Proceedings of te International GeometrД Center Vol. 10, no. 3-4 017 pp. 9 43 І і і є н ь н і Є..,. Є. Abstractо Te article is deбoted to te problem of olomorpicallд projectiбe transformations of locallд conformal Käler manifolds. It s Вort to be noted, tat J. Mikes and Z. RadАloБic aбe proбed tat a locallд conformal Käler manifold does not admit nite nontriбial olomorpicallд projectiбe mappings for a LeБi-CiБita connection. Earlier Вe ad also soвn tat a locallд conformal Käler manifold does not admit as Вell nontriбial in nitesimal olomorpicallд projectiбe transformations for te LeБi-CiБita connection. BАt since te WeДl connection de ned bд Lee form on a locallд conformal Käler manifold is F -connection, ence for te connection nontriбial in nitesimal olomorpicallд projectiбe transformations are possible. In te present paper Вe reвrite te sдstem of partial di erential eqаations for te LeБi-CiБita connection and introdаce so called in nitesimal conformal olomorpicallд projectiбe transformations. Tis alloвs Аs to obtain necessarд and sа cient conditions for a locallд conformal Käler manifold to aбe a groаp of in nitesimal conformal olomorpicallд projectiбe transformations. We also calcаlate te nаmber of parameters for sаc groаp, and describe tensor and non-tensor inбariants preserбed bд groаp tansformations. FinallД, Вe soв tat a Бector eld generating in nitesimal conformal olomorpicallд projectiбe transformations of a compact locallд conformal Käler manifold is contraбariant almost analдtic. і : і і, і, і, - - і. 9
30 Є..,. Є. іяо - -..., - - -, -, - -.,, є- -, є F -, - - є. - -, -., - - - є. є,,,, -, є - - є. 1. є є - dimm n = n = m >. -., - - [4], [10], [1], - - [1], [3]. - - - [6]. [13], є - - - - -. є є є.. І І І.1. н о. я тото J J i j, : δj i. J i αj α j = δ i j..1
- 31 я тоуо, - J,. я тофо є, : J α i J β j g αβ = g ij.. є M n,j,g. n є -, m, n = m. я тохо M n,j,g є, є [6]., J M n C ω, є є : N k ij = J α i, j J k α α J k j J α j i J k α α J k i = 0.3 J k i,j = J α i J β j Jk α,β..4 є, g ij. M n,j,g є є. J k i,j = 0,.5 я тоцо M n, є - -, -, є U = { U α } M Σ = {σα : U α R}, { J Uα,ĝ α = e σα g Uα } - α. g Uα e σα g Uα є. σ є [11]., - Lee form, [9] ω = 1 m1 δω J ω i = n Jα β,α Jβ i,.6 є : dω = 0.
3 Є..,. Є. - : І є [1,. ]. J k i,j = 1 δ k j J α i ω α ω k J ij J k j ω i +J k αω α g ij..7 Т точо -Ч ˆ α - ĝ α є ˆ X Y = X Y 1 ωxy 1 ωyx + 1 gx,yb.8 X,Y XM., є, ˆ g = ω g..9,.8 є СЯуж cйиияcогйи - M n,j,g. є - F -,, ˆ X J = 0 J k i j = 0..8. І і і ь і і і о я то9о M n x = x +ϵξ x 1,x,...,x n,.10 ϵ x i є - M n. ξx 1,x,...,x n є. Lie deriбatiбe T i 1...i p j 1...j q p,q - ξ є [8,. 196]: L ξ T i 1...i p j 1...j q = T i 1...i p j 1...j q,s ξs +T i 1...i p kj...j q ξ k,j 1 +...+T i 1...i p j 1...k ξk,j q T li...i p j 1...j q ξ i 1,l...T i 1i...l j 1...j q ξ ip,l..11, g є : L ξ g ij = ξ i,j +ξ j,i..1
- 33 M n, g - M n [14,. 75] g ij = g ij + ij ϵ,.13 ij = L ξ g ij = ξ i,j +ξ j,i., є Γ jk [5,. 8] L ξ Γ jk = ξ,jk +ξm R jmk..14.14, g i - : ξ i,jk = ξ α R α kji +g il ξ Γ jk..15 g i L ξ Γ jk -., ξx 1,x,...,x n є, є [6]: L ξ J i j = J i j,k ξk J α j ξ i,α +J i αξ α,j = 0..16 є -,., є є dl ξ ω = L ξ dω,.17 - -. 3. - І І І І І Я 3.1. і і м щ ь н і і і і ь і о - -, - [13]. Т уото - M n, є - - -Ч,, L ξ Γ ij = ρ j δ i +ρ i δ j ρ t J t ij j ρ t J t jj i.
34 Є..,. Є. [13],, - [], - -., - - M n,j,g - - є : ξ i,j = ξ ij, ρ,i = ρ i, ξ i,jk = ξ α R α kji + 1 ωα ξ α,k g ij + ω α ξ α,j g ik ω α ξ α,i g jk ω i L ξ g jk +ω α L ξ g iα g jk + +ρ j g ik +ρ k g ij ρ t J t jj ki ρ t J t k J ji, 3.1 ρ i,j = 1 ωt ρ t g ij 1 ρ iω j 1 ρ jω i + + 1 n+ L ξ R ij n ωi,j + ω iω j L ξ J i j = ξ k J i j,k Jα j ξ i,α +J i αξ α,j = 0, ω g ij ωg ij, ω = ω i ω j g ij ω = ω i,j g ij., - - є F -, -. - F - - - - - 3.1. ξ є - - - M n,g,j. є - - L ξ Γ ij = 1 δ j Lξ ω i +δ i Lξ ω j g r L ξ ω r gij ω L ξ g ij +g β ω α L ξ g βα g ij + 3. +ρ j δ i +ρ i δ j ρ t J t ij j ρ t J t jj i. ρ 3.1 є і - ξ., ξ η, є -. Ї - є ρ µ., ζ є
- і 35 ξ η: ζ i = [ξ,η] i = ξ t t η i η t t ξ і, - є Λ є [6, p. 0] L [ξ,η] Λ = L ξ L η ΛL η L ξ Λ. 3.3 3.3 є L [ξ,η] Γ ij = L ξ L η Γ ij L η L ξ Γ ij = = 1 δ j Lξ L η ω i +δ i Lξ L η ω j, g r L ξ L η ω r gij ω L ξ L η g ij +g β ω α L ξ L η g βα g ij + +L ξ µ j δi +L ξ µ i δj L ξ µ t JiJ t j L ξ µ t JjJ t i 1 δ j Lη L ξ ω i +δ i Lη L ξ ω j L [ξ,η] Γ ij = L ζ Γ ij = 1 g r L η L ξ ω r gij ω L η L ξ g ij +g β ω α L η L ξ g βα g ij L η ρ j δ i L η ρ i δ j +L η ρ t J t ij j +L η ρ t J t jj i, δ j Lζ ω i +δ i Lζ ω j g r L ζ ω r gij ω L ζ g ij +g β ω α L ζ g βα g ij + 3.4 +θ j δ i +θ i δ j θ t J t ij j θ t J t jj i. θ i = L ξ µ i L η ρ i і ζ i = [ξ,η] i. 3.4, ζ i = [ξ,η] i є і і і і - і. і є. Т уоуо - і M n,g,j і - і і, і і і - і - і, є і., - і - є, і і, і 3. L ξ ω i = 0. L ξ Γ ij = 1 ω L ξ g ij +g β ω α L ξ g βα g ij + +ρ j δ i +ρ i δ j ρ t J t ij j ρ t J t jj i.
36 Є..,. Є. η є, є -, - L η ω i = 0,, L [ξ,η] ω i = 0 L [ξ,η] Γ ij = 1 ω L [ξ,η] g ij +g β ω α L [ξ,η] g βα g ij + +θ j δ i +θ i δ j θ t J t ij j θ t J t jj i, µ i θ i = L ξ µ i L η ρ i є η i ζ i = [ξ,η] i. є. Т уофо - і M n,g,j і - і і, і і і - і - і, і і L ξ ω i = 0 є і., є -, - -. 3.5. і є м щ є і і н н і і і ь н я о 3. j. L ξ Γ s is = n Lξ ω i +n+ρi. ρ i ρ i = 1 n+ L ξγ s n is Lξ ω i, n+ 3. L ξ Γ ij = 1 δjl ξ ω i +δi L ξ ω j + 1 g r L ξ ω r g ij ω L ξ g ij +g β ω α L ξ g βα g ij + n+ Lξ Γ s js n L ξω j δ i + L ξ Γ s is n L ξω i δ j L ξ Γ s ts n L ξω t J t ij j L ξ Γ s ts n L ξω t J t jj i.
- і 37 і і, є L ξ Γ ij + 1 g r L ξ ω r g ij +ω L ξ g ij g β ω α L ξ g βα g ij Lξ n+ 1 Γ s js +L ξ ω j δi + L ξ Γ s is +L ξ ω i δj+ + L ξ Γ s ts n L ξω t JiJ t j + L ξ Γ s ts n L ξω t JjJ t i = 0. 3.5 3.5, є Π ij = Γ ij + 1 ω g ij 1 n+ Γ s js +ω j δi +Γ s is +ω i δj+ +Γ s ts n ω tj t ij j +Γ s ts n ω tj t jj i є і і і і і і - -. Т уоцо - іm n,g,j і - і ξ є і і і і - - і, є Π ij = Γ ij + 1 ω g ij 1 n+ Γ s js +ω j δ i +Γ s is +ω i δ j+ є і і і : +Γ s ts n ω tj t ij j +Γ s ts n ω tj t jj i L ξ Π ij = 0. і, і і. І є і [5,. 16], g є Lξ g ij,k L ξg ij,k = g is L ξ Γ s kj +g sjl ξ Γ s ki. 3.6 і 3.6, і і- і і g ij,k = 0, : Lξ g ij,k = ω α ξ α,k g ij ω i L ξ g jk +ω α L ξ g iα g jk ω j L ξ g ik +ω α L ξ g jα g ik + 3.7 +ρ k g ij +ρ j g ki +ρ i g jk ρ t J t jj ki ρ t J t ij kj. і, і [5,. 17], і і- і і L ξ Rijk = L ξ Γ ik,j L ξ Γ ij,k. 3.8
38 Є..,. Є. і 3. 3.8, є, L ξ R ijk = 1 δ k ω αξ α,ij g r ω α ξ α,rj g ik δ jω α ξ α,ik +g r ω α ξ α,rk g ij ω L ξ g ik g β ω α L ξ g βα g ik,j + + ω L ξ g ij g β ω α L ξ g βα g ij +,k +ρ i,j δk ρ i,kδj ρ t,j JiJ t k ρ tji,jj t k ρ tjij t k,j ρ t,j Jk t J i ρ t Jk,j t J i ρ t Jk t J i,j+ +ρ t,k JiJ t j +ρ t Ji,k t J j +ρ t JiJ t j,k + +ρ t,k JjJ t i +ρ t Jj,k t J i +ρ t JjJ t i,k. 3.9 і 3.1 4 3.9. і.7 3.7, - L ξ R ijk = 1 δ k L ξ ωi,j + 1 ω iω j 1 ω g ij 1 δ jl ξ ωi,k + 1 ω iω k 1 ω g ik + ω + 1 L ξ,k + 1 ω ω ω k gij 1 L ξ,j + 1 ω ω j gik + + 1 n+ δk L ξ R ij n δ jl ξ R ik n +J k Jt il ξ R tj n J j J t il ξ R tk n +Ji JjL t ξ R tk n J i J t k L ξ R tj n ω i,j + ω iω j ω g ij ω i,k + ω iω k ω g ik ω t,j + ωtω j ω g tj ω t,k + ωtω k ω g tk ω t,k + ωtω k ω g tk ω t,j + ωtω j ω g tj ωg ij ωg ik ωg tj ωg tk ωg tk + + ωg tj. є і і. і,
- і 39 L ξ R ijk δ k L ξ ωi,j +ω i ω j ω g ij + +δjl ξ ωi,k +ω i ω k ω g ik ω 1 L ξ,k + 1 ω ω k gij + 1 L ξ 1 n+ δk L ξ Rij ωg ij +J k Jt i J i J t k L ξ n ω,j + 1 ω ω j gik δ j L ξ Rik ωg ik + R tj ωg tj ωt,j + ωtω j ω g tj J j J t i J i J t jl ξ R tk ωg tk 3.10 3.10, P ijk = R ijk δ k ωi,j +ω i ω j ω g ij + +δ j ωi,k +ω i ω k ω g ik n ωt,k + ωtω k ω g tk = 0. 1 ω,k + 1 ω ω k gij + 1 ω,j + 1 ω ω j gik 1 n+ δk Rij ωg ij δ j Rik ωg ik + +J k Jt i J i J t k R tj n J j J t i J i J t j R tk n ωt,j + ωtω j ω g tj ωt,k + ωtω k ω g tk ωg tj ωg tk 3.11 і є і і і - -.,. Т уочо - іm n,g,j і - і ξ є і і і і - - і, 3.11 є і і і L ξ Pijk = 0. 3.1, 3.1 3.10, є і і і 3.1 3. і і і - 3.1 4. і і 3.1 4 x k, є :
40 Є..,. Є. ρ i,jk ρ i,jk = = 1 n+ L ξ Rij n L ξ Rik n ρ t P t ijk = 1 n+ L ξ ωi,j + ω iω j ω g ij ωi,k + ω iω k ω g ik ωg ij,j ωg ik + 1 ω t,kρ t g ij + 1 ωt ρ t,k g ij 1 ω jρ i,k 1 ω i,kρ j,k + 1 ω t,jρ t g ik 1 ωt ρ t,j g ik + 1 ω kρ i,j + 1 ω i,jρ k = ρ t R t ijk. 3.1 4, є Rij n R ik n ωi,j + ω iω j ω g ij ωi,k + ω iω k ω g ik + 1 δt iω k +δ t iω k ω t g ik R tj n 1 δt iω j +δiω t j ω t g ij R tk n ωt,j + ωtω j ω g tj ωt,k + ωtω k ω g tk ωg ij ωg ik,k,j + ωg tj ωg tk, 3.13 Pijk t є 3.11, - -. 3.10 3.13. - [5, c.16], є 3.10: L ξ P ijk,l = L ξγ tl Pt ijk L ξγ t il P tjk L ξγ t jl P itk L ξγ t kl P ijt, 3.14 L ξ Γ jk P ijk 3. 3.11. -, 3.13 L ξ Pijk,l L ξ P ijk,l = L ξγ t il P tjk L ξ Γ t jl P itk L ξ Γ t kl P ijt. 3.15 3.15 P ijk = R ij n R ik n ωi,j + ω iω j ω g ij ωi,k + ω iω k ω g ik + 1 δt iω k +δiω t k ω t g ik R tj n 1 δt iω j +δ t iω j ω t g ij ωg ij ωg ik ωt,j + ωtω j ω g tj,k,j + ωg tj
- 41 R tk n ωt,k + ωtω k ω g tk ωg tk., - є. 3.1 є n + 1 = m + 1 - ξ i, ξ i,j, ρ, ρ i. ξ i є m.. Т уо8о, - M n,j,g - -, -, 3.10, 3.13 3.14, 3.15,.,. - M n,j,g є r-, r = m+1 1k, m k є,., 3.10 3.13, 3.1 r = m+1 1. 3.9. н і і і і ь і н я н о M n,j,g є -, ξ є - - 3.1. 3.1 3 g jk. є ξ t i,t ξ α Ri α = n ω α ξ α,i ω i gjk L ξ g jk + ωα L ξg iα g jk g jk = n ω α ξ α,i + 1 ω ig jk L ξ g jk + n 3.16 ωα L ξ g iα,, 3.16 i, ξ i t,t ξ α Rα i = ngit ω α ξ α,t + 1 ωi g jk L ξ g jk n ω αl ξ g iα. 3.17, [7],, ξ -,, ξ i t,t ξ α R i α = J i αl ξ J β γ,β gαγ + 1 J α k,j +J α j,k J i α L ξ g jk. 3.18 -,.7.6, є :
4 Є..,. Є. J i αl ξ J β γ,β gαγ + 1 J α k,j +J α j,k J i α L ξ g jk = = ngit ω α ξ α,t + 1 ωi g jk L ξ g jk n ω αl ξ g iα. 3.19 і 3.17 3.18, 3.19, є Т уосро - і M n,j,g ξ, є і і і і і і - - і, є і і -., і [6, c. 6], - і є і і ξ i t,t ξ α Rα i ξi L ξ g jk L ξ g jk ξ t,t dσ = 0. 3.0 M n 3.0, 3.17 є. Т уоссо - і M n,j,g ξ, є і і і і і і - - і, є n ω αξ α,t + 1 ω ig jk L ξ g jk + n ωα L ξ g iα ξ t M n L ξ g jk L ξ g jk ξ t,t dσ = 0. 3.1 З, n ω αξ α,t + 1 ω ig jk L ξ g jk + n ωα L ξ g iα ξ t = 0 ξ t,t = 0, і і і і і ξ. І [1] Sorin Dragomir, LiБiА Ornea. Lйcaжжу cйиаймзaж ЕäвжЯм бяйзяому, БolАme 155 of КмйбмЯнн ги MaовЯзaогcн. BirkäАser Boston, Inc., Boston, MA, 1998. [] Josef Mikeš, Hana CАdá, Irena Hinterleitner. Conformal olomorpicallд projectiбe mappings of almost Hermitian manifolds Вit a certain initial condition. Гио. Д. БЯйз. MЯовйdн Mйd. Квун., 115:1450044, 8, 014. [3] Josef Mikeš, Elena StepanoБa, Alena VanžАroБá, et al. Dг ЯмЯиогaж бяйзяому йа нкяcгaж зaккгибн. Palacký UniБersitД OlomoАc, FacАltД of Science, OlomoАc, 015. [4] IЕА Vaisman. On locallд conformal almost Käler manifolds. ГнмaЯж Д. Maов., 43-4:338 351, 1976.
- 43 [5] Kentaro Yano. ОвЯ овяйму йа LгЯ dямгрaогрян aиd гон aккжгcaогйин. Nort-Holland PАblising Co., Amsterdam; P. Noordo Ltd., Groningen; Interscience PАblisers Inc., NeВ York, 1957. [6] Kentaro Yano. Dг ЯмЯиогaж бяйзяому йи cйзкжят aиd aжзйно cйзкжят нкacян. International Series of Monograps in PАre and Applied Matematics, Vol. 49. A Pergamon Press Book. Te Macmillan Co., NeВ York, 1965. [7] Kentaro Yano, MitsАe Ako. Almost analдtic Бectors in almost compleг spaces. Оôвйеп Maов. Д., 13:4 45, 1961. [8]..,..,... :.....-.., 1986. [9]... - -..., 183:354 363, 1991. [10]... - - -..., 515:57 66, 199. [11]..,..,... і. - і і і, БolАme 97. : І., 013. [1].. -. - 3, И......., 30:58 89, 00. [13] Є... - - -. Кмйc. ГиоЯм. БЯйз. CЯиоЯм, 41:51 64, 016. [14].....:, 1948. Є,,. Eзaгж: cerevko@usa.com Є,,. Eзaгж: cepurna67@gmail.com