Μέτρα της οργάνωσης και της ποιότητας για τον Self-Organizing Hidden Markov Model Map (SOHMMM)



Σχετικά έγγραφα
Μέτρα της οργάνωσης και της ποιότητας για το υβριδικό νευρωνικό δίκτυο Self-Organizing Hidden Markov Model Map ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΑΝΤΑΓΩΝΙΣΤΙΚΗ ΜΑΘΗΣΗ ΔΙΚΤΥA LVQ και SOM. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Βιοπληροφορική Ι. Παντελής Μπάγκος Αναπληρωτής Καθηγητής. Πανεπιστήμιο Θεσσαλίας Λαμία, 2015

Ανάπτυξη και δηµιουργία µοντέλων προσοµοίωσης ροής και µεταφοράς µάζας υπογείων υδάτων σε καρστικούς υδροφορείς µε χρήση θεωρίας νευρωνικών δικτύων

Project 1: Principle Component Analysis

Το Πολυεπίπεδο Perceptron. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Αναγνώριση Προτύπων Ι

Μάθηση και Γενίκευση. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Αναγνώριση Προτύπων Ι

ΒΙΟΠΛΗΡΟΦΟΡΙΚΗ ΙΙ. Δυναμικός Προγραμματισμός. Παντελής Μπάγκος

ΔΙΚΤΥO RBF. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

6. Στατιστικές μέθοδοι εκπαίδευσης

Κινητά Δίκτυα Επικοινωνιών. Συμπληρωματικό υλικό. Προσαρμοστική Ισοστάθμιση Καναλιού

HMY 795: Αναγνώριση Προτύπων. Διαλέξεις 15-16

10. Μη-κατευθυνόμενη ταξινόμηση ΚΥΡΊΩΣ ΜΈΡΗ ΔΕΥ

Πληροφοριακά Συστήματα Διοίκησης

Ψηφιακή Επεξεργασία Εικόνων

Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή

ΣΥΣΧΕΤΙΣΗ και ΓΡΑΜΜΙΚΗ ΠΑΛΙΝΔΡΟΜΗΣΗ

Εκπαίδευση ΤΝΔ με ελαχιστοποίηση του τετραγωνικού σφάλματος εκπαίδευσης. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν.

Μεθοδολογίες παρεµβολής σε DTM.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

Αλγόριθμοι Ταξινόμησης Μέρος 4

HMY 799 1: Αναγνώριση Συστημάτων

Περιεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων...

Τεχνικές Μείωσης Διαστάσεων. Ειδικά θέματα ψηφιακής επεξεργασίας σήματος και εικόνας Σ. Φωτόπουλος- Α. Μακεδόνας

Ασκήσεις Φροντιστηρίου «Υπολογιστική Νοημοσύνη Ι» 4 o Φροντιστήριο

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ

Μέθοδοι Μηχανικής Μάθησης στην επεξεργασία Τηλεπισκοπικών Δεδομένων. Δρ. Ε. Χάρου

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Πίνακες αντικατάστασης PAM και BLOSUM και εναλλακτικές προσεγγίσεις

ΗΥ562 Προχωρημένα Θέματα Βάσεων Δεδομένων Efficient Query Evaluation over Temporally Correlated Probabilistic Streams

Μελέτη προβλημάτων ΠΗΙ λόγω λειτουργίας βοηθητικών προωστήριων μηχανισμών

Ειδικά θέματα Πληροφορικής Κινηματογραφίας

ΑΝΑΠΤΥΞΗ ΜΟΝΤΕΛΟΥ ΕΚΤΙΜΗΣΗΣ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΔΕΔΟΜΕΝΩΝ ΟΔΙΚΟΥ ΔΙΚΤΥΟΥ

ΣΤΟΧΑΣΤΙΚΕΣ ΔΙΕΡΓΑΣΙΕΣ & ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ Αίθουσα Νέα Κτίρια ΣΗΜΜΥ Ε.Μ.Π.

ΠΕΙΡΑΜΑΤΙΚΕΣ ΠΡΟΣΟΜΟΙΩΣΕΙΣ ΚΕΦΑΛΑΙΟ 4. είναι η πραγματική απόκριση του j δεδομένου (εκπαίδευσης ή ελέγχου) και y ˆ j

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

Μονοπαραγοντική Ανάλυση Διακύμανσης Ανεξάρτητων Δειγμάτων

Συνδυαστική Βελτιστοποίηση Εισαγωγή στον γραμμικό προγραμματισμό (ΓΠ)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

Κρυπτογραφία. Έλεγχος πρώτων αριθών-παραγοντοποίηση. Διαφάνειες: Άρης Παγουρτζής Πέτρος Ποτίκας

Χαρτογραφική απόδοση. εθελοντικών γεωγραφικών δεδομένων. Ανδριανή ΣΚΟΠΕΛΙΤΗ Βύρων ΑΝΤΩΝΙΟΥ Λήδα ΣΤΑΜΟΥ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Μάθημα 7 ο. Συμπίεση Εικόνας ΤΜΗΥΠ / ΕΕΣΤ 1

Ψηφιακή Επεξεργασία και Ανάλυση Εικόνας Ενότητα 6 η : Συμπίεση Εικόνας. Καθ. Κωνσταντίνος Μπερμπερίδης Πολυτεχνική Σχολή Μηχανικών Η/Υ & Πληροφορικής

Περιεχόμενα. Γιατί Ένας Manager Πρέπει να Ξέρει Στατιστική. Περιεχόμενα. Η Ανάπτυξη και Εξέλιξη της Σύγχρονης Στατιστικής

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

ΚΑΤΗΓΟΡΙΕΣ ΤΑΞΙΝΟΜΗΣΗΣ

Διπλωματική Εργασία: «Συγκριτική Μελέτη Μηχανισμών Εκτίμησης Ελλιπούς Πληροφορίας σε Ασύρματα Δίκτυα Αισθητήρων»

Πιθανοτικοί Αλγόριθμοι

Ασκήσεις μελέτης της 19 ης διάλεξης

ΕΥΦΥΗΣ ΕΛΕΓΧΟΣ. Ενότητα #8: Βελτιστοποίηση Συστημάτων Ασαφούς Λογικής. Αναστάσιος Ντούνης Τμήμα Μηχανικών Αυτοματισμού Τ.Ε.

ΓΕΝΕΣΗ ΕΠΙΦΑΝΕΙΑΚΩΝ ΠΛΕΓΜΑΤΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΣΥΣΤΗΜΑΤΩΝ

Τοπογραφικά Δίκτυα & Υπολογισμοί

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΒΙΟΛΟΓΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΔΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΥΠΟΛΟΓΙΣΤΙΚΗ ΒΙΟΙΑΤΡΙΚΗ»

Search and Replication in Unstructured Peer-to-Peer Networks

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

Οπτική Μοντελοποίηση Ανθρώπινου Προσώπου με Εφαρμογές σε Αναγνώριση

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Μέθοδοι Φυλογένεσης. Μέθοδοι που βασίζονται σε αποστάσεις UPGMA Κοντινότερης γειτονίας (Neighbor joining) Fitch-Margoliash Ελάχιστης εξέλιξης

Δρ. Βασίλειος Γ. Καμπουρλάζος Δρ. Ανέστης Γ. Χατζημιχαηλίδης

ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ. Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Συμπίεση Δεδομένων

Θεώρημα κωδικοποίησης πηγής

Ανασκόπηση θεωρίας ελαχίστων τετραγώνων και βέλτιστης εκτίμησης παραμέτρων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Τα κύρια σηµεία της παρούσας διδακτορικής διατριβής είναι: Η πειραµατική µελέτη της µεταβατικής συµπεριφοράς συστηµάτων γείωσης

Κεφάλαιο 8. Οπτικοποίηση Απαλοιφή

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Κινητά Δίκτυα Υπολογιστών

HMY 795: Αναγνώριση Προτύπων. Διάλεξη 2

Γραφικά με υπολογιστές

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Συστημική Προσέγγιση της ευστάθειας Υποθαλάσσιων Πρανών με επέκταση του Άτλαντα του Hudson

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

ΠΑΝΕΠΙΣΤΗΜΙΟ ΜΑΚΕ ΟΝΙΑΣ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΝΕΥΡΩΝΙΚΑ ΙΚΤΥΑ

Το Κεντρικό Οριακό Θεώρημα

ΚΕΦΑΛΑΙΟ Μηχανική Μάθηση

Θέματα Συστημάτων Πολυμέσων

ΤΕΧΝΟΛΟΓΙΑ ΛΟΓΙΣΜΙΚΟΥ Ι

ιαφορική εντροπία Σεραφείµ Καραµπογιάς

Το µαθηµατικό µοντέλο του Υδρονοµέα

Εκτίμηση μη-γραμμικών χαρακτηριστικών

Εισαγωγή στον Προγραµµατισµό. Ανάλυση (ή Επιστηµονικοί8 Υπολογισµοί)

ΣΤΟΧΟΣ ΙΠΛΩΜΑΤΙΚΗΣ ΕΡΓΑΣΙΑΣ Η ιερεύνηση της επιρροής του φωτισµού αστικών και υπεραστικών οδών στη συχνότητα και σοβαρότητα των ατυχηµάτων µε χρήση λο

Εισαγωγή στα Τεχνητά Νευρωνικά Δίκτυα. "Τεχνητά Νευρωνικά Δίκτυα" (Διαφάνειες), Α. Λύκας, Παν. Ιωαννίνων

Συστήματα Αυτομάτου Ελέγχου ΙΙ Ασκήσεις Πράξης

Σέργιος Θεοδωρίδης Κωνσταντίνος Κουτρούμπας. Version 2

ΑΛΓΟΡΙΘΜΟΙ ΑΝΟΠΤΗΣΗΣ: Ο ΑΛΓΟΡΙΘΜΟΣ ΤΗΣ ΑΠΟ ΟΧΗΣ ΚΑΤΩΦΛΙΟΥ (THRESHOLD ACCEPTING)

Στο στάδιο ανάλυσης των αποτελεσµάτων: ανάλυση ευαισθησίας της λύσης, προσδιορισµός της σύγκρουσης των κριτηρίων.

Εκτιμητές Μεγίστης Πιθανοφάνειας (Maximum Likelihood Estimators MLE)

,, δηλαδή στο σημείο αυτό παρουσιάζει τη μέγιστη τιμή της αν α < 0 2α 4α και την ελάχιστη τιμή της αν α > 0. β Στο διάστημα,

Το Κεντρικό Οριακό Θεώρημα

Απλή Παλινδρόμηση και Συσχέτιση

ΟΙΚΟΝΟΜΕΤΡΙΑ. Παπάνα Αγγελική

Κεφαλαιο 7: Η ΜΠΣ για ελλειπτικά προβλήματα με μη-ομαλές λύσεις

Transcript:

Μέτρα της οργάνωσης και της ποιότητας για τον Self-Organizing Hidden Markov Model Map (SOHMMM)

Γενική περιγραφή του SOHMMM Ένα υβριδικό νευρωνικό δίκτυο, σύζευξη δύο πολύ επιτυχημένων μοντέλων: -Self-Organizing Maps (SOM) -Hidden Markov Models (HMM) Με μια αφαιρετική περιγραφή ένα SOM με κόμβους μαρκοβιανά μοντέλα. Εφαρμογές: Ό,τι και ένα SOM( οπτικοποίηση, αφαίρεση, μείωση διάστασης), χωρίς όμως τον περιορισμό τα δεδομένα να έχουν διανυσματική μορφή (πχ clustering DNA ή πρωτεϊνικών ακολουθιών)

Υλοποίηση Αποστάσεις μεταξύ HMMs πιθανοτικό μέτρο απόστασης D λ 0, λ =lim T 1 T [ log μ O T λ 0 log μ O T λ ] Όμοια με το SOM: για κάθε ακολουθία Ο του συνόλου δεδομένων -προσδιορίζουμε τον κόμβο νικητή λi( ΗΜΜ με τη μεγαλύτερη πιθανότητα εμφάνισης της συγκεκριμένης ακολουθίας) -ανανεώνουμε τις παραμέτρους του λi ώστε να μεγιστοποιήσουμε την πιθανότητα εμφάνισης της Ο από αυτό ανανέωση των παραμέτρων των HMM μέσω ενός online gradient descent αλγόριθμου

Παράδειγμα οπτικοποίησης SOHMMM

Μέτρα οργάνωσης Ένας μεγάλος αριθμός μέτρων οργάνωσης έχει αναπτυχθεί και χρησιμοποιηθεί για διάφορους αλγόριθμους ομαδοποίησης/χαρτογράφησης ώστε: να μπορούμε να παρακολουθούμε την εξέλιξη του εκάστοτε αλγόριθμου εφαρμογές: πχ early stopping να εκφράζεται με ποσοτικό τρόπο η ποιότητα μιας δοσμένης απεικόνισης προκειμένου να είναι δυνατή η σύγκριση με άλλες ή η απόφανση για το αν είναι ικανοποιητική ή όχι εφαρμογές: πχ εύρεση βέλτιστης παραμετροποίησης ενός νευρωνικού δικτύου

Στην εργασία αυτή Μελετήθηκε μια πλειάδα από ήδη υπάρχοντα μέτρα Επιλέχθηκαν εννέα από αυτά που τροποποιήθηκαν και προσαρμόστηκαν κατάλληλα ώστε να είναι δυνατή η χρήση τους για το SOHMMM Διερευνήθηκαν η επίδοση και η λειτουργικότητά τους μέσω προσομοιώσεων

Quantization Error Το σφάλμα κβαντισμού, προέρχεται από την θεωρία του κβαντισμού διανυσμάτων και περιγράφει το πόσο καλά περιγράφονται τα δεδομένα από τον κόμβο αναφοράς στον οποίο έχουν αντιστοιχηθεί. q e = 1 λ N M Ο. loglikelihood Ο all Ο

Topographic error Το τοπογραφικό σφάλμα, προερχόμενο από το SOM, περιγράφει την ομαλότητα της απεικόνισης. N t e = 1 N k=1 u Ο κ με u Ο k = 1, μη γειτονικά i, j 0, διαφορετικά i:1 st best matching unit j:2 nd best matching unit

C-measure Το μέτρο αυτό, αναπτύχθηκε από τους Goodhill και Sernowski, αυξάνεται για καλύτερες απεικονίσεις. N C = i=1 j i F i, j G M i,m j με, F i, j = D s λ i, λ j G M i, M j = p M i p M j

Demartines-Herault measure Το μέτρο αυτό αποτελεί μια συνάρτηση ενέργειας που αναμένουμε να μειώνεται για καλύτερες απεικονίσεις. N E = 1/2 i=1 j i F i, j G M i, M j 2 h G

Distortion measure Αποτελεί μια συνάρτηση ενέργειας. Προσεγγίζει καλύτερα από κάθε άλλο μέτρο τη συνάρτηση ενέργειας του SOM. P N E = i=1 j=1 h bi j m j. loglikelihood Ο i 2

Κριτήριο Calinski Harabasz HC = BGSS k 1 / WGSS n k

Topographic product Περιγράφει την ποιότητα της απεικόνισης, λαμβάνοντας την τιμή 0 για τέλεια απεικόνιση. Αποτελεί ένα από τα πιο δημοφιλή μέτρα οργάνωσης για το SOM. P = 1 N N 1 j=1 N N 1 k=1 log P 3 j,k P 3 j, k = l=1 k Q 1 j,l Q 2 j, l 1 2k Q 1 j, k = d V λ j, λ nk A j d V λ j, λ nk V j Q 2 j, k = d A j, n A k j d A j, n V k j

Εντροπία i A p i log p i όπου p i = 1 N Ο V p i Ο Δείγματα εισόδου που αλλάζουν κόμβο αναφοράς μεταξύ δύο επαναλήψεων N C e = 1 N k =1 p Ο κ με p Ο e k = 1, BMU Ο e k BMU Ο e 1 k 0, διαφορετικά

Προσομοιώσεις Μονότονη συμπεριφορά των μέτρων κατά τη διάρκεια της εκπαίδευσης Βέλτιστη επιλογή παραμέτρων αριθμός εποχών αριθμός κρυμμένων καταστάσεων των ΗΜΜ μέγεθος πλέγματος

Μονοτονία Οι προσομοιώσεις πραγματοποιήθηκαν για όλα τα μέτρα εκτός του τοπογραφικού γινομένου. ποιότητα της απεικόνισης από τοπογραφικής απόψεως (παραβιάσεις γειτονιάς, ομαλότητα απεικόνισης,κλπ). C- measure, Demartines-Herault, distortion measure, τοπογραφικό σφάλμα. Προτιμητέο το τοπογραφικό σφάλμα (καλή επίδοση και εξαιρετική απλότητα και ταχύτητας υπολογισμού). ύπαρξη συμπαγών συστάδων (κόμβων) και ανομοιότητα μεταξύ των συστάδων (κόμβων). σφάλμα κβαντισμού και Calinski- Harabasz. Πιο ταχύ στον υπολογισμό και με καλύτερη επίδοση το σφάλμα κβαντισμού, πάντως το Calinski Harabasz μετρά και την ανομοιότητα μεταξύ των κόμβων (between group sum of squares). αριθμός των ακολουθιών που αλλάζουν κόμβο σε κάθε εποχή εντροπία

Globins (560 protein sequences)

Globins διαγράμματα (α) C-measure (β) Calinski-Harabasz (γ) Demartines-Herault (δ)distortion measure

Globins διαγράμματα (2) (ε) Quantization error (ζ) topographic error (η) ακολουθίες που άλλαξαν κόμβο (θ)εντροπία ( σε λογαριθμική κλίμακα)

Επιλογή παραμέτρων αριθμός εποχών αριθμός κρυμμένων καταστάσεων των ΗΜΜ μέγεθος πλέγματος

Αριθμός εποχών Στις περισσότερες περιπτώσεις αύξηση του αριθμού εποχών εκπαίδευσης προκαλεί σε μικρότερο ή μεγαλύτερο βαθμό καλύτερη διάταξη του χάρτη. Σε κάποιες όμως περιπτώσεις, παρατηρείται υπερεκπαίδευση του χάρτη και χειροτέρευση της διάταξης. Αυτό που εν τέλει αναζητούμε είναι αν τα μέτρα οργάνωσης που αναπτύχθηκαν μπορούν να περιγράψουν αυτά τα φαινόμενα και να μας δώσουν μια ποσοτική πληροφορία περί αυτών.

Τεχνητό dataset (HMMs 10 καταστάσεων-3 συστάδες) α. 5 εποχές β.10 εποχές γ.20 εποχές Φαινόμενο overtraining

Εποχές 5 10 20 100 1000 σφάλμα κβαντισμού 3,30E+00 2,56E+00 3,24E+00 2,63E+00 2,62E+00 εντροπία 2,69E-33 6,19E-32 5,37E-32 2,26E-31 1,67E-31 τοπογραφικό σφάλμα 7,50E-02 1,00E-01 1,25E-01 2,00E-01 1,75E-01 παραμόρφωση 1,26E+01 1,01E+01 1,19E+01 1,05E+01 9,92E+00 C-measure 1,27E+07 2,01E+07 1,97E+07 2,21E+07 2,29E+07 Calinski- Harabasz Demartines- Herault 7,02E+04 1,24E+05 1,18E+05 1,30E+05 1,30E+05 4,81E+01 4,33E+01 4,60E+01 4,80E+01 4,91E+01 Συμπερασματικά: το σφάλμα κβαντισμού, η παραμόρφωση, το τοπογραφικό σφάλμα. και το μέτρο Demartines-Herault περιγράφουν σε γενικές γραμμές φαινόμενα overtraining ή ενδεικνύουν το βέλτιστο αριθμό εποχών εκπαίδευσης. Πάντως, η πληροφορία που συνάγουμε από πρέπει να μελετάται προσεκτικά, σε συνάρτηση και με άλλους παράγοντες (πχ οπτικοποίηση του SOHMMM)

Αριθμός καταστάσεων των HMMs #HMMs 1 3 5 11 22 σφάλμα κβαντισμο ύ 1,03E+01 2,44E+01 1,78E+01 6,28E+00 4,69E+00 εντροπία 3,73E-124 3,67E-119 1,35E-106 1,42E-94 1,31E-115 τοπογραφι κό σφάλμα παραμόρφ ωση 1,00E-01 3,67E-01 3,00E-01 6,00E-02 3,67E-01 3,88E+01 5,50E+01 6,45E+01 2,08E+01 1,91E+01 C-measure 3,85E+05 7,41E+05 1,41E+06 2,27E+06 2,60E+06 Calinski- Harabasz Demartine s-herault 1,62E+03 3,59E+03 7,23E+03 1,32E+04 1,74E+04 2,60E+01 1,99E+01 1,79E+01 1,52E+01 1,55E+01 Globins (30 protein sequences)

Αριθμός καταστάσεων των HMMs συμπερασματα πιο αξιόπιστο το σφάλμα κβαντισμού με το τοπογραφικό σφάλμα και την παραμόρφωση να ακολουθούν. Τα μέτρα C, Calinski-Harabasz και Demartines-Herault θα ήταν καλό να λαμβάνονται υπόψιν, σε συνάρτηση πάντως με κάποια άλλη πληροφορία.

Μέγεθος πλέγματος Πλέγμα 3x2 3x5 6x5 9x9 12x12 14x14 σφάλμα κβαντισμο ύ 1,60E+01 8,77E+00 2,31E+00 8,50E-01 4,78E-01 3,51E-01 εντροπία 2,01E-43 9,09E-39 2,88E-39 6,79E-39 8,49E-39 9,22E-39 τοπογραφι κό σφάλμα παραμόρφ ωση τοπογραφι κό γινόμενο 6,70E-03 3,40E-01 6,40E-01 6,07E-01 5,40E-01 6,20E-01 6,10E+01 4,17E+01 8,59E+00 4,17E+00 2,61E+00 2,26E+00-0,218-0,201-0,560-0,770-0,802-0,595 Τεχνητό dataset (150 ακολουθίες απο ΗΜΜ 1 κατάστασης, 3 συστάδες)

Μέγεθος πλέγματος συμπεράσματα Μπορούμε να χωρίσουμε ανάλογα με την επίδοσή τους τα μέτρα οργάνωσης σε τρεις κατηγορίες: σφάλμα κβαντισμού και παραμόρφωση, μειώνονται μονότονα με την αύξηση του μεγέθους του πλέγματος. τοπογραφικό σφάλμα και τοπογραφικό γινόμενο. Αυξομειώνονται παρουσιάζοντας, συνήθως, κάποιο ελάχιστο ή μέγιστο αντίστοιχα για κάποιο πλέγμα, που δείχνει και το βέλτιστο, σύμφωνα με το κριτήριο πλέγμα. εντροπία, δεν παρουσιάζει κάποια επιθυμητή συμπεριφορά. Προτείνουμε την χρήση των τεσσάρων μέτρων (εκτός εντροπίας) για την απόφαση του βέλτιστου μεγέθους για το πλέγμα, σε συνάρτηση πάντως με τις αναφερθείσες παρατηρήσεις. Τα συμπεράσματα πρέπει πάντοτε να λαμβάνονται υπόψιν και με τη βοήθεια κάποιας οπτικοποίησης.

Σύνοψη Στη διερεύνηση που έγινε θα μπορούσαμε να πραγματοποιήσουμε κάποια μελέτη σε σχέση και με τις υπόλοιπες παραμέτρους του SOHMMM ή να εμβαθύνουμε παραπάνω σε κάποια μέτρα ή επιμέρους λειτουργίες. Στόχος δεν ήταν η εξαντλητική παρουσίαση των δυνατοτήτων των μέτρων οργάνωσης, αλλά να καταδείξουμε ότι τα μέτρα αυτά είναι σε θέση να παρακολουθήσουν ικανοποιητικά τη διαδικασία εκπαίδευσης ενός SOHMMM καθώς και να χρησιμοποιηθούν σε ποικίλες λειτουργίες. Εν τέλει, κάποια μέτρα αποδείχθηκαν καταλληλότερα να περιγράψουν συγκεκριμένες παραμέτρους της διαδικασίας οργάνωσης σε σχέση με άλλα. Για αυτό τον λόγο, δεν θελήσαμε να προχωρήσουμε σε μια αυστηρή αξιολόγησή τους, αλλά με βάση την εκάστοτε μελέτη καταδείξαμε από ποια άποψη ένα μέτρο μπορούσε να είναι καλύτερο από ένα άλλο.

Ερωτήσεις