιόμορφη πυκνότητα φορτίου ρ σε όλο τον όγκο της και φέρει συνολικό θετικό φορτίο Q. A) Υπολογίστε το μέτρο του ηλεκτρικού πεδίου σε ένα σημείο εκτός της σφαίρας

Παράδειγμα Λύση: Μια μονωμένη στερεή σφαίρα ακτίνας a έχει ομοιόμορφη πυκνότητα φορτίου ρ σε όλο τον όγκο της και φέρει συνολικό θετικό φορτίο Q. Β) Υπολογίστε το μέτρο του ηλεκτρικού πεδίου σε ένα σημείο εντός της σφαίρας

Παράδειγμα: Βρείτε το ηλεκτρικό πεδίο σε απόσταση r από μια γραμμή θετικά φορτισμένη και απείρου μήκους. Η γραμμή έχει σταθερό φορτίο ανά μονάδα μήκους λ.

Παράδειγμα - Λύση: Βρείτε το ηλεκτρικό πεδίο σε απόσταση r από μια γραμμή θετικά φορτισμένη και απείρου μήκους. Η γραμμή έχει σταθερό φορτίο ανά μονάδα μήκος λ.

Τέλος Διάλεξης