3D PHASE FIELD SIMULATION OF MECHATRONIC COUPLE FOR PZT FERROELECTRIC CERAMICS

Σχετικά έγγραφα
Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (


1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

Ανώτερα Μαθηματικά ΙI

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Delta Inconel 718 δ» ¼

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

Blowup of regular solutions for radial relativistic Euler equations with damping

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

2 SFI

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

Quick algorithm f or computing core attribute

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

p din,j = p tot,j p stat = ρ 2 v2 j,

Ó³ Ÿ , º 4(181).. 501Ä510

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

ÈÖÓ Ö ÑÑ Ò ÑÓÖ Û ÈÖÓÔØÙÕ ÛÒ ËÔÓÙ ÛÒ ÌÑ Ñ ØÓ Å Ñ Ø ÛÒ È Ò Ô Ø Ñ Ó È ØÖÛÒ Å Ñ Û Ø Ò Ô Ø Ñ ØÛÒ ÍÔÓÐÓ ØôÒ

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

ZZ (*) 4l. H γ γ. Covered by LEP GeV

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

ACTA MATHEMATICAE APPLICATAE SINICA Sep., ( MR (2000) Õ È 32C17; 32F07; 35G30; 53C55

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

tan(2α) = 2tanα 1 tan 2 α

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

v w = v = pr w v = v cos(v,w) = v w

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

Ó³ Ÿ , º 3(180).. 313Ä320

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

H Witten- ¾. 1956, Payne-póyla Weinberger [15] Ó ĐË È : (1) λ k+1 λ r 4. λ r. (2) n k. λ k , Yang [19] ÅĐ «Yang ¾. (λ k+1 λ r )λ r 1+ 4 ) 1

P ˆ.. Œμ ±μ ±μ,. ˆ. ˆ Ó±μ,.. Š ²μ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

ÅÊ NEAR (Near-Earth Asteroid Rendezvous) Hayabusa

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο. Επίδοση Υπολογιστικών Συστημάτων. Α.-Γ. Σταφυλοπάτης.

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

S i L L I OUT. i IN =i S. i C. i D + V V OUT

Transcript:

44 Ø 8 Vol.44 No.8 8 8 97 9 Ý ACTA METALLURGICA SINICA Aug. 8 pp.97 9 PZT Ú Ñ «ß Æ 1) ) 1) 1) 1) Þ ÐÑ Ýµ ¹Ò ÒÖÞ, 18 ) Þ Å, 18 «º Æ Ä ¾ Ñ Ã. ½, ± Ü Ï ß «Á ¹ÀÓ. Ç ±, ̳ Đ «Å Ù 9, ÔÉ Å. Ò» ÛÇÀ Æ Ò ÛÇ. Ö,, º, ÙÐ TG111.91 Ý A Ð 41 1961(8)8 97 6 D PHASE FIELD SIMULATION OF MECHATRONIC COUPLE FOR PZT FERROELECTRIC CERAMICS LIU Pingli 1), MA Xingqiao ), CHU Wuyang 1), QIAO Lijie 1) 1) Key Laboratory of Environmental Frature (Ministry of Eduation), Corrosion and Protetion Center, University of Siene and Tehnology Beijing, Beijing 18 ) Department of Physis, University of Siene and Tehnology Beijing, Beijing 18 Correspondent: QIAO Lijie, professor, Tel: (1)645, E-mail: lqiao@ustb.edu.n Supported by National Natural Siene Foundation of China (Nos.5576, 561 and 54811) Manusript reeived 8 14, in revised form 8 4 8 ABSTRACT Using D phase field theory, the spontaneous polarization, hysteresis loop and effet of mehatroni oupling of domain swithing of PZT ferroeletri eramis have been simulated. The results show that the domain swithing under applied eletri field is realized through nuleation and growth of new domains. When the applied eletrial field varies gradually, the reversal proess is through 9 domain swithing near the oerive field. A tensile or ompressive strain perpendiular to the eletri field an hinder or promote domain swithing. KEY WORDS ferroeletri material, mehatroni oupling, D phase field simulation, domain swithing È BaTiO Pb(Zr,Ti)O (PZT) Curie ¾ Ð, Ti 4+ É, Õ ½ Ü. º ÜÈ» ½ Ã, À ÅØ Õ Óº. È Ó z м, Ó Ð¼ a, Ó y м b. ²Á Ð, Ti 4+ z È, Õ a, ¼ [1]. ÅØ Õ À ½ÞÅ ÆÔ Ì. Đ À Ô Ã Ô Ì BaTiO Ä À [,]. ÈÐ BaTiO Ä ½ÐÕ Đ Áà ºÓ  [4,5]. * Ä ß Å 5576, 561 54811 ÐË : 8 14, ÐË : 8 4 8 ˲à :,, 1978, Û ÐÆ ÓÜÙ ( ß [6] ½ [7] Đ Æ Ù [8] ) Đ / Ì Õ Â ² Ä, Æ Ì ÐÕ Ð Ð, ÕÈ Ùݳ ÂË Ì [9]. ÕÔ ¾, Ý ÐÂÆ ºÁ [4,5]. À Đ (Å ) ÅРÔ, ĐÚ Â Ë Ì [9 1]., Wang [9,1] Ö»À ÐÕ PZT Ì, ± ±, Ý ÞÅ ÐÂÆ ºÁ, Î. ± Æ 9 ÜÆ 18, ± Æ 9, Æ Í Ð 18 ; ÂË Ì Ê Đ Å Ì [9,1]. Ò, Ô ² Ýß Û, Æ Í E Æ P r ÅØ

44 t f,n h P. r /H + 5< 5 u H v Y p s ^ g_ X, `/H+ +5< %a+ > az ;6.IYeÆ, 5V a=e, g z + az n6 ^ Y L. 1 z}hf a6 l, H + U, <,N h q. - 6Y M t <,q o Z P. & I a+ 7 + T ; t f 6 l, M t <,q P~ lj J e,; P 9 9 F Q R 1l, s FT z 4 Y 6^. H+ +? Ginzburg Landau l<,nhy 98 [11] Pi (r, t) δf = L t δpi (r, t) (i = 1,, ) (1) u?, Pi(r, t), t l~1:, r = (, y, z) Y<,Nh o C y C z CY ; L,e i9 ; F,9 M 9, M 9.hn+ 9 Y :R: VT Z F = fl + fg + fdip + fela + fele dv () V u?, f, Landau M 9. h, <,q (P, P, P ) Y %Z o N u v; f, <, h 9,? 6 9; f,a <KYaS*T 9; f,o`9; f,&ia+ a <KYS*T 9, V,5<9 Y :., C S(, n(t% 9 <g_5,:, Y(g_ Fourier, R_, JLA [1]. *n PZT >C PbTiO l % M A [1], NMt<,Nh P =. C/m Curie h T = (A [1]? P =.757 C/m, T = 479 ) UMp s 1.?- C ^Y4E, 1 nm 1 nm 1 nm, M vhmt<,q P~, P Æ 64 ^,?C 4E, 64 nm 64 nm 64 nm. $ BG` ` N. z}sk.1 eqob 8tl, $ zp 9 s- L6?Y P~ e b; J Gauss 5d, o? Z (1) [/ Y6 # 1 v, H?R;VY'#y SYzI. I ljym., M 9 F EPYiQR1, <,Nh Y imt<,hæ. (l5&a+, u ()? f =. m 5 1.(, o PY<,Nh lj,? P =.55. (l z P? Z (1) [/ Ya6 # 1b v. # 1b 9, ab d y 6YS` S, H? 6?- ^ M P (P~ P) EP,,6J is. `/6 L# 1, H? as L 1 G dip ela ele [1] [14] ele 4 1 PZT {uls;+l 'X5 Fig.1 Simulated domain strutures of PZT sample before (a) and after (b, ) spontaneous polarization (a) and (b) are the (1) ross setions of the entre of the sample, arrows indiating the polarized diretion () D struture simulated after 5 14 steps, a 6,!aS, b 6, 1aS, 6.? # Yr/6^ YU CPv # 1a H.. a+ d p b nmt<,(y6^ (# 1) o PI5 E = E/E ()

8E #B Z : PZT _ = _X W^-F): 99 u?, E,5,( Y & + N h; E,& a+ N h; frsg y 6, 6, o PY<,Nh P A E = P T T /(ε C ), H?, P, M t <,N h,.55(e =) g 7.5(E =.5). g a+ 7 T, h, T, Curie h, ε, ) b a,, C E =1., (l[y X 6.I (6 e) q s, Curie,, n PZT v, P =. C/m, o a+ P Y6 S l I, # b.? H, <,N T =, 1/(ε C )=.8 1 m N/(C ), h P g 7.419(E =1.). EPg a+ E 7 1.5,.,.1,.,..4, m 4 1 ( T =5, Aq V E =.1 1 V/m. P & I a+ E =.5 l, 6Y P Æ lj l. # 1b? ab 6 5 V 4 Y6 ^, N? l[ FTL6 H Æ. # y P y P e7 ef, q d 6 o~ y P e7 gh, E =.4 ly D 6^, as, a 6,!a, b 6. # a v. # a / > v, # 1b Y ijkl S? o P E =.5 l, m 4 1 ( 5V4 YLz a 6^ PYa6 Ia+ E =.5 (, EP,oa+, # d v. P YX6. (sy, Ia+(, oa+py n-z E 9HY P, Aq5V<,T 6 ( abd S ) 6 eq.i; "z/oa+ E, #?Y ABCDF. A E =. Y D ^wt, E PYX6AA 7<a+PYra6?.I PR\a+, <,Nh l;r, 7 E =. $<, ( ijkl S ). ( s% a+ ; Y6 l TE #? F GHI v. IvPa+, TEA H R, g_, m 4 1 lj.(ft4æ, # a? mnop I, (l?z[/y6^ # 4a v. PvPa+ E 5 [1] 7 %H`*#H, n`*wo`5x\ =5 dr5 kf^/64uk5 Fig. Domain swithing proess through initiating domain wall motion along the field diretion () with inreasing the eletri field, simulated for 4 1 steps (a) E =.5, domain wall ab in Fig.1b migrated to ef, d to gh; a new domain ijkl formed from a zone ijkl in Fig.1b (b) E =1., the zone efgh and ijkl enlarged, but zone mnop dereased () E =.4, the zone mnop vanished, but the zone efgh and zone ijkl ontinuously enlarged (d) E =.5, single domain

44 t A I :Y.5 $7 J :Y.6 l, a6vtf 9 6 (# 4b). # 4a? abd 6 > efgh 6 o ~ P, # 4b?f 1o~ y P,?tf 9 6 ; q# 4a Y def 6"A y P, P (# 4b), tf 9 6.? l, <,Nh P tf ", A.1416(E =.5),.971(E =.6), n #?Y J ^. E FevP$I7., TEFT K ^ (# ). EPR\~a+, "TEo KJL 7 L ^, ( l E =.5,?Z[/Y6^ # 4 v. a+ E g 7.6 l, 6vtf 9 6 ( # 4d). # 4?Y abd efgh 6o y P,,o P,? tf 9 6 ; q# 4?Y def 6"A~ P,~ y P, tf 9 6. f 9.6.4 H P *. G B D F C A I. L -. -.6 -.5 J -.4 K -. -1.5-1. D -.5. E*.5 1. 1.5..5 G*4;4UX`<D Fig.4 4 Fig. D hysteresis loop obtained by D phase field simulation 9 T'* h `5 use 9 5G, Q8`<Db;+MgX! domain swithing of all kind of domains near the oerive field, resulting in a jump of the polarization in Fig. (a) point I in Fig. (E =.5), zone abd and efgh are domains, zone def is +y domain (b) point J in Fig. (E =.6), zone abd and efgh are y domains, zone def is + domain, 9 domain swithing ours () point L in Fig. (E =.5), zone abd and efgh are +y domains, zone def is domain (d) point G in Fig. (E =.6), zone abd and efgh are + domains, zone def is y domain, 9 domain swithing ours

8 : PZT Ï ¹ µ 91, Ë Í, È P = Ð, Í E = E /E =.5, À Í E =1.67 1 7 V/m. Ò PZT-5H, Ô ²Î E =1.1 1 6 V/m, À ÛÊ 1 Å. ½ É ÝÔ Á Ï Đ ½ ßÚ ½, Õ Û Ê ÚÈ Ï ºÁ, Ê ² ÀÚÈ.. Û Ò Đ Ó y ÜÈÁ± ε y =5 1, ÜÈ Á ±, Ñ 4 1 Ì, ÎÌ Æ P, Ð, Õ Î̹Þ. y ÜÈ Æ²Á, È E =.5 н Þ ÅÓ ÜÈ Ä, d. ÆÞÅ εy =5 1, È E =.5 Ð, ¼µÎ. E. Ð, ¼µÎ ( 5a). E Þ¼ Ì.5 Ð, ½ Ä («d). ¹, ¼ ÜÈ Ç Ó ÜÈ. Ó y ÜÈÁ± ε y = 5 1, È E =. Ð, ¼µ½; È E =.4 Ð, е½ ( 5b), À D «d. ¹, ¼ ÜÈ Ó ÜÈ. È À Ð, ¼ ÜÈ Ò Æ Ä Á; Æ ¼ Æ µæ Ê ( 5). Ý Ì FGHIJ ÈÊ ÚÈ, Ð Ì 18. ÈÉ Ì ¾, µî F Ø, ¼ ÁÞÅÚÈ, Ð 18., È E =.1 Ð, 9, (Ó y ÜÈ ³ z ÜÈ), È E =. Ð, ÞË Ó ÜÈ 18. È E =.8 Ð, Ñ 1 1 4 º, Æ ÚÓ ÜÈ, Ø 18. ¼ ÁÚÈ E =. ÈÊ E =. Î ÈÆ Ë, Æ Â Þ ÐÕ. Polarization P * X.65.6.55.5.45.4.5..5. () y y 5 1 - y 5 1 -..5 1. 1.5..5. E * 5» ÛÇ À ÑÒ ÛÇ Å Ã Fig.5 Domain swithing in the sample under tensile strain (a) and ompressive strain (b) and polarized urves under stress () (a) εy =5 1, E =. tensile strain, not single domain struture (b) εy = 5 1, E =.4 ompressive strain, single domain struture () effets of tensile and ompressive strains on polarization

9 Đ «44 Ø Ü (1)»À Đ Á ÅØ ², Õ Î, ÐÕ Ò Ä. ()»À ¾, ² Ý ºÁĐ ÜÈ.. () Í, «9 Ê Æ (4) ¼ ÜÈ Ç Ó ÜÈ. Î The Pennsylvania State University»²ÉÏ Ï Á ß À ÛÑ Đ. Ø [1] Yang W. Mehatroni Reliability. Heidelberg, Germany: Springer, : 1 [] Wang R M, Zhao X W, Chu W Y, Su Y J, Qiao L J. Mater Lett, 7; 61: 116 [] Wang F, Su Y J, He J Y, Qiao L J, Chu W Y. Sr Mater, 6; 54: 6 [4] Wang R M, Chu W Y, Su Y J, Li J X, Qiao L J. Mater Si Eng, 6: B15: 141 [5] Zhao X W, Chu W Y, Su Y J, Li J X, Gao K W, Qiao L J. Ata Metall Sin, 6; 4: 1 (±, Ï Ø, ÕÐ,, ÐÎ, Ç., 6; 4: 1) [6] Huber J E, Flek N A, Landis C M, MMeeking R M. J Meh Phys Solids, 1999; 47: 166 [7] Hwang S C, Lynh C S, MMeeking R M. Ata Metall Mater, 1995; 4: 7 [8] Hwang S C, MMeeking R M. Int J Solids Strut, 1999; 6: 1541 [9] Wang J, Shi S Q, Chen L Q, Li Y L, Zhang T Y. Ata Mater, 4; 5: 749 [1] Wang J, Li Y L, Chen L Q, Zhang T Y. Ata Mater, 5; 5: 495 [11] Hu H L, Chen L Q. J Am Ceram So, 1998; 81: 49 [1] Li Y L, Choudhury S, Liu Z K, Chen L Q. Appl Phys Lett, ; 8: 168 [1] Loge R E, Suo Z. Ata Mater, 1996; 44: 49 [14] Huang H Y, Chu W Y, Su Y J, Li J X, Qiao L J. Appl Phys Lett, 6; 89: 1494