Ανισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

Σχετικά έγγραφα
7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι

β) Αν κάποιος αριθµός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι < α

Να αιτιολογήσετε την απάντησή σας µε τη βοήθεια και του ερωτήµατος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1+α < 1+ α. α+α

Εξισώσεις. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

2 είναι λύσεις της ανίσωσης 2x2 3x+1<0.

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

Α Λυκείου ΑΛΓΕΒΡΑ & ΓΕΩΜΕΤΡΙΑ

6. α) Να λύσετε την εξίσωση 2x 1 =3. β) Αν α, β με α< β είναι οι ρίζες της εξίσωσης του ερωτήματος (α), τότε να λύσετε την εξίσωση αx 2 +βx+3=0.

ρ πε α εμ των α ματ ών 2014 Ο Η ΡΗ Ο Ο Γ Ρ Θ μα 2ο

Α Λυκείου Άλγεβρα Τράπεζα Θεμάτων Το Δεύτερο Θέμα

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

1. Nα λυθούν οι ανισώσεις. 2. Nα λυθούν οι ανισώσεις. 3. Nα βρεθούν οι κοινές λύσεις των ανισώσεων: 4. Nα βρεθούν οι κοινές λύσεις των ανισώσεων:

β. Να βρείτε την πιθανότητα πραγματοποίησης καθενός από τα δύο ενδεχόμενα του ερωτήματος α).

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 2 ο (150)

3. α) Να λύσετε την εξίσωση x 2 = 3. β) Να σχηματίσετε εξίσωση δευτέρου βαθμού με ρίζες, τις ρίζες της εξίσωσης του α) ερωτήματος.

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 3 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

ΘΕΜΑ 2. βρείτε. (Μονάδες 15) με διαφορά ω.

Τράπεζα Θεμάτων Άλγεβρα Α Λυκείου Κεφάλαιο 4 Θέμα 2. Επιμέλεια : Μιχάλης Γιάνναρος - Μαθηματικός

ΑΝΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

B =, όπου ο x είναι πραγματικός αριθμός. x x α) Να αποδείξετε ότι για να ορίζονται ταυτόχρονα οι παραστάσεις Α, Β πρέπει: x 1 και x 0.

Αριθμοί. Κώστας Γλυκός. Τράπεζα θεμάτων ΜΑΘΗΜΑΤΙΚΟΣ. εκδόσεις / 1 0 /

ΘΕΜΑ 2. 1 x < 4. (Μονάδες 9) 2. α) Να λύσετε την ανίσωση: β) Να λύσετε την ανίσωση: x (Μονάδες 9)

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 2 ο ΘΕΜΑ

ΘΕΜΑ 2. Δίνονται οι συναρτήσεις

ΘΕΜΑΤΑ ΠΡΟΑΓΩΓΙΚΩΝ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ ΜΑΪΟΣ ΙΟΥΝΙΟΣ

γ) Να εξετάσετε αν οι λύσεις της εξίσωσης του (α) ερωτήματος είναι και λύσεις της ανίσωσης του (β) ερωτήματος.

ΘΕΜΑ 2. Θεωρούμε την ακολουθία (α ν ) των θετικών περιττών αριθμών: 1, 3, 5, 7,

ΘΕΜΑ ΘΕΜΑ ΘΕΜΑ 4

Σας εύχομαι καλή μελέτη και επιτυχία.

( ) = 2. f x α(x x )(x x ) f x α(x ρ) x1,2. 1, x

ΘΕΜΑ 4. Δίνεται η εξίσωση. α) Να βρείτε την τιμή του λ ώστε η εξίσωση να είναι 1 ου βαθμού. (Μονάδες 5)

Ανισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 17 σελίδες. εκδόσεις. Καλό πήξιμο

Οι εκφωνήσεις των ασκήσεων της Τράπεζας θεμάτων στην Άλγεβρα Α ΓΕΛ ανά ενότητα

(Μονάδες 10) γ) Αν η εξίσωση (1) έχει ρίζες τους αριθμούς x 1, x 2 και d x 1,

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 26 σελίδες. εκδόσεις. Καλό πήξιμο

ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

ΘΕΜΑ 4. . Αν για την τετμημένη x του σημείου M ισχύει:, τότε να δείξετε ότι το σημείο αυτό βρίσκεται κάτω από την. , με παράμετρο α 0.

ΑΛΓΕΒΡΑ. 14ο Λύκειο Περιστερίου

ΘΕΜΑ 2 (996) A = x 1 + y 3, με x, y πραγματικούς αριθμούς, για τους οποίους. Δίνεται η παράσταση:

1. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν γράφοντας την ένδειξη Σωστό ή Λάθος και να δικαιολογήσετε την απάντησή σας.

B= πραγματοποιείται τουλάχιστον ένα από τα ενδεχόμενα Α και Β ii) B = πραγματοποιούνται ταυτόχρονα τα ενδεχόμενα Β και Γ iii)

ΕΡΩΤΗΣΕΙΣ ΚΑΤΑ Ι ΑΚΤΙΚΗ ΕΝΟΤΗΤΑ ΤΟΥ ΚΕΦΑΛΑΙΟΥ 4

ΕΞΙΣΩΣΕΙΣ - 2 ου ΒΑΘΜΟΥ ΑΣΚΗΣΕΙΣ. 9). Να λυθούν οι εξισώσεις :

Κ Ε Φ Α Λ Α Ι Ο 3 ο : Ε ξ ι σ ώ σ ε ι ς. 3.1 Εξισώσεις 1 ου Βαθμού. 3.2 Η εξίσωση x. 3.3 Εξισώσεις 2 ου Βαθμού. ρωτήσεις αντικειμενικού τύπουθέμα Α1-

Θέματα ενδοσχολικών εξετάσεων Άλγεβρας Α Λυκείου Σχ. έτος , Ν. Δωδεκανήσου ΘΕΜΑΤΑ ΕΝΔΟΣΧΟΛΙΚΩΝ ΕΞΕΤΑΣΕΩΝ ΤΑΞΗ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΛΓΕΒΡΑ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

Εξισώσεις. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις. εκδόσεις. Καλό πήξιμο / 8 /

12. ΑΝΙΣΩΣΕΙΣ Α ΒΑΘΜΟΥ. είναι δύο παραστάσεις μιας μεταβλητής x πού παίρνει τιμές στο

Α Λ Γ Ε Β Ρ Α Β Λ Υ Κ Ε Ι Ο Υ. ΚΕΦΑΛΑΙΟ 4 ο ΠΟΛΥΩΝΥΜΑ-ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

ΘΕΜΑ 4. για να κάψει 360 θερμίδες είναι: f( x)

ΑΛΓΕΒΡΑ - ΚΕΦΑΛΑΙΟ 4ο Εξισώσεις - Ανισώσεις Δευτέρου Βαθμού

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

4.2 ΑΝΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ Ασκήσεις σχολικού βιβλίου σελίδας

Εκφωνήσεις θεμάτων Άλγεβρας Τράπεζας θεμάτων ανά ενότητα. 2ο θέμα

Εκφωνήσεις και λύσεις των ασκήσεων της Τράπεζας Θεμάτων στην Άλγεβρα Α ΓΕΛ

β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές για κάθε R. Μονάδες 8 γ) Αν x

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

( f( )) ( f( )) 0. f( ) f( ) 0 θέτουμε αντίστοιχα. ΕΞΙΣΩΣΕΙΣ 2 ου ΒΑΘΜΟΥ. 2. Μορφή 0 με 0. Λύση: Λύση: 3. Μορφή Λύση: Βρίσκουμε,,

Τάξη A Μάθημα: Άλγεβρα

4. Δίνεται το πολυώνυμο P(x) = x 3 2x 2 + x 12 α) Να αιτιολογήσετε γιατί το διώνυμο x 3 είναι παράγοντας του P(x) β) Να λύσετε την εξίσωση P(x) = 0

Τράπεζα Θεμάτων. Άλγεβρα Α Λυκείου. Το 4 ο Θέμα

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΑΛΓΕΒΡΑ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Τράπεζα Θεμάτων (Θέμα 4ο) Κεφ. 1 ο Πιθανότητες

Φεργαδιώτης Αθανάσιος ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΣΤΗΝ ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Θέμα 4 ο (141)

Άλγεβρα Α Λυκείου. Επαναληπτικά θέματα από διαγωνίσματα ΟΕΦΕ Πραγματικοί αριθμοί

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ ΕΞΙΣΩΣΕΙΣ - ΑΝΙΣΩΣΕΙΣ

Στέλιος Μιχαήλογλου - Δημήτρης Πατσιμάς

ii) Να ποια τιμή του ώστε η εξίσωση (1) έχει μία διπλή πραγματική ρίζα; Έπειτα να βρεθεί η ρίζα αυτή. Ασκήσεις Άλγεβρας

ΕΛΛΗΝΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ - ΠΑΡΑΡΤΗΜΑ ΔΩΔΕΚΑΝΗΣΟΥ

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ (ΑΡΙΘΜΗΤΙΚΗ ΤΙΜΗ,ΠΡΑΞΕΙΣ,ΙΣΟΤΗΤΑ) P( x) ( 4) x ( 8) x ( 5 6) x 16 είναι το μηδενικό πολυώνυμο.

x y z xy yz zx, να αποδείξετε ότι x=y=z.

1. Συµπλήρωσε τον πίνακα µε την κατάλληλη µαθηµατική έκφραση:

ΠΡΟΛΟΓΟΣ ΤΡΑΠΕΖΑΣ ΘΕΜΑΤΩΝ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ.

ΕΝΟΤΗΤΑ 1: ΟΡΙΣΜΟΣ ΠΕΔΙΟ ΟΡΙΣΜΟΥ ΠΡΑΞΕΙΣ ΣΥΝΑΡΤΗΣΕΩΝ ΓΡΑΦΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ ΒΑΣΙΚΩΝ ΣΥΝΑΡΤΗΣΕΩΝ ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΘΕΜΑ Α

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΑΛΓΕΒΡΑΣ Α ΛΥΚΕΙΟΥ Δ Ι Α Γ Ω Ν Ι Σ Μ Α 1

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

f (x) = x2 5x + 6 x 3 S 2 P 2 0

-1- ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ ΔΙΑΒΑΘΜΙΣΜΕΝΗΣ ΔΥΣΚΟΛΙΑΣ ΓΕΝΙΚΟ ΛΥΚΕΙΟ ΤΑΞΗ Α ΛΥΚΕΙΟΥ ΜΑΘΗΜΑ: ΑΛΓΕΒΡΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

= και g ( x) = x +, x R. Δίνονται η συνάρτηση ( ) α) Να αποδείξετε ότι η γραφική παράσταση C

ΑΣΚΗΣΕΙΣ ΣΤΑ ΠΟΛΥΩΝΥΜΑ ΠΟΛΥΩΝΥΜΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. β) x 9x. ε) (x 1) 3(x 1) 2(x 1) 0. (2x 1) x 128 0

ςεδς ΤΕΤΡΑΔΙΟ ΕΠΑΝΑΛΗΨΗΣ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΘΕΜΑΤΑ ΓΙΑ ΕΞΕΤΑΣΕΙΣ ΕΠΙΜΕΛΕΙΑ Βαγγέλης Βαγγέλης Νικολακάκης Μαθηματικός

Άλγεβρα Α Λυκείου. Στέλιος Μιχαήλογλου

) = 0. Λύσεις/Ρίζες της εξίσωσης. Ακριβώς δύο άνισες πραγματικές λύσεις, τις: Η εξίσωση δεν έχει πραγματικές λύσεις

ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ - 4 ο ΘΕΜΑ

1 of 79 ΘΕΜΑ 2. Δίνεται η συνάρτηση f(x) = x 2 4x + 5, x R

Παρατηρήσεις. Προβλήματα είχαν οι ασκήσεις:

ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ ΕΠΙΛΕΓΜΕΝΑ ΘΕΜΑΤΑ ΑΠΟ ΤΗΝ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ

Επαναληπτικό Διαγώνισμα Άλγεβρας Α Λυκείου

( 2) 1 0,. Αν ρ 1, ρ 2 οι ρίζες της (ε) και

ΚΕΦΑΛΑΙΟ 2 Ο ΕΞΙΣΩΣΕΙΣ-ΑΝΙΣΩΣΕΙΣ

Αριθμοί. Κώστας Γλυκός ΜΑΘΗΜΑΤΙΚΟΣ. A ΛΥΚΕΙΟΥ κεφάλαιο ασκήσεις και τεχνικές σε 28 σελίδες. εκδόσεις. Καλό πήξιμο

ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΜΗ ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ ΣΥΝΑΡΤΗΣΕΙΣ ΜΟΝΟΤΟΝΙΑ-ΑΚΡΟΤΑΤΑ-ΣΥΜΜΕΤΡΙΕΣ ΣΥΝΑΡΤΗΣΗΣ

ΔΙΑΝΥΣΜΑΤΑ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΣ ΑΡΙΘΜΟΥ ΜΕ ΔΙΑΝΥΣΜΑ. ΘΕΜΑ 2ο

2018 Φάση 2 ιαγωνίσµατα Επανάληψης ΑΛΓΕΒΡΑ. Α' Γενικού Λυκείου. Σάββατο 21 Απριλίου 2018 ιάρκεια Εξέτασης:3 ώρες ΘΕΜΑΤΑ

Τράπεζα Θεμάτων ΑΛΓΕΒΡΑ Α ΛΥΚΕΙΟΥ. Επιμέλεια Σταύρος Κόλλιας

Α ΛYKEIOY ΆΛΓΕΒΡΑ Άλγεβρα. Μίλτος Παπαγρηγοράκης Χανιά

2.1 Πολυώνυμα. 1. Ποιες από τις παρακάτω παραστάσεις είναι πολυώνυμα; 3 2 ii. x iii. 3 iv. vi.

ΕΞΙΣΩΣΕΙΣ 2ου ΒΑΘΜΟΥ

Transcript:

Ανισώσεις Κώστας Γλυκός Τράπεζα θεμάτων ΙΙ Ι δδ ιι ι αα ίί ί ττ εε ρρ αα μμ αα θθ ήή μμ αα ττ αα 6 9 7. 3 0 0. 8 8. 8 8 Kgllykos..gr 5 / 1 0 / 0 1 6 εκδόσεις

τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88 Ασκήσεις Πιθανότητες Τράπεζα θεμάτων 1. α) Να λύσετε τις ανισώσεις: x 5 3 και x x 1 0. β) Να βρείτε τις κοινές λύσεις των ανισώσεων του ερωτήματος (α). x 1. Δίνονται οι ανισώσεις: 3x 1<x+9 και x. α) Να βρείτε τις λύσεις τους. β) Να βρείτε το σύνολο των κοινών τους λύσεων. 3. α) Να λύσετε την εξίσωση x 1 x 1 4 3 5 3 β) Nα λύσετε την ανίσωση x +x+3 0. γ) Να εξετάσετε αν οι λύσεις της εξίσωσης του (α) ερωτήματος είναι και λύσεις της ανίσωσης του (β) ερωτήματος. α) Να λύσετε την ανίσωση 1 x 4. 4. β) Να λύσετε την ανίσωση x + 5 3. γ) Να βρείτε τις κοινές λύσεις των ανισώσεων των ερωτημάτων (α) και (β) με χρήση του άξονα των πραγματικών αριθμών και να τις γράψετε με τη μορφή διαστήματος. 5. α) Να λύσετε την εξίσωση x 4 =3 x 1. β) Να λύσετε την ανίσωση 3x 5 >1. γ) Είναι οι λύσεις της εξίσωσης του (α) ερωτήματος και λύσεις της ανίσωσης του (β) ερωτήματος; Να αιτιολογήσετε την απάντησή σας. 1

τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88 6. α) Να λύσετε την ανίσωση x 1 5. β) Να βρείτε τους αριθμούς x που απέχουν από το 5 απόσταση μικρότερη του 3. γ) Να βρείτε τις κοινές λύσεις των (α) και (β). 7. α) Να λύσετε την ανίσωση x 5 <4. β) Αν κάποιος αριθμός α επαληθεύει την παραπάνω ανίσωση, να αποδείξετε ότι 1 1 1 9. 8. Δίνονται οι ανισώσεις: x +5x 6<0 (1) και x 6 0 (). α) Να βρεθούν οι λύσεις των ανισώσεων (1), (). β) Να παρασταθούν οι λύσεις των ανισώσεων (1) και () πάνω στον άξονα των πραγματικών αριθμών και να βρεθούν οι κοινές λύσεις των παραπάνω ανισώσεων. 9. α) Να λύσετε την ανίσωση: x 10x+1<0. β) Δίνεται η παράσταση Α= x 3 + x 10x+1 i) Για 3<x<7, να δείξετε ότι Α= x +11x 4. ii) Να βρείτε τις τιμές του x (3,7), για τις οποίες ισχύει Α=6. 10. α) Να λύσετε την ανίσωση 3x 4x+1 0. β) Αν α, β δυο αριθμοί που είναι λύσεις της παραπάνω ανίσωσης, να αποδείξετε ότι ο αριθμός 3 6 είναι επίσης λύση της ανίσωσης. 9 11. α) Να λύσετε την ανίσωση x+4 3 β) Αν α 1, να γράψετε την παράσταση Α= α+4 3 χωρίς απόλυτες τιμές. Να αιτιολογήσετε το συλλογισμό σας. 1. α) Να λυθεί η εξίσωση x x =0 β) Να λυθεί η ανίσωση: x x >0 και να παραστήσετε το σύνολο λύσεών της στον άξονα των πραγματικών αριθμών. 4 γ) Να τοποθετήσετε το στον άξονα των πραγματικών αριθμών. Είναι το 4 λύση της 3 3 ανίσωσης του ερωτήματος (β); Να αιτιολογήσετε την απάντησή σας. 13. α) Να αποδείξετε ότι x +4x+5>0, για κάθε πραγματικό αριθμό x. β) Να γράψετε χωρίς απόλυτες τιμές την παράσταση B= x +4x+5 x +4x+4. 14. Δίνεται το τριώνυμο f(x)=3x +9x 1, x R. α) Να λύσετε την ανίσωση f(x) 0 και να παραστήσετε το σύνολο των λύσεών της στον άξονα των πραγματικών αριθμών. β) Να ελέγξετε αν ο αριθμός 3 είναι λύση της ανίσωσης του ερωτήματος (α). Να

τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88 αιτιολογήσετε την απάντησή σας. 15. Δίνονται οι παραστάσεις: Κ=α +β +9 και Λ=α(3 β), όπου α, β R. α) Να δείξετε ότι Κ Λ=(α +αβ+β )+(α 6α+9) β) Να δείξετε ότι Κ Λ, για κάθε τιμή των α, β. γ) Για ποιες τιμές των α, β ισχύει η ισότητα Κ=Λ; Να αιτιολογήσετε την απάντησή σας. 16. α) Να λύσετε τις ανισώσεις και να παραστήσετε τις λύσεις τους στον άξονα των πραγματικών αριθμών: i) x 3 5. ii) x 3 1. β) Να βρείτε τις τιμές του x για τις οποίες συναληθεύουν οι παραπάνω ανισώσεις. 17. α) Να λύσετε την εξίσωση x x 6=0 (1) β) Να λύσετε την ανίσωση x 1 < () γ) Να εξετάσετε αν υπάρχουν τιμές του x που ικανοποιούν ταυτόχρονα τις σχέσεις (1) και (). 18. α) Να λύσετε τις παρακάτω ανισώσεις και να παραστήσετε τις λύσεις τους στον άξονα των πραγματικών αριθμών: i) 1 x <5 και ii) 1 x 1. β) Να βρείτε τις ακέραιες τιμές του x για τις οποίες συναληθεύουν οι παραπάνω ανισώσεις. 19. Δίνονται οι ανισώσεις: x <3 και x x 8 0. α) Να βρείτε τις λύσεις τους. β) Να δείξετε ότι οι ανισώσεις συναληθεύουν για x ( 1,4]. γ) Αν οι αριθμοί ρ 1 και ρ ανήκουν στο σύνολο των κοινών λύσεων των δυο ανισώσεων, να δείξετε ότι και ο αριθμός 1 είναι κοινή τους λύση. 0. Δίνονται οι ανισώσεις: x 3 και x 4x<0. α) Να βρείτε τις λύσεις τους. β) Να δείξετε ότι οι ανισώσεις συναληθεύουν για x [,3]. γ) Αν οι αριθμοί ρ 1 και ρ ανήκουν στο σύνολο των κοινών λύσεων των δυο ανισώσεων, να δείξετε ότι και ο αριθμός 1 είναι κοινή τους λύση. 1.. Δίνονται οι ανισώσεις x+1 και x x >0. α) Να λύσετε τις ανισώσεις. β) Να δείξετε ότι οι ανισώσεις συναληθεύουν για x [ 3, 1). γ) Αν οι αριθμοί ρ 1 και ρ ανήκουν στο σύνολο των κοινών λύσεων των δυο ανισώσεων, να δείξετε ότι ρ 1 ρ (,). 3

τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88. α) Να λύσετε την ανίσωση x <x στο σύνολο των πραγματικών αριθμών. β) Δίνεται ένας πραγματικός αριθμός α με 0<α<1. i) Να βάλετε στη σειρά, από τον μικρότερο στον μεγαλύτερο και να τοποθετήσετε πάνω στον άξονα των πραγματικών αριθμών, τους αριθμούς: 0, 1, α, α,. Να αιτιολογήσετε την απάντησή σας με τη βοήθεια και του ερωτήματος α). ii) Να αποδείξετε ότι ισχύει η ανισότητα 1 1. 3. α) Να λύσετε την ανίσωση x >x στο σύνολο των πραγματικών αριθμών. β) Δίνεται ένας πραγματικός αριθμός α με α>1. i) Να βάλετε στη σειρά, από τον μικρότερο στον μεγαλύτερο και να τοποθετήσετε πάνω στον άξονα των πραγματικών αριθμών, τους αριθμούς: 0, 1, α, α,. Να αιτιολογήσετε την απάντησή σας με τη βοήθεια και του ερωτήματος α). ii) Να κάνετε το ίδιο για τους αριθμούς: α, α,. 4. α) Να λύσετε την ανίσωση x 3 5. β) Να απεικονίσετε το σύνολο των λύσεων της ανίσωσης αυτής πάνω στον άξονα των πραγματικών αριθμών και να ερμηνεύσετε το αποτέλεσμα, με βάση τη γεωμετρική σημασία της παράστασης x 3. γ) Να βρείτε όλους τους ακέραιους αριθμούς x που ικανοποιούν την ανίσωση x 3 5 δ) Να βρείτε το πλήθος των ακέραιων αριθμών x που ικανοποιούν την ανίσωση x 3 5 Να αιτιολογήσετε την απάντηση σας. 5. α) Θεωρούμε την εξίσωση x +x+3=α, με παράμετρο α R. i) Να βρείτε για ποιες τιμές του α η εξίσωση x +x+3=α έχει δυο ρίζες πραγματικές και άνισες. ii) Να βρείτε την τιμή του α ώστε η εξίσωση να έχει διπλή ρίζα, την οποία και να προσδιορίσετε. β) Δίνεται το τριώνυμο f(x)=x +x+3, x R. i) Να αποδείξετε ότι f(x), για κάθε x R. ii) Να λύσετε την ανίσωση f(x). 6. Δίνεται το τριώνυμο λx (λ +1)x+λ, λ R {0} α) Να βρείτε τη διακρίνουσα Δ του τριωνύμου και να αποδείξετε ότι το τριώνυμο έχει ρίζες πραγματικές για κάθε λ R {0}. β) Αν x 1, x είναι οι ρίζες του τριωνύμου, να εκφράσετε το άθροισμα S=x 1 +x συναρτήσει του λ 0 και να βρείτε την τιμή του γινομένου P=x 1 x των ριζών. γ) Αν λ>0 το παραπάνω τριώνυμο έχει ρίζες θετικές ή αρνητικές; Να αιτιολογήσετε την απάντησή σας. δ) Αν 0<λ 1και x 1, x με x 1 <x είναι οι ρίζες του παραπάνω τριωνύμου, τότε να βρείτε το πρόσημο του γινομένου f(0) f(κ) f(μ), όπου κ, μ είναι αριθμοί τέτοιοι ώστε x 1 <κ<x <μ. 4

τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88 7. Δίνεται το τριώνυμο x +βx+β, όπου β R. α) Να υπολογίσετε τη διακρίνουσα Δ του τριωνύμου. β) i) Αν β 0 τι μπορείτε να πείτε για το πρόσημο του τριωνύμου; ii) Πώς αλλάζει η απάντησή σας στο ερώτημα (i), όταν β=0; γ) Με τη βοήθεια της απάντησής στο ερώτημα (β), να αποδείξετε ότι ισχύει η ανισότητα α +αβ+β >0 για οποιουσδήποτε πραγματικούς αριθμούς α, β που δεν είναι και οι δύο ταυτόχρονα 0. 8. Δίνεται το τριώνυμο x x 8. α) Να βρείτε το πρόσημο του τριωνύμου για τις διάφορες τιμές του πραγματικού αριθμού x β) Αν κ= 8889 4444, η τιμή της παράστασης κ κ 8 είναι μηδέν, θετικός ή αρνητικός αριθμός; Να αιτιολογήσετε την απάντησή σας. γ) Αν ισχύει 4<μ<4, τι μπορείτε να πείτε για το πρόσημο της τιμής της παράστασης μ μ 8; Να αιτιολογήσετε την απάντησή σας. 9. Δίνεται το τριώνυμο f(x)=x 6x+λ 3, με λ R. α) Να υπολογίσετε τη διακρίνουσα Δ του τριωνύμου. β) Να βρείτε τις τιμές του λ για τις οποίες το τριώνυμο έχει δύο άνισες πραγματικές ρίζες. γ) Αν 3<λ<1, τότε: i) Να δείξετε ότι το τριώνυμο έχει δύο άνισες θετικές ρίζες. ii) Αν x 1, x με x 1 <x είναι οι δύο ρίζες του τριωνύμου και κ, μ είναι δύο αριθμοί με κ<0 και x 1 <μ<x, να προσδιορίσετε το πρόσημο του γινομένου κ f(κ) μ f(μ). Να αιτιολογήσετε την απάντησή σας. 30. α) i) Να βρείτε τις ρίζες του τριωνύμου x +9x+18. ii) Να λύσετε την εξίσωση x+3 + x +9x+18 =0. β) i) Να βρείτε το πρόσημο του τριωνύμου x +9x+18, για τις διάφορες τιμές του x. ii) Να βρείτε τις τιμές του x για τις οποίες ισχύει x +9x+18 = x 9x 18. 31. Οι πλευρές x 1, x ενός ορθογωνίου παραλληλογράμμου είναι οι ρίζες της εξίσωσης x 1 4 x+16=0, λ (0,4). α) Να βρείτε: i) την περίμετρο Π του ορθογωνίου συναρτήσει του λ. ii) το εμβαδόν Ε του ορθογωνίου. β) Να αποδείξετε ότι Π 16, για κάθε λ (0,4). γ) Για ποια τιμή του λ η περίμετρος Π του ορθογωνίου γίνεται ελάχιστη, δηλαδή ίση με 16; Τι μπορείτε να πείτε τότε για το ορθογώνιο; 3. Οι πλευρές x 1, x ενός ορθογωνίου παραλληλογράμμου είναι οι ρίζες της εξίσωσης x x+λ( λ) = 0 με λ (0,). 5

τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88 α) Να βρείτε: i) την περίμετρο Π του ορθογωνίου. ii) το εμβαδόν Ε του ορθογωνίου συναρτήσει του λ. β) Να αποδείξετε ότι Ε 1, για κάθε λ (0,) γ) Για ποια τιμή του λ το εμβαδόν Ε του ορθογωνίου γίνεται μέγιστο, δηλαδή ίσο με 1; Τι μπορείτε να πείτε τότε για το ορθογώνιο; 33. α) Να λύσετε την ανίσωση x 5x 6<0. 46 46 β) Να βρείτε το πρόσημο του αριθμού K= 5 6 και να αιτιολογήσετε το 47 47 συλλογισμό σας. γ) Αν α ( 6,6), να βρείτε το πρόσημο της παράστασης Λ=α 5 α 6. Να αιτιολογήσετε την απάντησή σας. 34. Θεωρούμε ορθογώνιο τρίγωνο ΑΒΓ (Α=90ο ) με κάθετες πλευρές που έχουν μήκη x, y τέτοια, ώστε x+y=10. α) Να αποδείξετε ότι το εμβαδόν του τριγώνου ΑΒΓ συναρτήσει του x δίνεται από τον τύπο Ε(x)= 1 ( x +10x), x (0, 10). β) Να αποδείξετε ότι E(x) 5 για κάθε x (0,10). γ) Για ποια τιμή του x (0,10) το εμβαδόν E(x) γίνεται μέγιστο, δηλαδή ίσο με 5 ; Τι παρατηρείτε τότε για το τρίγωνο ΑΒΓ; 35. Στο επόμενο σχήμα το ΑΒΓΔ είναι τετράγωνο πλευράς ΑΒ=3 και το Μ είναι ένα τυχαίο εσωτερικό σημείο της διαγωνίου ΑΓ. Έστω Ε το συνολικό εμβαδόν των σκιασμένων τετραγώνων του σχήματος. α) Να αποδείξετε ότι E=x 6x+9, x (0,3). β) Να αποδείξετε ότι E 9, για κάθε x (0,3). γ) Για ποια θέση του Μ πάνω στην ΑΓ το συνολικό εμβαδόν των σκιασμένων τετραγώνων του σχήματος γίνεται ελάχιστο, δηλαδή ίσο με 9 ; Να αιτιολογήσετε την απάντησή σας. 36. Δίνεται η ανίσωση x+1 <4 (1). α) Να λύσετε την ανίσωση και να παραστήσετε το σύνολο των λύσεών της πάνω στον άξονα των πραγματικών αριθμών. 6

τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88 β) Να βρείτε όλες τις ακέραιες λύσεις της ανίσωσης (1). γ) Να κατασκευάσετε ένα τριώνυμο της μορφής x +βx+γ το οποίο να έχει ρίζες δύο από τις ακέραιες λύσεις της ανίσωσης (1) και να έχει θετική τιμή, για κάθε x 0. 37. Δίνεται η ανίσωση x 1 <3 (1). α) Να λύσετε την ανίσωση και να παραστήσετε το σύνολο των λύσεών της πάνω στον άξονα των πραγματικών αριθμών. β) Να βρείτε όλες τις ακέραιες λύσεις της ανίσωσης (1). γ) Να κατασκευάσετε ένα τριώνυμο της μορφής x +βx+γ το οποίο να έχει ρίζες δύο από τις ακέραιες λύσεις της ανίσωσης (1) και να έχει θετική τιμή, για κάθε x 0. 38. Δίνεται το τριώνυμο f(x)= x +x+3. α) Να βρείτε το πρόσημο του τριωνύμου f(x) για τις διάφορες τιμές του x. β) Να προσδιορίσετε, αιτιολογώντας την απάντησή σας, το πρόσημο του γινομένου f(,999) f( 1,00) γ) Αν 3<α<3, να βρείτε το πρόσημο του αριθμού α + α +3. 39. α) Να λύσετε την ανίσωση x +1 5 x (1). β) Δίνονται δύο αριθμοί κ, λ οι οποίοι είναι λύσεις της ανίσωσης (1) και ικανοποιούν επιπλέον τη σχέση (λ 1)(κ 1)<0. i) Να δείξετε ότι το 1 είναι μεταξύ των κ, λ. ii) Να δείξετε ότι κ λ 3. 40. Δίνεται πραγματικός αριθμός α, που ικανοποιεί τη σχέση α <1. α) Να γράψετε σε μορφή διαστήματος το σύνολο των δυνατών τιμών του α. β) Θεωρούμε στη συνέχεια το τριώνυμο x (α )x+ 1 4. i) Να βρείτε τη διακρίνουσα του τριωνύμου και να προσδιορίσετε το πρόσημό της. ii) Να δείξετε ότι, για κάθε τιμή του x R, ισχύει x (α )x+ 1 4 >0. 41. α) Να λύσετε την ανίσωση x +x 6<0. β) Να λύσετε την ανίσωση 1 x >1. γ) Δίνεται το παρακάτω ορθογώνιο παραλληλόγραμμο με πλευρές α και α+1, όπου ο αριθμός α ικανοποιεί τη σχέση 1 ισχύει Ε<6, τότε: >1. Αν για το εμβαδόν Ε του ορθογωνίου 7

τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88 i) Να δείξετε ότι 3 <α<. ii) Να βρείτε μεταξύ ποιων αριθμών κυμαίνεται η περίμετρος του ορθογωνίου. 4. α) Δίνεται το τριώνυμο x 3x+, x R. Να βρείτε το πρόσημο του τριωνύμου. β) Θεωρούμε πραγματικούς αριθμούς α, β διαφορετικούς από το 0 με α<β για τους οποίους ισχύει (α 3α+)(β 3β+)<0. Να αποδείξετε ότι ισχύει (α 1)(β ) =(α 1)(β ). x 4x 4 43. Δίνεται η παράσταση K= x 3x. α) Να παραγοντοποιήσετε το τριώνυμο x 3x. β) Για ποιες τιμές του x R ορίζεται η παράσταση K; Να αιτιολογήσετε την απάντησή σας. γ) Να απλοποιήσετε την παράσταση K. 44. Δίνεται πραγματικός αριθμός x, για τον οποίο ισχύει d(x, )<1. Να δείξετε ότι: α) 3<x< 1. β) x +4x+3<0. 45. Δίνεται η εξίσωση (8 λ)x (λ )x+1=0, με παράμετρο λ R. α) Να βρείτε την τιμή του λ ώστε η εξίσωση να είναι 1ου βαθμού. β) Αν η εξίσωση είναι ου βαθμού, να βρείτε τις τιμές του λ ώστε αυτή να έχει μια διπλή ρίζα. Για τις τιμές του λ που βρήκατε, να προσδιορίσετε τη διπλή ρίζα της εξίσωσης. γ) Για τις τιμές του λ που βρήκατε στο ερώτημα (β), να δείξετε ότι το τριώνυμο (8 λ)x (λ )x+1είναι μη αρνητικό, για κάθε πραγματικό αριθμό x. 46. Δίνεται το τριώνυμο: x (α+1)x+4+α, α R. α) Να αποδείξετε ότι η διακρίνουσα του τριωνύμου είναι Δ=(α 1) 16. β) Να βρείτε για ποιες τιμές του α το τριώνυμο έχει ρίζες πραγματικές και άνισες. γ) Αν το τριώνυμο έχει ρίζες x 1, x, τότε: i) Να εκφράσετε το άθροισμα S=x 1 +x συναρτήσει του α και να βρείτε την τιμή του γινομένου P=x 1 x των ριζών του. ii) Να αποδείξετε ότι: d(x 1,1) d(x,1) = 4 (x 1)(x 4) 47. Δίνεται συνάρτηση g(x)=, η οποία έχει πεδίο ορισμού το R {,1}. x kx α) Να βρείτε τις τιμές των k και λ. β) Για k=1 και λ=, i) να απλοποιήσετε τον τύπο της g. ii) να δείξετε ότι: g(α+3)>g(α), όταν α ( 1,1) (1,). 8

τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88 (x 1)(x 4) 48. Δίνεται συνάρτηση g(x)=, η οποία έχει πεδίο ορισμού το R {,1}. x kx α) Να βρείτε τις τιμές των k και λ. β) Για k=1 και λ=, i) να απλοποιήσετε τον τύπο της g. ii) να δείξετε ότι: g(α) g(β)>0, όταν α, β ( 1,1) (1,). 49. Δίνεται το τριώνυμο λx (λ +1)x+λ, λ R {0} α) Να βρείτε τη διακρίνουσα Δ του τριωνύμου και να αποδείξετε ότι το τριώνυμο έχει ρίζες πραγματικές για κάθε λ R {0}. β) Για ποιες τιμές του λ το παραπάνω τριώνυμο έχει δύο ρίζες ίσες; γ) Να βρείτε τις τιμές του λ ώστε λx (λ +1)x+λ 0, για κάθε x R. 50. Δίνεται η εξίσωση x λx+4λ+5=0, με παράμετρο λ R. α) Να αποδείξετε ότι αν λ=5 η εξίσωση έχει μια διπλή ρίζα. β) Να εξετάσετε αν υπάρχει και άλλη τιμή του λ, ώστε η εξίσωση να έχει διπλή ρίζα. γ) Να βρείτε τις τιμές του λ ώστε η εξίσωση να έχει δύο ρίζες άνισες. δ) Αν λ 4λ 5 = 4λ λ +5, λ R { 1, 5} να δείξετε ότι η εξίσωση δεν έχει ρίζες. 51. Δίνεται το τριώνυμο: f(x)=λx (λ +1)x+λ, λ R {0} α) Να βρείτε τη διακρίνουσα Δ του τριωνύμου και να αποδείξετε ότι το τριώνυμο έχει ρίζες πραγματικές για κάθε λ R {0} β) Αν x 1, x είναι οι ρίζες του τριωνύμου, να εκφράσετε το άθροισμα S=x 1 +x συναρτήσει του λ 0 και να βρείτε την τιμή του γινομένου P=x 1 x των ριζών. γ) Αν λ>0 το παραπάνω τριώνυμο έχει ρίζες θετικές ή αρνητικές; Να αιτιολογήσετε την απάντησή σας. δ) Αν 0<λ 1 και x 1, x, με x 1 <x, είναι οι ρίζες του παραπάνω τριωνύμου, τότε να βρείτε το πρόσημο του γινομένου f(0) f(κ) f(μ), όπου κ, μ είναι αριθμοί τέτοιοι ώστε x 1 <κ<x <μ. 5. Δίνεται το τριώνυμο x 3x+1. α) Να βρείτε τις ρίζες του. β) Να βρείτε τις τιμές του x R για τις οποίες x 3x+1<0 γ) Να εξετάσετε αν οι αριθμοί 3 και 1 είναι λύσεις της ανίσωσης x 3x+1<0. 53. Δίνεται η εξίσωση (8 λ)x (λ )x+1=0, (1) με παράμετρο λ R. α) Να βρεθεί η τιμή του λ ώστε η εξίσωση (1) να είναι 1ου βαθμού. β) Αν η εξίσωση (1) είναι ου βαθμού, να βρείτε τις τιμές του λ ώστε αυτή να έχει μια ρίζα διπλή, την οποία και να προσδιορίσετε. γ) Αν η εξίσωση έχει μια ρίζα διπλή, να προσδιορίσετε τις τιμές του λ (αν υπάρχουν) ώστε το τριώνυμο (8 λ)x (λ )+1 να είναι μη αρνητικό για κάθε x πραγματικό αριθμό. 9

τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88 54. Δίνεται η εξίσωση x +λx+λ =0, με λ R. α) Να βρείτε τη διακρίνουσα της εξίσωσης. β) Να αποδείξετε ότι η παραπάνω εξίσωση έχει ρίζες πραγματικές και άνισες για κάθε λ R. γ) Αν x 1, x είναι οι ρίζες της παραπάνω εξίσωσης, τότε να βρείτε για ποια τιμή του λ ισχύει x 1 +x = x 1 x 55. Δίνεται το τριώνυμο x +λx 5, όπου λ R. α) Αν μια ρίζα του τριωνύμου είναι ο αριθμός x 0 =1, να προσδιορίσετε την τιμή του λ. β) Για λ=3, να παραγοντοποιήσετε το τριώνυμο. 56. Δίνεται το τριώνυμο x +( 3 1)x+ 3. α) Να αποδείξετε ότι η διακρίνουσα του τριωνύμου είναι Δ= 3 1. β) Να παραγοντοποιήσετε το τριώνυμο. 57. α) Να παραγοντοποιήσετε το τριώνυμο 3x x 1. x 1 β) Να βρείτε τις τιμές του x για τις οποίες έχει νόημα η παράσταση A(x)= 3x x 1 και στη συνέχεια να την απλοποιήσετε. γ) Να λύσετε την εξίσωση A(x) =1. 58. Δίνεται η εξίσωση: x λx+(λ +λ 1)=0 (1), λ R. α) Να προσδιορίσετε τον πραγματικό αριθμό λ, ώστε η εξίσωση (1) να έχει ρίζες πραγματικές. β) Να λύσετε την ανίσωση S P 0, όπου S και P είναι αντίστοιχα το άθροισμα και το γινόμενο των ριζών της εξίσωσης (1). 59. Δίνεται η εξίσωση x (λ 1)x+λ+5=0 (1), με παράμετρο λ R. α) Να δείξετε ότι η διακρίνουσα της εξίσωσης (1) είναι Δ=4λ 1λ 16. β) Να βρείτε τις τιμές του λ R, ώστε η εξίσωση να έχει δύο ρίζες πραγματικές και άνισες. γ) Αν η εξίσωση (1) έχει ρίζες τους αριθμούς x 1, x και d(x 1,x ) είναι η απόσταση των x 1, x στον άξονα των πραγματικών αριθμών, να βρείτε για ποιες τιμές του λ ισχύει d(x 1,x )= 4. 60. Δίνεται η εξίσωση x λx+4λ+5=0, με παράμετρο λ R. α) Να αποδείξετε ότι αν λ=5 η εξίσωση έχει μια ρίζα διπλή. β) Να εξετάσετε αν υπάρχει και άλλη τιμή του λ ώστε η εξίσωση να έχει διπλή ρίζα. γ) Να βρείτε τις τιμές του λ ώστε η εξίσωση να έχει δύο ρίζες άνισες. δ) Αν λ 4λ 5 = 4λ λ +5 να δείξετε ότι η εξίσωση δεν έχει ρίζες. 61. α) Να βρείτε το πρόσημο του τριωνύμου x 5x+6 για τις διάφορες τιμές του x R. 10

τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88 β) Δίνεται η εξίσωση 1 4 x +( λ)x+λ =0. (1) με παράμετρο λ. i) Να αποδείξετε ότι, για κάθε λ (,) (3,+ ), η εξίσωση (1) έχει δύο ρίζες άνισες. ii) Να βρείτε τις τιμές του λ R για τις οποίες οι ρίζες της (1) είναι ομόσημοι αριθμοί. 6. Δίνεται η εξίσωση x x+(λ λ )=0, με παράμετρο λ R. (1) α) Να βρείτε τη διακρίνουσα Δ της εξίσωσης και να αποδείξετε ότι η εξίσωση έχει ρίζες πραγματικές για κάθε λ R. β) Για ποια τιμή του λ η εξίσωση (1) έχει δύο ρίζες ίσες; 1 γ) Να αποδείξετε ότι η παράσταση A=, όπου S, P το άθροισμα και το γινόμενο των S P ριζών της εξίσωσης (1) αντίστοιχα, έχει νόημα πραγματικού αριθμού για κάθε πραγματικό αριθμό λ. 63. Δίνεται η εξίσωση (x ) =λ(4x 3), με παράμετρο λ R. 64. α) Να γράψετε την εξίσωση στη μορφή αx +βx+γ=0, α 0. β) Να βρείτε για ποιες τιμές του λ η εξίσωση έχει ρίζες πραγματικές και άνισες. γ) Αν x 1, x είναι οι ρίζες της εξίσωσης, στην περίπτωση που έχει ρίζες πραγματικές και άνισες, τότε: i) να υπολογίσετε τα S=x 1 +x και P=x 1 x. ii) να αποδείξετε ότι η παράσταση Α=(4x 1 3)(4x 3) είναι ανεξάρτητη του λ, δηλαδή σταθερή. 65. Δίνεται το τριώνυμο f(x)=λx (λ +1)x+λ, λ R {0}. α) Να βρείτε τη διακρίνουσα Δ του τριωνύμου και να αποδείξετε ότι το τριώνυμο έχει ρίζες πραγματικές για κάθε λ R {0}. β) Για ποιες τιμές του λ το παραπάνω τριώνυμο έχει δύο ρίζες ίσες; γ) Να βρείτε την τιμή του λ 0, ώστε f(x) 0, για κάθε x R. 66. Δίνεται το τριώνυμο αx +βx+γ, α 0 με ρίζες τους αριθμούς 1 και. α) Χρησιμοποιώντας τους τύπους για το άθροισμα S και το γινόμενο P των ριζών του τριωνύμου, να αποδείξετε ότι: γ=α και β= 3α. β) Αν επιπλέον γνωρίζουμε ότι το τριώνυμο παίρνει θετικές τιμές για κάθε x (1,), τότε: i) να αποδείξετε ότι α<0. ii) να λύσετε την ανίσωση γx +βx+α<0. 67. Δίνονται οι εξισώσεις x 3x+=0 (1) και x 4 3x +=0 (). α) Να βρείτε τις ρίζες της εξίσωσης (1). β) Να βρείτε τις ρίζες της εξίσωσης (). γ) Να βρείτε τριώνυμο της μορφής x +βx+γ που οι ρίζες του να είναι κάποιες από τις ρίζες 11

τηλ. Οικίας : 10-610.178 κινητό : 697-300.88.88 της εξίσωσης () και επιπλέον, για κάθε αρνητικό αριθμό x, να έχει θετική τιμή. 1