Quantitative Finance and Investments Core Formula Sheet. Spring 2016

Σχετικά έγγραφα
Quantitative Finance and Investment Core Formula Sheet. Spring 2017

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2013/Spring 2014

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Parts Manual. Trio Mobile Surgery Platform. Model 1033

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Homework 8 Model Solution Section

TeSys contactors a.c. coils for 3-pole contactors LC1-D

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

m i N 1 F i = j i F ij + F x

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

Χρονοσειρές Μάθημα 3

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

Homework for 1/27 Due 2/5

Pricing Asian option under mixed jump-fraction process

The ε-pseudospectrum of a Matrix

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Math221: HW# 1 solutions

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Matrices and Determinants

HONDA. Έτος κατασκευής

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2014/Spring 2015

ΑΠΟΣΗΜΖΖ ΠΑΡΑΓΩΓΩΝ ΔΤΡΩΠΑΗΚΟΤ ΣΤΠΟΤ (CURRENCY OPTIONS, BINARY OPTIONS, COMPOUND OPTIONS, CHOOSER OPTIONS, LOOKBACK OPTIONS, ASIAN OPTIONS)

2 Composition. Invertible Mappings

Solutions to Exercise Sheet 5


Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Lifting Entry (continued)

Jeux d inondation dans les graphes

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

The one-dimensional periodic Schrödinger equation

Galatia SIL Keyboard Information

4.6 Autoregressive Moving Average Model ARMA(1,1)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Second Order Partial Differential Equations

DOI /J. 1SSN

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Statistical Inference I Locally most powerful tests


Financial Risk Management

Network Neutrality Debate and ISP Inter-Relations: Traffi c Exchange, Revenue Sharing, and Disconnection Threat

The Student s t and F Distributions Page 1

Vulnerable European option pricing with the time-dependent for double jump-diffusion process

Łs t r t rs tø r P r s tø PrØ rø rs tø P r s r t t r s t Ø t q s P r s tr. 2stŁ s q t q s t rt r s t s t ss s Ø r s t r t. Łs t r t t Ø t q s

Homework 3 Solutions

SPECIAL FUNCTIONS and POLYNOMIALS

& Risk Management , A.T.E.I.

Solution Series 9. i=1 x i and i=1 x i.

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Second Order RLC Filters

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

ITU-R P (2012/02) &' (

Solving an Air Conditioning System Problem in an Embodiment Design Context Using Constraint Satisfaction Techniques

Advanced Subsidiary Unit 1: Understanding and Written Response

ECE 468: Digital Image Processing. Lecture 8

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)


Example Sheet 3 Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Approximation of distance between locations on earth given by latitude and longitude

Διευθύνοντα Μέλη του mathematica.gr

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Partial Differential Equations in Biology The boundary element method. March 26, 2013

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Other Test Constructions: Likelihood Ratio & Bayes Tests

Κλασσική Θεωρία Ελέγχου

Calculating the propagation delay of coaxial cable

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Mean-Variance Analysis

Inverse trigonometric functions & General Solution of Trigonometric Equations

C.S. 430 Assignment 6, Sample Solutions

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

Commutative Monoids in Intuitionistic Fuzzy Sets

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen


ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Déformation et quantification par groupoïde des variétés toriques

Geodesic Equations for the Wormhole Metric

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

Probability and Random Processes (Part II)

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

An Inventory of Continuous Distributions

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Premia 14 Closed Formula Methods

6. MAXIMUM LIKELIHOOD ESTIMATION

Transcript:

Quaniaive Finance and Invesmens Core Formula Shee Spring 6 Morning and afernoon exam bookles will include a formula package idenical o he one aached o his sudy noe. The exam commiee believe ha by providing many key formulas, candidaes will be able o focus more of heir exam preparaion ime on he applicaion of he formulas and conceps o demonsrae heir undersanding of he syllabus maerial and less ime on he memorizaion of he formulas. The formula shee was developed sequenially by reviewing he syllabus maerial for each major syllabus opic. Candidaes should be able o follow he flow of he formula package easily. We recommend ha candidaes use he formula package concurrenly wih he syllabus maerial. No every formula in he syllabus is in he formula package. Candidaes are responsible for all formulas on he syllabus, including hose no on he formula shee. Candidaes should carefully observe he someimes suble differences in formulas and heir applicaion o slighly differen siuaions. For example, here are several versions of he Black-Scholes-Meron opion pricing formula o differeniae beween insrumens paying dividends, ied o an index, ec. Candidaes will be expeced o recognize he correc formula o apply in a specific siuaion of an exam quesion. Candidaes will noe ha he formula package does no generally provide names or definiions of he formula or symbols used in he formula. Wih he wide variey of references and auhors of he syllabus, candidaes should recognize ha he leer convenions and use of symbols may vary from one par of he syllabus o anoher and hus from one formula o anoher. We rus ha you will find he inclusion of he formula package o be a valuable sudy aide ha will allow for more of your preparaion ime o be spen on masering he learning objecives and learning oucomes. In sources where some equaions are numbered and ohers are no (nn) denoes ha here is no number assigned o ha paricular equaion. The only change from 5 is ha Chaper 9, Secion 3 from Wilmo has been removed from he syllabus.

An Inroducion o he Mahemaics of Financial Derivaives, 3rd Ediion, A. Hirsa and S. Nefci Chaper (.) S() = C() ( + r ) (+r ) S ( + ) S ( + ) C ( + ) C ( + ) ψ ψ h Q up (S + σ )+Q down (S σ ) (.66) S = +r (.67) C = ( + r) (.7) S = +d S u Q up + S d Q down +r (.7) C = +r (page 6) Chaper 3 (3.37) (3.49) E Q C+ C nx i + i f Chaper 4 Qup C up + + Q downc+ down C u Q up + C d Q down g(s)df (s) +r ( i i ) f(s)ds nx i + i g i (f( i ) f( i )) (4.4) df () =F s ds + F r dr + F d + F ssds + F rrdr + F sr ds dr Chaper 5 (5.) E[S I u ]= Z S f(s I u )ds, (5.8) P ( F () =+a )=p u < (5.9) P ( F () = a )= p (5.44) P (X +s x +s x,...,x )=P(X +s x +s x ) (5.45) r + r = E[(r + r ) I ]+σ(i,) W (5.48) dr = μ(r,)d + σ(r,)dw r+ α r (5.49) = + β R σ W + + R + α r + β R σ W+ Chaper 6 (6.3) E [S T ]=E[S T I ], < T (6.4) E S < (6.5) E [S T ]=S, for all <T

(6.9) E Q [e ru B +u ]=B, <u<t (6.) E Q [e ru S +u ]=S, <u (6.) M = N G N B (6.6) P ( N G =) λ G >P( N B =) λ B (6.7) E[ M ] λ G λ B > (6.44) X N(μ,σ ) (6.46) X +T = X + Z +T (6.5) Z = X μ (6.54) E [Z +T ]=X μ (6.55) E [Z +T ]=Z (6.56) S N(,σ ) (6.57) S = (6.58) Z = S dx u (6.6) E [Z +T σ (T + )] = Z σ (6.64) I I + I T I T (6.65) M = E P [Y T I ] (6.66) E P [M +s I ]=M (6.7) G T = f(s T ) (6.7) B T = e T r sds (6.7) M = E P GT B T I (6.6) M k = M + (6.8) E [M k ]=M (6.) C T = C + Chaper 7 kx H i [Z i Z i ] D s ds + g(c s )dm s (7.3) W k =[S k S k ] E k [S k S k ] (7.6) W k = kx W i (7.8) E k [W k ]=W k (7.9) V k = E [ Wk ] (7.3) " n # X V = E W k = k= nx k= V k 3

(7.3) V >A > (7.33) V <A < (7.34) V max =max k [Vk,k =,...,n] (7.35) V k >A 3, V max <A 3 < (7.36) E[ W k ] = σkh (7.56) S k S k = E k [S k S k ]+σ k W k Chaper 8 (8.7) ½ wih probabiliy λd dn = wih probabiliy λd (8.8) M = N λ (8.9) E[M ]= (8.5) E(e iux )=exp(φ(u)) (8.6) φ(u) =iγu Z + σ u + e iuy iuyi { y } dν(y) (8.8) X =(r q + ω) + Z (page 9) dν(y) =k(y)dy (8.9) k(y) = e λ py νy I y> + e λn y ν y θ (nn) λ p = σ 4 + θ σ ν σ (nn) λ n = θ σ 4 + σ ν (8.) σ k W k = + θ σ I y< ω wih probabiliy p ω wih probabiliy p... ω m (8.) E[σ k W k ] = σkh mx (8.3) p i ωi = σkh (8.8) ω i (h) = ω i h ri (8.9) p i (h) = p i h qi (8.33) q i +r i = (8.34) c i = ω i p i. wih probabiliy p m (8.58) J =(N λ) (8.6) ds = a(s,)d + σ (S,)dW + σ (S,)dJ (8.75) =< < < n = T (8.76) n = T 4

(8.77) S i = S i, i =,,...,n ½ ui S (8.78) S i+ = i d i S i wih probabiliy p i wih probabiliy p i (8.79) u i = e σ, for all i (8.8) d i = e σ, for all i (8.8) p i = h + μ i, for all i σ (8.89) S i+n S i (8.9) log S i+n S i (8.9) log S i+n S i = Z log u +(n Z)logd = Z log u d + n log d Chaper 9 (9.37) lim n E " n X k= Z # T σ(s k,k)[w k W k ] σ(s u,u)dw u = (9.38) S k S k = a(s k,k)h + σ(s k,k)[w k W k ], k =,,...,n " Z # T (9.39) E σ(s,) d < (9.4) (9.73) nx σ(s k,k)[w k W k ] k= (9.74) lim n E (9.76) If (9.77) (9.78) x dx = x T T " n # X x i+ T = i= (dx ) exiss, hen d = T (dx ) = d (9.79) (dw ) = d Z (9.85) E s σ u dw u = Z s lim E n σ u dw u, σ(s,)dw " n X x i+ i= <s< (dx ) # = 5

Chaper (page 7) ds = a d + σ dw, (.36) df = F ds + F S d + F σ S d F (.37) df = a + F S + F σ S (.64) Z F s ds u =[F (S,) F (S, )] d + F Z σ dw S F u + F ssσu du (.69) df = F d + F s ds + F s ds + Fs s ds + F s s ds +F s s ds ds nx (.79) Y () = N i ()P i () (.8) dy () = nx N i ()dp i ()+ nx nx dn i ()P i ()+ dn i ()dp i () (.8) ds = a d + σ dw + dj, (.8) E[ J ]= " à kx!# (.83) J = N λ h a i p i à kx! (.84) a = α + λ a i p i " # kx (.85) df (S,)= F + λ (F (S + a i,) F (S,))p i + F ssσ d + F s ds + dj F " kx # (.86) dj F =[F (S,) F (S,)] λ (F (S + a i,) F (S,))p i d (.87) S = lim s S s, s < Chaper (.4) ds = μs d + σs dw, [, ) (.3) S = S e {(a σ )+σw } (.34) ds = rs d + σs dw, [, ) (.38) S T = hs i e (r σ )T e σw T (.4) Z = e σw (.5) x = E[Z ]=e σ (.55) S = e r(t ) E [S T ] 6

(.7) ds = μs d + σ p S dw, [, ) (.74) ds = λ(μ S )d + σs dw (.78) ds = μs d + σdw (.79) ds = μd + σ dw (page 9) dσ = λ(σ σ )d + ασ dw ½ wih probabiliy λd (page 93) dn = wih probabiliy λd (.83) (.84) (page 94) ds =(μ λκ)d + σdw +(e J )dn S ds S =(μ λ κ )d + σd W +(e J )dn S = S e (r q+ω)+x(;σ,ν,θ) (page 94) f(x; σ, ν, θ) = Z σ πg exp (x θg) g /ν e g/ν σ g ν /ν Γ(/ν) dg Chaper (.3) P = θ F (S,)+θ S (.4) dp = θ df + θ ds (.5) ds = a(s,)d + σ(s,)dw, [, ) (.6) df = F d + F ssσ d + F s ds (.7) df = F s a + F ssσ + F d + F s σ dw (.) θ = (.) θ = F s (.) dp = F d + F ssσ d (.6) r(f (S,) F s S )=F + F ssσ (.7) rf + rf s S + F + F ssσ =, S, T (.3) P = F (S,) F s (S,)S (.4) dp = df (S,) F s ds S df s df s (S,)dS (.6) dp = df (S,) F s ds S F s + F ss μs + F sssσ S d + F ss σs dw F ss σ S d (.8) dp = df (S,) F s ds S [F ss (μ r)s d] F ss σs dw 7

(page ) dw =(σdw +(μ r)d) (.9) a F + a F s S + a F + a 3 F ss =, S, T (.3) F (S T,T)=G(S T,T) (.3) F + F s =, S, T (.33) F (S,)=αS α + β (.44) F (S,)=e αs α (.46).3F ss + F = (.47) F (S,)= α(s S ) +.3 α( ) + β( ) (.53) F (S,)= (S 4) 3( ),, S Chaper 3 (3.) a(s,)=μs (3.) σ(s,)=σs, [, ) (3.3) rf + rf s S + F + σ F ss S =, S, T (3.4) F (T )=max[s T K, ] (3.6) F (S,)=S N(d ) Ke r(t ) N(d ) (3.7) d = ln( S K )+(r + σ )(T ) σ T (3.8) d = d σ T (3.9) N(d )= Z d (3.) a(s,)=μs π e x dx (3.3) σ(s,)=σ(s,)s, [, ) (3.4) rf + rf s S + F + σ(s,) F ss S =, S, T (3.5) F (T )=max[s T K, ] (3.34) rf rf s S δ F F ssσ = (3.35) F (S T,S T,T)=max[, max(s T,S T ) K] (muli-asse opion) (3.36) F (S T,S T,T)=max[,(S T S T ) K] (spread call opion) (3.37) F (S T,S T,T)=max[,(θ S T + θ S T ) K] (porfolio call opion) (3.38) F (S T,S T,T)=max[,(S T K ), (S T K )] (dual srike call opion) (3.47) F + rs F S + σ S F S rf 8

F (3.48) F ij F i,j (3.49) rs F S rs F ij F i,j j S (3.5) rs F F i+,j F ij (3.5) S rs j S Fi+,j F ij S F S Chaper 4 F ij F i,j S S (4.6) dp( z) =P z dz <z < z + dz (4.7) Z (4.8) E[z ]= dp(z )= Z z dp(z ) Z (4.9) E [z E[z ]] = [z E[z ]] dp(z ) (4.9) E S + = S +R (4.3) E Q S + = S +r (4.4) z N(, ) (4.4) dp(z )= e (z) dz π (4.43) ξ(z )=e z μ μ (4.44) [dp(z )][ξ(z )] = π e (z )+μz μ dz (4.45) dq(z )= π e (z μ) dz (4.47) dq(z )=ξ(z )dp(z ) (4.48) ξ(z ) dq(z )=dp(z ) 9

(4.53) f(z,z )= π p Ω e σ (4.54) Ω = σ σ σ (4.55) Ω = σ σ σ (4.56) dp(z,z )=f(z,z )dz dz (4.57) ξ(z,z )=exp z μ, z μ Ω z μ z μ ½ z, z Ω (4.58) dq(z,z )=ξ(z,z )dp(z,z ) (4.59) dq(z,z )= (4.6) ξ(z )=e z Ω μ+ μ Ω μ (4.69) dq(z ) dp(z ) = ξ(z ) (4.74) dq(z )=ξ(z )dp(z ) (4.75) dp(z )=ξ(z ) dq(z ) π p Ω e z, z Ω z z X u du), (4.76) ξ = e ( X udw u [,T] (4.77) E he Xdui u <, [,T] Z Z u (4.83) E ξ s X s dw s I u = ξ s X s dw s (4.84) W = W Z X u du, (4.85) Q(A) =E P [ A ξ T ] (4.86) dw = dw X d (4.93) dq = ξ T dp (4.) A A A n = Ω (4.3) A + A +... An = Ω [,T] (4.7) E P [Z Ai ]=Q(A i ) Z (4.38) E P [g(x )] = g(x)f(x)dx (page 48) g(x )=Z h(x ) Z (4.4) E P [g(x )] = h(x) f(x)dx = E Q [h(x )] Ω Ω μ + μ, μ μ Ω μ μ dz dz ¾

Chaper 5 (5.) Y N(μ, σ ) (5.4) M(λ) =E[e Yλ ] (5.) M(λ) =e (λμ+ σ λ ) (5.5) S = S e Y, [, ) (5.5) E[S S u,u<]=s u e μ( s)+ σ ( s) (5.3) Z = e r S (5.3) E Q e r S S u,u< = e ru S u (5.3) E Q [Z Z u,u<]=z u i (5.38) E Q e r( u) S S u,u< = S u e r( u) e ρ( u)+ σ ( u) where under Q,Y N(ρ, σ ) (5.39) ρ = r σ (5.4) E Q e r S S u,u< = e ru S u (5.5) ds = rs d + σs dw h i (5.58) C = E Q e r(t ) max{s T K, } (5.88) ds = μ d + σ dw (5.9) d[e r S ]=e r [μ rs ]d + e r σ dw (5.9) dw = dx + dw μ rs (5.97) dx = d σ (5.98) d[e r S ]=e r σ dw (5.) d e r F (S,) = e r σ F s dw Chaper 7 (page 8) R =(+r ) (page 8) R =(+r ) (page 8) B s = B(, 3 ) (page 8) B = B(,T) (page 8) B s 3 = B( 3,T) R R u R R u R R d R R d (7.6) B s = (F L u ) (F L u ) (F L d ) (F L d ) B B uu 3 B ud 3 B du 3 B dd 3 C C uu 3 C ud 3 C du 3 C dd 3 ψ uu ψ ud ψ du ψ dd

(7.3) = R R u ψ uu + R R u ψ ud + R R d ψ du + R R d ψ dd (7.4) Q ij =(+r )( + r i )ψ ij (7.5) = Q uu + Q ud + Q du + Q dd (7.6) Q ij > (7.8) B s = E Q ( + r )( + r ) (7.) B = E Q B 3 ( + r )( + r ) (7.) = E Q ( + r )( + r ) [F L ] (7.3) C = E Q ( + r )( + r ) C 3 (7.3) F = h ie Q L E Q ( + r )( + r ) (+r )(+r ) (7.36) B s = ψ uu + ψ ud + ψ du + ψ dd (7.38) π ij = B s ψ ij (7.39) = π uu + π ud + π du + π dd (7.46) F = E π [L ] (7.5) C 3 = N max[l K, ] (7.53) C = E Q ( + r )( + r ) max[l K, ] (7.55) C = B s E π [max[l K, ]] C (7.56) = E S CT S S T C(K) (7.57) = E S (ST K) + S S T ST (page 9) y =log K (page 9) C(K) S = Z (7.63) F (; T,S)= S T ( F (y))e y dy P (, T ) P (, S) (7.64) = T <T <T < <T M (7.65) i = T i+ T i,i=,,,...,m (7.66) L n () = P (, T n) P (, T n+ ) n P (, T n+ ) ny (7.7) P (T i,t n+ )= + j L j (T i ) j=

n Y (7.7) P (, T n )=P(, T l ) + j L j (T i ), T l < T l j=l l Y (7.75) B = P (, T l ) ( + j L j (T j )) (7.77) D n () = j= Q n j=l +δ jl j() Q l j= ( + jl j (T J )) (7.78) dl n () =μ n ()L n ()d + L n ()σn()dw τ, T n,n=,,...,m nx j L j ()σ (7.3) μ n () = n()σ τ j () + j L j () j=l (7.5) V = E Q he i T +δ r udu (F L T )Nδ (7.) V = E π [B(, T + δ)(f L T )Nδ] (7.) V = B(, T + δ)e π [(F L T )Nδ] (7.) F = E π [L T ] (page 96) C T =max[l T δ K, ] (7.3) C = E Q he i T +δ r u du [L T δ K, ] Chaper 8 (8.3) B(, T )=e R(T,)(T ), < T (8.) B(, T )=E Q he T rsdsi h log E Q e i T r sds (8.) R(, T )= T (8.33) B(, T )=e T F (,s)ds (8.4) log B(, T ) log B(, T + ) F (, T ) = lim (page 3) log B(, T ) log B(, U) F (, T, U) = U T Chaper 9 (9.4) db = μ(, T, B )B d + σ(, T, B )B dv T (9.5) db = r B d + σ(, T, B )B dw T σ(, T, B(, T )) (9.) df (, T )=σ(, T, B(, T )) d + T (9.) df (, T )=a(f(, T ),)d + b(f (, T ),)dw (9.5) r = F (, ) σ(, T, B(, T )) T dw 3

Z " Z # T Z (page 35) F (, T )=F(,T)+ b(s, T ) b(s, u)du ds + b(s, T )dw s s Z Z Z (9.6) r = F (,)+ b(s, ) b(s, u)du ds + b(s, )dw s s (9.33) df (, T )=b (T )d + bdw (9.34) db(, T )=r B(, T )d + b(t )B(, T )dw (9.35) r = F (,)+ b + bw (9.36) dr =(F (,)+b )d + bdw (9.37) F (,)= F(,) Paul Wilmo Inroduces Quaniaive Finance, nd Ediion, P. Wilmo Chaper 6 (6.6) (6.7) (6.8) (6.9) (6.) Chaper 8 V + σ S V V + rs rv = S S V + σ S V V +(r D)S rv = S S V + σ S V S +(r r f)s V rv = S V + σ S V V +(r + q)s rv = S S V + σ F V + rv = F e r(t ) (8.7) V (S, ) = σ p π(t ) Z Call opion value Se D(T ) N(d ) Ee r(t ) N(d ) d = log(s/e)+(r D+ σ )(T ) σ T d = log(s/e)+(r D σ )(T ) σ T = d σ T e (log(s/s )+(r σ )(T )) /σ (T ) Payoff(S ) ds S Pu opion value Se D(T ) N( d )+Ee r(t ) N( d ) Binary call opion value e r(t ) N(d ) Binary pu opion value e r(t ) ( N(d )) 4

Dela of common conracs Call e D(T ) N(d ) Pu e D(T ) (N(d ) ) Binary call e r(t ) N (d ) σs T Binary pu e r(t ) N (d ) σs T N (x) = π e x Gamma of common conracs Call Pu e D(T ) N (d ) σs T e D(T ) N (d ) σs T Binary call e r(t ) d N (d ) Binary Pu σ S (T ) e r(t ) d N (d ) σ S (T ) Theas of common conracs Call σse D(T ) N (d ) + DSN(d T )e D(T ) ree r(t ) N(d ) Pu σse D(T ) N ( d ) DSN( d T )e D(T ) + ree r(t ) N( d ) ³ Binary call re r(t ) N(d )+e r(t ) N (d ) d (T ) r D ³ σ T Binary pu re r(t ) ( N(d )) e r(t ) N (d ) d (T ) r D σ T Speedofcommonconracs Call e D(T ) N (d ) σ S (T ) d + σ T Pu e D(T ) N (d ) σ S (T ) d + σ T ³ Binary call e r(t ) N (d ) σ S 3 (T ) d + d d ³ σ T e Binary pu r(t ) N (d ) σ S 3 (T ) d + dd σ T Vegas of common conracs Call S T e D(T ) N (d ) Pu S T e D(T ) N (d ) Binary call e r(t ) N (d ) d σ Binary pu e r(t ) N (d ) d σ Rhos of common conracs Call E(T )e r(t ) N(d ) Pu E(T )e r(t ) N( d ) Binary call (T )e r(t ) N(d )+ T σ e r(t ) N (d ) Binary pu (T )e r(t ) ( N(d )) T σ e r(t ) N (d ) Sensiiviy o dividend for common conracs Call (T )Se D(T ) N(d ) Pu (T )Se D(T ) N( d ) Binary call T σ e r(t ) N (d ) Binary pu T σ e r(t ) N (d ) 5

Chaper 9 This maerial was removed from he syllabus for 6. Chaper Secion.4, one ime sep mark-o-marke profi (using Black-Scholes wih σ = σ) = (σ σ )S Γ i d +( i a )((μ r + D)Sd + σsdx) Secion.5, mark-o-marke profi from oday o omorrow = σ σ S Γ i d Chaper 4 (4.) V = Pe y(t ) + Chaper 6 (6.4) V + w V r NX C i e y( i ) +(u λw) V r (6.5) dv rv d = w V (dx + λd) r 6.6 NAMED MODELS 6.6. Vasicek dr =(η γr)d + β / dx rv = A(;T ) rb(;t ) The value of a zero coupon bond is given by e B = γ ( e γ(t ) ) A = γ (B(; T ) T + )(ηγ βb(; T ) β) 4γ 6.6. Cox, Ingersoll & Ross dr =(η γr)d + αrdx A(;T ) rb(;t ) The value of a zero coupon bond is given by e α A = aψ log(a B)+ψ b log((b + b)/b) aψ log a (e ψ (T ) ) B(; T )= (γ + ψ )(e ψ(t ) ) + ψ ψ = p γ +α and ψ = η a + b b, a = ±γ + p γ +α α 6

6.6.3 Ho & Lee dr = η()d + β / dx A(;T ) rb(;t ) The value of a zero coupon bond is given by e B = T A = η(s)(t s)ds + β(t )3 6 η() = log Z M( ; )+β( ) Secion 6.7 Forward price = S Z Z + w Z +(u λw) Z r r wih Z(r, T )= rz = Secion 6.8 Fuures price F (S, r, ) = S p(r, ) ³ p p + w p r +(μ λw) p rp w + pσβ p r r q r = wih p(r, T )= Chaper 7 Secion7.Ho&Lee dr = η()d + cdx A(;T ) r(t ) Z(r, : T )=e A(; T )=log ZM ( ; T ) Z M ( ; ) (T ) log(z M( ; )) c ( )(T ) Secion 7.3 The Exended Vasicek Model of Hull & Whie dr =(η γr)d + cdx dr =(η() γr)d + cdx A(;T ) rb(;t ) Z(r, : T )=e B(; T )= γ(t ³ e ) γ ZM ( ; T ) A(; T )=log Z M ( B(; T ) ³ ; ) log(z M( ; )) c 4γ 3 e γ(t ) ) e ³e γ( γ( ) 7

Chaper 8 Secion 8.3. Bond Opions - Marke Pracice Call opion price: e r(t ) (FN(d ) EN(d )) Pu opion price: e r(t ) (EN( d ) FN( d )) d = log(f/e)+ σ (T ) σ T d = d σ T Secion 8.4.3 Caps and Floors - Marke Pracice Caple price: e r ( i ) (F (, i, i )N(d ) r cn(d )) Floorle price: e r ( i ) ( F (, i, i )N( d )+r c N( d )) d = log(f/r c)+ σ i σ i d = d σ p i Secion 8.6. Swapions, Capions and Floorions - Marke Pracice à ) Price of a payer swapion: e r(t +! (Ts T ) F F (FN(d ) EN(d )) à ) Price of a receiver swapion: e r(t +! (Ts T ) F F (EN( d ) FN( d )) d = log(f/e)+ σ (T ) σ T d = d σ T Chaper 9 (9.) Z(; T )=e T F (;s)ds (9.) dz(; T )=μ(, T )Z(; T )d + σ(, T )Z(; T )dx (nn) F (; T )= log Z(; T ) T 8

(9.3) df (; T )= T σ (, T ) μ(, T ) à Z! T (9.5) df (; T )=ν(, T ) ν(, s)ds d σ(, T )dx T d + ν(, T )dx à X N Z! T NX (9.6) df (; T )= ν i (, T ) ν i (, s)ds d + ν i (, T )dx i Xi (9.7) dz i = rz i d + Z i a ij dx j j= ix (9.8) dz i =(+τf i )dz i+ + τz i+ df i + τσ i F i Z i+ a i+,j ρ ij d ix (9.9) df i = j= σ j F j τρ ij +τf j σ i F i d + σ i F i dx i FAQ s in Opion Pricing Theory, P. Carr (38) β T =[V (S, ; σ h ) V (S, ; σ i )]e rt + S T f (S T ) f(s T )+ e r(t ) (σ σh) S (39) N T = f (S T ) (4) P &L T N T S T β T f(s T )=[V (S, ; σ i ) V (S, ; σ h )]e rt + The Handbook of Fixed Income Securiies, 8h ed., F. Fabozzi j= e r(t ) (σ h σ )S S V (S,; σ h )d S V (S,; σ h )d Page Y d = (F P ) F 36 Managing Invesmen Porfolios, a dynamic process, Maginn, e al Chaper 5 (5-) U m = E(R m ).5R A σ m (5-) SFRaio = E(R P ) R L (5-3) σ P E(R new ) R F σ new > E(Rp ) R F (5-4) U ALM m = E(SR m ).5R A σ (SR m ) σ p Corr(R new,r p ) 9

Modern Invesmen Managemen: (QFIC 6-3) Chaper An Equilibrium Approach, B. Lierman (.) R L, R f, = β(r B, R f, )+ε (.) SR i = μ i R f σ i (.3) S A L (.4) F A /L (.6) RACS = E [A ( + R A,+ ) L ( + R L,+ ) (A L )(+R f )] σ [A ( + R A,+ ) L ( + R L,+ )] (.8) (.9) σ [S + ] A β L A σ B ρσ Bσ E σ E + σ B ρσ Bσ E (.) μ B β L + L R f ( β) A A μ E μ B (.) A + = A ( + R A,+ ) pl ( + R L,+ ) and L + = L ( + R L,+ )( p) (.3) E [R x,+ ]= E [F +]( p)+p F +E [Rx ] +E [Rx ] p (.4) E [F ]= F + p p E [R x ]+p (.A.) R L, R f, = β (R B, R f, )+ε (.A.) (.A.4) r(t ) V = Ce dv V (.A.4) α = = dc C (T )dr + rd β L A σ B ρσ Eσ B σ E + σ B ρσ Eσ B (.A.6) α = (.A.) E [F ]= μ B β L + L [R f ( β)+η] A A μ E μ B +μx F + p p +μx p μ x + p

Analysis of Financial Time Series, hird ediion, R. Tsay (QFIC -3) Chaper 3 (3.) μ = E(r F ), σ = Var(r F )=E[(r μ ) F ] px qx (3.3) r = μ + a, μ = φ i y i θ i a i, y = r φ (3.4) σ = Var(r F )=Var(a F ) (p4) a = α + α a + + α m a m + e. = m +,...,T (p4) F = (SSR SSR )/m SSR /(T m ) (3.5) a = σ, σ = α + α a + + α m a m (p7) a = σ, σ = α + α a (p8) E(a 4 )= (p) 3α ( + α ) ( α )( 3α ) kx β i x i f(a,...,a T α) =f(a T F T )f(a T F T ) f(a m+ F m )f(a,...,a m α) TY = p exp a πσ σ f(a,...,a m α) =m+ (p) (a m+,...,a T α, α,...,α m )= Γ[(v +)/] (3.7) f( v) = Γ(v/) p (v )π (3.8) (a m+,...,a T α, A m )= + TX =m+ TX =m+ v v + (p) (a m+,...,a T α, υ, A m )=(T m) ln(σ )+ (v+)/,v> ln + ½ ln Γ υ + o.5ln[(υ )π] + (a m+,...,a T α, A m ) ξ + f[ξ( + ω) v] if < ω/ ξ (3.9) g( ξ,v) = ξ + f[( + ω)/ξ v] if ω/ ξ a a σ (v )σ + ln(σ ) h ³ υ i ln Γ

(p) = Γ[(υ )/] υ ξ, = ξ + ξ πγ(υ/) ξ (3.) f(x) = v exp x/λ v, <x<, <v λ (+/v) Γ(/v) mx (3.) σh( ) =α + α i σh( i). where σh( i) =a h+ i if i (3.4) GARCH(m, s) :a = σ,σ = α + mx α i a i + max(m,s) X (3.5) GARCH(m, s) :a = α + (α i + β i )a i + η sx β j σ j j= sx β j η j (p3) E(a 4 ) [E(a )] = 3[ (α + β ) ] (α + β ) α > 3 (3.7) σh( ) =α +(α + β )σh( ), > (p33) σh ( ) =α [ (α + β ) ] +(α + β ) σh α β () (3.) σh( ) =σh() + ( )α, (3.3) GARCH(, ) M : r = μ + cσ + a,a = σ,σ = α + α a + β σ (3.4) g( )=θ + γ[ E( )] ½ (θ + γ) γe( (p43) g( )= ) if (θ γ) γe( ) if < (p43) E( )= υ Γ[(υ +)/] (υ )Γ(υ/) π (3.5) EGARCH(m, s) :a = σ, ln(σ )=α + +β B + + β s B s α B α m B m g( ) (3.6) a = σ, ( αb)ln(σ )=( α)α + g( ) j= ½ (3.7) ( αb)ln(σ α +(γ + θ) )= if α +(γ θ)( = ) if < exp (γ + θ) a if a (p44) σ = σ α σ exp(α ) exp (γ θ) a if a < σ (p48) σh+ = σ α h exp[( α )α ]exp[g( h+ )] ³ (p48) E{exp[g( )]} =exp γ p h i /π e (θ+γ)/ Φ(θ + γ)+e (θ γ)/ Φ(γ θ) (p48) ˆσ h(j) =ˆσ α h (j ) exp(ω) exp[(θ + γ) /Φ(θ + γ)+exp[(θ γ) /Φ(γ θ) ª

Frequenly Asked Quesions in Quanaive Finance, P. Wilmo Q3 - Jensen s Inequaliy (3-5) If he payoff is a convex funcion, E[P (S T )] P (E[S T ]) E[f(S)] = E f( S + ) = E f( S)+ f ( S)+ f ( S)+ f( S)+ f ( S)E[ ] = f(e[s]) + f (E[S])E[ ] The LHS is greaer han he RHS by approximaely f (E[S])E[ ] Q6 - Girsanov s Theorem (3-5) The Theorem is: Le W be a Brownian moion wih measure P and sample space Ω. If γ is a previsible process saisfying R i T he consrain E P hexp γ < hen here exiss an equivalen measure Q on Ω such ha W = ³ W + R γ sds is a Brownian moion. Chaper 6 - The Mos Popular Probabiliy Disribuions Normal or Guassian: f(x) = (x a) exp πb b, <x<,μ= a, σ = b Lognormal: f(x) = Poisson: πbx exp (ln(x) a),x>,μ=exp a + b b,σ =exp a + b exp(b ) p(x) = e a a x,x=,,...,μ= a, σ = a x! Chi square (noe ha his is a generalizaion of he usual chi-square disribuion): f(x) = e (x+a)/ v/ X i= x i +v/ a i i j!γ(i + v/),x,μ= v + a, σ =(v +a) Gumbel: f(x) = b exp a x b exp ³ e a x b, <x<,μ= a + γb,σ = 6 π b whereγ =.5776... Weibull: f(x) = c c c! x a x a c + c + c + exp,x>a,μ= a+bγ,σ = b ÃΓ Γ b b b c c c Suden s : f(x) = Γ c+ b πcγ c à + x a b c! c+, <x<, μ= a for c>, σ = 3 c b for c>. c

Pareo: f(x) = bab,x a, μ = ab xb+ a for b>, σ = Uniform: f(x) = b a, a<x<b, μ = a + b, (b σ a) = a b for b> (b )(b ) Inverse normal: r à b f(x) = πx 3 exp b! x a, x>, μ = a, σ = a3 x a b Gamma: f(x) = bγ(c) c x a a x exp b b, x a, μ = a + bc, σ = b c Logisic f(x) = exp x a b b +exp x a, <x<, μ= a, σ = 3 π b b Laplace: f(x) = b exp x a, <x<, μ = a, σ =b b Cauchy: f(x) = ³ πb + x a, <x<, momens do no exis b Bea: f(x) = Exponenial: Γ(c + d) Γ(c)Γ(d)(b a) c+d (x a)c (b x) d ad + bc,a x b, μ = c + d, cd(b a) σ = (c + d +)(c + d) f(x) = b exp a x b Lévy:,x a, μ = a + b, σ = b no closed form for densiy funcion, μ = μ, varianceisinfinie unless α =,wheniisσ =v 4

Risk Managemen and Financial Insiuions, second ediion, J. Hull Chaper 9-Volailiy (9.) Prob(υ >x)=kx α (9.5) σ n = (page 86) mx α i u n i mx α i = (9.6) σ n = γv L + (9.7) σ n = ω + mx α i u n i mx α i u n i (9.8) σ n = λσ n +( λ)u n (9.9) σ n = γv L + αu n + βσ n (9.) σ n = ω + αu n + βσ n (9.4) E[σn+] =V L +(α + β) (σn V L ) (9.5) σ(t ) = 5 ½V L + ¾ e at [V () V L ) at (9.6) σ(t ) σ() e at σ() at σ(t ) 5