Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

Σχετικά έγγραφα
D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.

D. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, International Journal of Computer Vision, 60(2):91-110, 2004.

GPU. CUDA GPU GeForce GTX 580 GPU 2.67GHz Intel Core 2 Duo CPU E7300 CUDA. Parallelizing the Number Partitioning Problem for GPUs

ER-Tree (Extended R*-Tree)

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Detection and Recognition of Traffic Signal Using Machine Learning

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Ανάκτηση Εικόνας βάσει Υφής με χρήση Eye Tracker

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Quick algorithm f or computing core attribute

Buried Markov Model Pairwise

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

ECE 468: Digital Image Processing. Lecture 8

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Arbitrage Analysis of Futures Market with Frictions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Identifying Scenes with the Same Person in Video Content on the Basis of Scene Continuity and Face Similarity Measurement

Adaptive grouping difference variation wolf pack algorithm

Simplex Crossover for Real-coded Genetic Algolithms

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

ΟΠΤΙΚΗ ΑΝΑΓΝΩΡΙΣΗ ΓΙΑ ΥΠΟΣΤΗΡΙΞΗ ΑΥΤΟΝΟΜΗΣ ΠΤΗΣΗΣ ΕΛΙΚΟΠΤΕΡΟΥ

ΣΥΓΚΡΙΤΙΚΗ ΜΕΛΕΤΗ ΑΛΓΟΡΙΘΜΩΝ ΕΞΑΓΩΓΗΣ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SocialDict. A reading support tool with prediction capability and its extension to readability measurement

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Numerical Analysis FMN011

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

Homomorphism in Intuitionistic Fuzzy Automata

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

6.003: Signals and Systems. Modulation

Computing the Macdonald function for complex orders

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Approximation of distance between locations on earth given by latitude and longitude

A Method for Creating Shortcut Links by Considering Popularity of Contents in Structured P2P Networks

High order interpolation function for surface contact problem

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

A summation formula ramified with hypergeometric function and involving recurrence relation

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2014-MUS-104 No /8/26 1,a) Music Structure and Composition with Sound Directivity in 3D Space


ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Η Διδακτική Ενότητα «Γνωρίζω τον Υπολογιστή», στα πλαίσια των Προγραμμάτων Σπουδών της Πληροφορικής: μια Μελέτη Περίπτωσης.

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Differential equations

GIS. . Harris SIFT : SIFT. SIFT Harris. GIS

Probabilistic Approach to Robust Optimization

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Elements of Information Theory

ΑΠΟΔΟΤΙΚΗ ΑΠΟΤΙΜΗΣΗ ΕΡΩΤΗΣΕΩΝ OLAP Η ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΕΞΕΙΔΙΚΕΥΣΗΣ. Υποβάλλεται στην

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Reading Order Detection for Text Layout Excluded by Image

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

Example Sheet 3 Solutions

Automatic extraction of bibliography with machine learning

BoVW. (Histogram Encoding) [2], [5], [6] [7], [8], (Fisher Encoding) [3] VLAD [9] Super Vector [10] Locality Constrained [11], [12], [13]

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Medium Data on Big Data

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

þÿ Ç»¹º ³µÃ ± : Ãż²» Ä Â

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Indexing Methods for Encrypted Vector Databases

þÿ»» ± - ±»» ± - ½É¼ ½ ±Ã»

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Maxima SCORM. Algebraic Manipulations and Visualizing Graphs in SCORM contents by Maxima and Mashup Approach. Jia Yunpeng, 1 Takayuki Nagai, 2, 1

CorV CVAC. CorV TU317. 1

Δυνατότητα Εργαστηρίου Εκπαιδευτικής Ρομποτικής στα Σχολεία (*)

Δυσκολίες που συναντούν οι μαθητές της Στ Δημοτικού στην κατανόηση της λειτουργίας του Συγκεντρωτικού Φακού

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Reminders: linear functions

Partial Trace and Partial Transpose

Ανάκτηση πολυμεσικού περιεχομένου

ΣΥΓΧΡΟΝΕΣ ΤΑΣΕΙΣ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΚΑΙ ΧΑΡΤΟΓΡΑΦΗΣΗ ΤΩΝ ΚΙΝΔΥΝΩΝ

Current Status and Future Prospects of Camera-Based Character Recognition and Document Image Analysis

Area Location and Recognition of Video Text Based on Depth Learning Method

Uniform Convergence of Fourier Series Michael Taylor

ΑΚΑΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ

Bayesian modeling of inseparable space-time variation in disease risk

Transcript:

(MIRU2008) 2008 7 SIFT 572-8572 26-12 599-8531 1-1 E-mail: umemoto@ipc.osaka-pct.ac.jp, kise@cs.osakafu-u.ac.jp SIFT 1 ANN 3 1 SIFT 1 Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System Toshitaka UMEMOTO and Koichi KISE Osaka Prefectural College of Technology, Department of Industrial Systems Engineering 26-12 Saiwai-cho,Neyagawa,Osaka 572-8572, Japan Dept. of Computer Science and Intelligent Systems, Graduate School of Engineering, Osaka Prefecture University 1-1 Gakuencho, Naka, Sakai, Osaka 599-8531, Japan E-mail: umemoto@ipc.osaka-pct.ac.jp, kise@cs.osakafu-u.ac.jp Abstract For object recognition based on nearest neighbor search of local descriptors such as SIFT, it is important to minimize the cost of extracting image features. The processes of extracting image features are composed of scale-space extrema detection, keypoint localization, orientation assignment and keypoint descriptor.in this paper, we propose a new method of efficient scale-space extrema detection. The scale space of an image is defined as a function, that is produced from the convolution of a variable-scale Gaussian with an input image. Number in which multiplication is executed is reduced by complex first order system proposed by Aoshima. From experimental results with computation time and recognition of image with ANN, we have confirmed that the proposed method is capable of achieving a recognition rate as same as the original method, and 1/3 of the computation time with the original method. Key words SIFT,Variable-scale Gaussian,Complex First Order System,Wavelet 1. 1 SIFT (Scale-Invariant Feature Transform) [1] SIFT (PCA) PCA-SIFT [2] 682

SIFT SIFT DoG [3] [4] DoG DoG ANN Approximate Nearest Neighbor [5] 2. 2. 1 dx (t) dt = fx(t)+gu(t) (1) x (t) u (t) f g 1 x (t) =x 0 exp (ft)+ t 0 exp{f (t τ)}gu (τ) dτ (2) x 0 (= x (0)) x (t) 2. 2 t = nt n T u (t) t = nt (n +1)T 2 t = nt (n +1)T x (n +1)=exp(fT) x (n)+ g {exp (ft) 1}u (n) (3) f x (n) x (nt ) 2. 3 2 f g C r + jc i x (n +1) = x (n)exp{() T } + u (n)[exp{() T } 1] (4) ω σ C r =1 C i =0 σ =0 cos sin x (n) u (n) 4 x ( 0) 0 0 n =0 1 0 u (n) =0 n = d 1 x (d 1) = [exp{() T } 1] exp{(d 1) () T } (5) n = d 1 A n = d x (d) = + [exp{() T } 1] exp{d () T } A[exp{() T } 1] (6) A A = exp{d () T } (7) x (d) 0 u (n) 0 x (n) n > = d 0 1 n =0 u (n) n = d x (n) 0 σ =0 cos sin 1 x (n +1) = exp(jωt) x (n)+exp(jωt) {u (n) exp (jωdt) u (n d)} (8) 3. SIFT PCA-SIFT 3. 1 SIFT SIFT 683

1 3. 2 PCA-SIFT Ke SIFT (PCA) PCA- SIFT [2] SIFT PCA-SIFT Ke 36 3. 3 SIFT PCA-SIFT σ [6] SIFT σ 1 I(x, y) G(x, y, σ) L(x, y, σ) L(x, y, σ) =G(x, y, σ) I(x, y) (9) G(x, y, σ) G(x, y, σ) = 1 2 +y 2 )/2σ 2 2πσ 2 e (x (10) 2 σ 1. L(x, y, σ i) 3 L DOG (Difference-of-Gaussian) D(x, y, σ) ( 2) 4 DOG DOG (Difference-of-Gaussian Function) D(x, y, σ) ={G(x, y, kσ) G(x, y, σ)} I(x, y) = LG(x, y, σ) L(x, y, σ) (11) 2 3 Difference of Gaussian 26 D(x, y, σ) DOG DOG k DOG σ 2 2 G G(x, y, kσ) G(x, y, σ) (k 1)σ 2 2 G. (12) σ 2 2 G gradient Hessian Mikolajczyk DOG DOG D(x, y, σ) DOG 3 8 9 26 26 4. 3. 3 I(x, y) G(x, y, σ) L(x, y, σ) I(x, y) M N G(x, y, σ) L L 2 M N L L 2. 684

4 Gauss (σ =3.09) (10) G(x, y, σ) = 1 2 2πσ 2 e x /2σ 2 1 2 2πσ 2 e y /2σ 2 (13) G(x, σ) G(y,σ) G(x, σ) = 1 2 2πσ 2 e x /2σ 2 (14) G(y, σ) = 1 2 /2σ 2 2πσ 2 e y (15) 2 1 1 2M N L. Viola Jones [9], [10] [3] L =27σ =3.09 1 4 27 5 4 3 G(x, σ) G(x, σ) =F (0) + F (1)e j2πk/l + F ( 1)e j2πk/l (16) F (0) k =0F (1) k =1 F ( 1) k = 1 G(x, σ) I(x)(M ) 5 G(x, σ) I(x) = Gauss (σ =3.09) M x=0 [ {F (0) + (F (1)e j2πk/l ] +F ( 1)e j2πk/l )}I(x k) (17) [ ] 1 O 1(x, σ) =F (0) I(x k) (18) Viola Jones [9], [10] 2 O 2(x, σ) = (F (1)e j2πk/l + F ( 1)e j2πk/l )I(x k) = F (1) e j2πk/l I(x k) 685

+F ( 1) e j2πk/l I(x k) (19) 1 (19) 2 O 2,2 (x, σ) = I(x k)e j2πk/l (20) I(x k)(k =0, 1,,L 1) f = 1 Discrete Fourier L Transform:DFT I(x +1 k)(k =0, 1,,L 1) f = 1 L O 2,2 (x +1,σ)= I(x +1 k)e j2πk/l (21) (21) (20) e j2π1/l O 2,2 (x +1,σ) e j2π1/l O 2,2 (x, σ) =e j2π1/l {I (x) e j2πl/l I (x L)} (22) e j2π1/l O 2,2 (x, σ) e j2πl/l =1 (22) O 2,2 (x +1,σ)=e j2π1/l O 2,2 (x, σ) +e j2π1/l {I (x) I (x L)} (23) (19) 2 8 dt L ω 2π/L (19) G(x, y, σ) I(x, y) 4 I(x, y) M N G(x, y, σ) L L (17) (18) (19) (18) O 1(x, σ) 1 I(x, y) 2 M N (19) 1 2 (19) 1 2 (23) O 2,2 (x, σ) 2 4 O 2,2 (x, σ) (19) 1 5 O 2(x, σ) I(x, y) 1 (msec) σ OpenCV 3.09 22.9 29.5 82.2 2.4525 22.2 25.2 73.1 1.9466 22.1 22.1 60.5 1.545 21.6 21.6 49.9 1.249 20.7 20.7 38.3 10 M N G(x, σ) I(x) 12 M N L 2 M N L σ L 5. 5. 1 1 (9) SIFT C# libsift [11] C++ SIFT++ [12] SIFT++ (9) 2 1 OpenCV cvsmooth() 3 G(x, σ) σ SIFT 3.09 2.4525 1.9466 1.545 1.249 5 456 640 29.2 12 CPU Intel CoreSolo 1.2GHz 1 1 4 OpenCV cvsmooth() OpenCV 5. 2 PCA-SIFT [13] 600 640 686

(a) 90 (b) 75 (c) 60 (d) 6 2 ε 10 5 3 92.4% 95.9% 96.5% 63.3% 74.9% 78.6% 96.3% 97.0% 97.0% 760 752 ANN(Approximate Nearest Neighbor) [5] 200 A4 θ 90,75,60 90 1 4 5. 2 512 341 PCA-SIFT 1 336 342 ε 2 (17) 1 (19) 6. PCA-SIFT SIFT 1 M N G(x, y, σ) L L 2M N L 1M N 3 1 OpenCV cvcvsmooth() OpenCV GPU PCA-SIFT [14] ANN ANN ε 5 1 PCA-SIFT SIFT [1] D.G.Lowe, Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 60,2, pp.91-110,2004. [2] Y. Ke, R. Sukthankar, Pca-sift:A more distinctive representation for local image descriptors, CVPR2004,Vol.2,pp.506-513,2004. [3] 1,,Vol.26,No.7,pp.811-817,1990-7. [4],,, (A),J79-A,pp.2063-2066,1996-12. [5] S.Arya, D. M.Mount, R.Silverman, A.Y.Wu, An optimal algorithm for approximate nearest neighbor searching,journal of the ACM,Vol.45, No.6,pp.891-923,1998. [6], 3,,pp.29-30,1998 [7],,,,, (MIRU2006),pp.291-297,2006. [8] J. Sivic,A. Zisserman Video Google: a text retrieval approach to object matching in videos,computer Vision, 2003. Proceedings. Ninth IEEE International Conference on, pp.1470-1477,2003. [9] Paul Viola, Michael Jones Rapid Object Detection using a Boosted Cascade of Simple Features,IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Vol.1 pp.511-518,2001. [10] Paul Viola, Michael Jones Robust Real-time Object Detection,International Journal on Computer Vision and Image Understanding,Vol.57,Issue 2,pp.137-154, 2004. [11] http://user.cs.tu-berlin.de/ nowozin/libsift/ [12] http://vision.ucla.edu/ vedaldi/code/siftpp/siftpp.html [13] http://www.cs.cmu.edu/ yke/pcasift/ [14] M. Iwamura, T.Hondou, K.Noguchi,K.Kise An Attempt of CUDA Implementation of PCA-SIFT IEICE Technical Report, 107, 281, PRMU2007-117, pp.149-154,2007. 687