Lotka Volterra. Stability Analysis of Delayed Periodic Lotka Volterra Systems

Σχετικά έγγραφα
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Prey-Taxis Holling-Tanner

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

D Alembert s Solution to the Wave Equation

Partial Differential Equations in Biology The boundary element method. March 26, 2013

X g 1990 g PSRB

Other Test Constructions: Likelihood Ratio & Bayes Tests

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homomorphism in Intuitionistic Fuzzy Automata

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Matrices and Determinants

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

Areas and Lengths in Polar Coordinates

Example Sheet 3 Solutions

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Areas and Lengths in Polar Coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Inverse trigonometric functions & General Solution of Trigonometric Equations

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

(, ) (SEM) [4] ,,,, , Legendre. [6] Gauss-Lobatto-Legendre (GLL) Legendre. Dubiner ,,,, (TSEM) Vol. 34 No. 4 Dec. 2017

Graded Refractive-Index

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

ST5224: Advanced Statistical Theory II

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Srednicki Chapter 55

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Dynamics in BAM Fuzzy Neural Networks with Delays and Reaction-Diffusion Terms 1

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Χρηματοοικονομική Ανάπτυξη, Θεσμοί και

High order interpolation function for surface contact problem

2 Composition. Invertible Mappings

Homework 8 Model Solution Section

«Χρήσεις γης, αξίες γης και κυκλοφοριακές ρυθμίσεις στο Δήμο Χαλκιδέων. Η μεταξύ τους σχέση και εξέλιξη.»

Section 8.3 Trigonometric Equations

Second Order Partial Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

The behavior of solutions of second order delay differential equations

Ηλεκτρονικοί Υπολογιστές IV

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

«Μοντελοποίηση και Αριθµητικές Προσοµοιώσεις» Εισαγωγή στη Μαθηµατική Βιολογία. Πληθυσµιακά Μοντέλα

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

SPECIAL FUNCTIONS and POLYNOMIALS

J. of Math. (PRC) u(t k ) = I k (u(t k )), k = 1, 2,, (1.6) , [3, 4] (1.1), (1.2), (1.3), [6 8]

A General Note on δ-quasi Monotone and Increasing Sequence

The Negative Neumann Eigenvalues of Second Order Differential Equation with Two Turning Points

Uniform Convergence of Fourier Series Michael Taylor

Statistical Inference I Locally most powerful tests

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

SOME PROPERTIES OF FUZZY REAL NUMBERS

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Η ΠΡΟΣΩΠΙΚΗ ΟΡΙΟΘΕΤΗΣΗ ΤΟΥ ΧΩΡΟΥ Η ΠΕΡΙΠΤΩΣΗ ΤΩΝ CHAT ROOMS

Tridiagonal matrices. Gérard MEURANT. October, 2008

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Numerical Analysis FMN011

Homework 3 Solutions

The Simply Typed Lambda Calculus

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

6.3 Forecasting ARMA processes

Reminders: linear functions

Lifting Entry (continued)

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Congruence Classes of Invertible Matrices of Order 3 over F 2

ΑΝΩΤΑΤΟ ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΠΕΙΡΑΙΑ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΔΟΜΙΚΩΝ ΕΡΓΩΝ

Every set of first-order formulas is equivalent to an independent set

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Single-value extension property for anti-diagonal operator matrices and their square

ΣΤΑΤΙΚΗ ΜΗ ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΚΑΛΩ ΙΩΤΩΝ ΚΑΤΑΣΚΕΥΩΝ

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Geodesic Equations for the Wormhole Metric

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

The Pohozaev identity for the fractional Laplacian

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Forced Pendulum Numerical approach

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Finite Field Problems: Solutions

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

EE512: Error Control Coding

ΕΜΠΕΙΡΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΤΗΣ NASH ΙΣΟΡΡΟΠΙΑΣ

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΔΙΕΡΕΥΝΗΣΗ ΤΗΣ ΣΕΞΟΥΑΛΙΚΗΣ ΔΡΑΣΤΗΡΙΟΤΗΤΑΣ ΤΩΝ ΓΥΝΑΙΚΩΝ ΚΑΤΑ ΤΗ ΔΙΑΡΚΕΙΑ ΤΗΣ ΕΓΚΥΜΟΣΥΝΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΥΓΕΙΑΣ

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

Transcript:

Lotka Volterra Stability Analysis of Delayed Periodic Lotka Volterra Systems 25 4

ii iii 1 1.1 1 1.2 2 1.3 5 8 2.1 8 2.2 12 2.3 14 2 3.1 2 3.2 21 26 4.1 26 4.2 28 32 35 36

Lotka Volterra 2 2 Lotka Volterra Lotka Volterra Lotka Volterra Lotka Volterra Lotka Volterra Schauder Lotka Volterra Lyapunov Lyapunov Lotka Volterra M O175.1, Q141.

Abstract The Lotka Volterra system is one of the most important models in mathematical ecology. Since it was proposed in the 192 s, successful applications of this model and its variants have been widely found in diverse areas of natural and social sciences, which have provided powerful tools for understanding the mechanisms of competition and dynamical evolution in a complex system. In recent years, the delayed periodic Lotka Volterra systems, which introduce the time delays and periodic oscillations into the original model, have attracted increasing interest. This thesis focus on the delayed periodic Lotka Volterra systems of a very general form. Using fundamental and straightforward analytic techniques, we discuss in detail the issues on positive and nonnegative periodic solutions that have significant ecological meanings. Several new results of existence and stability of periodic solutions are proved. This thesis is organized as follows. Chapter 1: Introduction. We briefly introduce the applications of Lotka Volterra systems in ecology, neural networks and other fields, and the necessity of research on delayed periodic Lotka Volterra systems. Model descriptions are then given, and challenging problems are proposed based on analyzing the ideas and methods currently used to investigate the model. Chapter 2: Existence and stability of positive periodic solutions. Positive periodic solutions of Lotka Volterra systems imply that all the species in an ecosystem coexist permanently with periodic oscillations. Taking a different way from those in the literature and applying Schauder s fixed point theorem, we prove some existence conditions for positive periodic solutions. And the global asymptotic stability and global exponential stability are also addressed. Chapter 3: Stability of nonnegative periodic solutions. The vanishing components of a stable periodic solution imply that the corresponding species are driven to extinction eventually. To study the stability of nonnegative periodic solutions, we first discuss the boundedness of solutions, and then prove the stability theorems by simple mathematical analysis. By using this approach, we avoid the possible difficulty in applying the Lyapunov s method.

iv Chapter 4: A numerical example and discussions. The comprehensive example is carefully designed and intended both to illustrate how to verify the stability criteria obtained in previous chapters, and to explain the distinction between the conditions for positive and nonnegative periodic solutions. All these results provide insights into the understanding of dynamical behavior of complex ecosystems. Keywords: Lotka Volterra system, neural network, delay, periodic solution, global asymptotic stability, global exponential stability, nonsingular M-matrix.

1.1 (trophic web) (1) (2) ( ) (3) ( ) (predator), (prey), Volterra 1926 29]. dn = N(a bp ), dt (1.1) dp dt = P (cn d), N(t) P (t) t a, b, c, d 192 Lotka 12] Lotka Volterra (). (1.1) n ( ) dx i dt = x i b i a ij x j, i = 1, 2,..., n, x i (t) i t b i i a ii > a ij (i j) Lotka Volterra ( ) 5, 19].

2 14, 17, 18, 22]. 1997 Fukai Tanaka Lotka Volterra 7]. Asai MOS 2]. (recurrent) Lotka Volterra 17]. Lotka Volterra Lotka Volterra 8, 9, 21, 23] 2 9 Lotka Volterra Hopfield 1, 13, 32]. Lotka Volterra 1.2 n Lotka Volterra

3 dx i (t) = x i (t) b i (t) dt a ij (t)x j (t) x j (t s)d s µ ij (t, s) ] i = 1, 2,..., n,, (1.2) b i (t) a ij (t) ω > a ii (t) >, t, d s µ ij (t, s) d s µ ij (t + ω, s) = d s µ ij (t, s), t K ij (s) d s µ ij (t, s) dk ij (s) dk ij (s) < +, s dk ij (s) < + (1.3) i, j = 1, 2,..., n x i (s) = φ i (s), s (, ], (1.4) φ i (s) s φ i (s) >. d s µ ij (t, s) = b ij (t)δ(s + τ ij )ds + c ij (t, s)ds, δ( ) Dirac δ i, j = 1, 2,..., n, b ij (t) τ ij (t) ω c ij (t + ω, s) = c ij (t, s), τ ij (t), (1.2) dx i (t) = x i (t) b i (t) a ij (t)x j (t) b ij (t)x j (t τ ij (t)) dt ] c ij (t, s)x j (t s)ds, i = 1, 2,..., n. (1.5) (1.2), ) (1.2) (1.4) 1 (1.2) (1.4), ) (1.2) t log x i (t) log x i () = b i (u) a ij (u)x j (u) x j (u s)d s µ ij (u, s) t log x i (t) >, t > i = 1, 2,..., n x i (t) >. ] du.

4 1 1, 1 (1.2) (1.4) (1.2) (1.2) 2 x (t) (1.2) x(t) lim x(t) t x (t) =, R n x (t) 3 x(t) x (t) (1.2) ε >, lim x(t) t x (t) = O(e εt ), R n x (t) ε 4 (1.2) i = 1, 2,..., n ω b i(u)du >, i j a ij (t), i, j = 1, 2,..., n d s µ ij (t, s), 5 (1.2) i = 1, 2,..., n ω b i(u)du >, i j a ij (t), i, j = 1, 2,..., n d s µ ij (t, s), Lotka Volterra Lotka Volterra 6,1,11,24 26,28,3]. Lotka Volterra (), (1.2)

5 Lotka Volterra (permanence), (1.2) Schauder Lotka Volterra Lotka Volterra 15, 16, 27]. Lotka Volterra Lotka Volterra Lyapunov ( ) Lyapunov Lyapunov 1.3 M 4] 5 M 4]. 2 C = (c ij ) R n n, C M

6 (a) C (b) C T M (c) C C (d) ξ = (ξ 1, ξ 2,..., ξ n ) T Cξ (e) D CD + DC T (f) C 1 (b) (d) () 3 C = (c ij ) R n n, (a) ξ 1, ξ 2,..., ξ n n ξ jc ij > i = 1, 2,..., n (b) η 1, η 2,..., η n n η ic ji > i = 1, 2,..., n (1.2) 6 f : R + R H t > f(t), {s i, t i ]}, s i >, s i, t i ] s j, t j ] =, t i s i = t j s j > (i j), 2 i=1 ti s i f(u)du = +. a >, t > f(t) > a, f H. (1.2) 4 {f n }, ω] ω >, ω lim n f n (t) dt =, (1.6) f n, ω] ε >, k, t k, ω] n k > k f nk (t k ) ε. {f n } δ >

7 t k δ t t k + δ ω (1.6) f nk (t) ε 2. f nk (t) dt δ ε 2 >.

2.1 Schauder (1.2) f + = max{, f}, f = min{, f}, f] m = sup t f(t), f] l = inf t f(t). 1 ξ 1, ξ 2,..., ξ n, b i (t) ξ i a ii (t) ξ j a ij (t) ξ j d s µ ij (t, s)] <, t >, (2.1) ω {, j i b i (u) ξ j a + ij (u) ξ j d s µ ij (u, s)] }du + >, (2.2), j i i = 1, 2,..., n (1.2) ω C = C((, ], R n ) Banach φ = max i sup <θ φ i (θ). η ω η < min i ξ = max i ξ i, γ 1 = max i γ 2 = max i, j γ 3 = max i, j sup b i (t), t sup t sup t a ij (t), d s µ ij (t, s), K = exp{γ 1 + (γ 2 + γ 3 )ξ]ω}, L = ξγ 1 + (γ 2 + γ 3 )ξ], { b i (u) n, j i ξ ja + ij (u) n ξ j K ω a ii(u)du } d sµ ij (u, s)] + du, ξ i. (2.3)

9 Ω = {x(θ) C : η x i (θ) ξ i (i = 1, 2,..., n), ẋ(θ) L}, Ω C Ω C T T : φ(θ) x(θ + ω, φ), x(t) = x(t, φ) (1.2) x i (θ) = φ i (θ) ( < θ ) Schauder T Ω Ω, φ Ω, x Ω. t i x i (t ) = ξ i, x i (t) ξ i, t < t, j i x j (t) ξ j, t t. (2.1) d log x i (t) dt = b i (t ) a i j(t )x j (t ) x j (t s)d s µ i j(t, s) t=t b i (t ) ξ i a i i (t ) ξ j a i j (t ) ξ j d s µ i j(t, s)], j i <. < t ω i = 1, 2,..., n x i (t) ξ i. x i (t) η < t ω i = 1, 2,..., n < t 1 ω i 1 x i1 (t 1 ) < η, < s ω { t1 } d log x i1 (u) x i1 (t 1 s) = x i1 (t 1 ) exp du < Kη. du (2.3) t1 { d log x i1 (u) t1 du = b i1 (u) t 1 ω du t 1 ω { ω >. Kη b i1 (u) ω t 1 s a i1 j(u)x j (u), j i 1 ξ j a + i 1 j (u) a i1 i 1 (u)du x j (u s)d s µ i1 j(u, s) ξ j d s µ i1 j(u, s)] }du + } du

1 { t1 x i1 (t 1 ) = x i1 (t 1 ω) exp t 1 ω } d log x i1 (u) du > η. du x i1 (t 1 ) < η < t ω i = 1, 2,..., n x i (t) η. ẋ(θ + ω) L. T Ω Ω. Schauder φ Ω T φ = φ. x(t, φ ) = x(t, T φ ), x(t, φ ) = x(t + ω, φ ). x(t, φ ) (1.2) ω 3 x (t) η x i (t) ξ i, i = 1, 2,..., n. dx i (t) ] σij = x i (t) b i (t) a ij (t)x j (t) x j (t s)d s µ ij (t, s), dt i = 1, 2,..., n, (2.4) σ ij > 1 2 ξ 1, ξ 2,..., ξ n, b i (t) ξ i a ii (t) ω { b i (u), j i, j i ξ j a ij (t) ξ j d s µ ij (t, s)] <, t >, ξ j a + ij (u), j i ξ j d s µ ij (u, s)] }du + >, i = 1, 2,..., n (2.4) ω 1 < t ω i = 1, 2,..., n x i (t) η, σ = max σ ij, i, j K 1 = exp{γ 1 + (γ 2 + γ 3 )ξ](ω + σ)},

11 < s ω + σ { x i1 (t 1 s) = x i1 (t 1 ) exp t1 t 1 s } d log x i1 (u) du < K 1 η. du t1 d log x i1 (u) ω { σi1 du b i1 (u) ξ j a + i t 1 ω du 1 j (u) j ξ j d s µ i1 j(u, s)] }du +, j i 1, j i 1 { ω σi1 } i 1 K 1 η a i1 i 1 (u) + d s µ i1 i 1 (u, s)] ]du +. η 1 1 1 { ω (1.2) b i (u), j i ] bj a ij (u) a jj m i = 1, 2,..., n ω ] } bj d s µ ij (u, s) du > (2.5) a jj m ( 4), 1 (2.1) (2.2) ξ i ω b i (t) ξ i a ii (t), t >, { } b i (u) ξ j a ij (u) ξ j d s µ ij (u, s) du >., j i = b i /a ii ] m (i = 1, 2,..., n), 1 2 (1.2) ζ 1, ζ 2,..., ζ n ζ i a ii (t) + ζ j a ij (t) + ζ j d s µ ij (t, s) > (2.6), j i t > i = 1, 2,..., n (1.2) ω

12 ( 5), 1 (2.2) ω (2.1) b i (t) ξ i a ii (t) a, j i a > max sup i t ξ j a ij (t) b i (u)du >, ξ j d s µ ij (t, s) <, t >. (2.7) b i (t) ζ i a ii (t) + n, j i ζ ja ij (t) + n ζ j d s µ ij (t, s), ξ i = aζ i (i = 1, 2,..., n), (2.7) 1 2.2 25] Lotka Volterra dx i (t) dt = x i (t) b i (t) a ii (t)x j (t) σij b ij (t)x j (t τ ij (t)) c ij (t, s)x j (t s)ds ], i = 1, 2,..., n, (2.8) σ ij > (2.4) Lyapunov Razumikhim 1 ξ 1, ξ 2,..., ξ n α, b i (t) ξ i a ii (t) ω { σij (1 + α)ξ j b ij (t) (1 + α)ξ j b i (u), j i ξ j b + ij (t), j i c ij (t, s)ds, t >, σij ξ j c + ij }du (t, s)ds >, i = 1, 2,..., n (2.8) ω

13 (2.8) 2 25] 1 1 1] dx i (t) ] Tij = x i (t) b i (t) a ii (t)x j (t) a ij (t) K ij (s)x j (t s)ds, dt, j i i = 1, 2,..., n, (2.9) T ij > T ij K ij (s)ds = 1 (i j). 2 f = 1 ω ω f(u)du. a ij e y j = b i, i = 1, 2,..., n (2.1) (y 1, y 2,..., y n) T R n, b i, j i ] bj a ij > (2.11) a jj m i = 1, 2,..., n (2.9) ω 1 (2.5) (2.9) (2.11) 1, 2 (2.1) 11] dx i (t) = x i (t) b i (t) a ii (t)x i (t) + a ij (t)x j (t) dt, j i ] τj + b ij (t) x j (t s)dµ j (s), i = 1, 2,..., n, (2.12) τ j > µ j (τ j +) µ j ( ) = 1 (j = 1, 2,..., n). 3 f = 1 ω b i 2a ii e y i + ω f(u)du. (a ij + b ij )e y j =, i = 1, 2,..., n (2.13)

14 (y1, y2,..., yn) T R n, { } a ii ] l a ji + b ji ] m + b ii ] m > (2.14), j i i = 1, 2,..., n (2.12) ω (2.14) 3 ζ 1, ζ 2,..., ζ n { } ζ i a ii ] l ζ j a ij + b ij ] m + ζ i b ii ] m >, j i i = 1, 2,..., n 2 (2.6) 2, 3 (2.13) 2.3 (1.5) s c ij (t, s) ds < +, (2.15) τ ij (t) τ ij (t) < 1, ψ ij (t) = t τ ij (t) ψ 1 ij (t) (i, j = 1, 2,..., n). τ ij t ψ 1 ij (t) = t + τ ij. 4 5 7 (1.5) i = 1, 2,..., n ω b i(u)du >, i j a ij (t), i, j = 1, 2,..., n b ij (t) c ij (t, s), 8 (1.5) i = 1, 2,..., n ω b i(u)du >, i j a ij (t), i, j = 1, 2,..., n b ij (t) c ij (t, s), (1.5) ω 3 β i (t) = ζ i a ii (t) (1.5) ω x (t), ζ 1, ζ 2,..., ζ n, j i ζ j a ji (t) ζ j b ji (ψ 1 ji (t)) 1 τ ji (ψ 1 ji (t)) ζ j c ji (t+s, s) ds H (2.16)

15 i = 1, 2,..., n x (t) ε > p > log x i (t) log x i (t) p x i (t) x i (t) (2.17) ζ i (a ii (t) εp), j i ζ j a ji (t) ζ j b ji (ψ 1 ji (t)) 1 τ ji (ψ 1 ji (t)eε(ψ 1 ji (t) t) ζ j c ji (t + s, s) e εs ds (2.18) t > i = 1, 2,..., n x (t) ε. w i (t) = x i (t) x i (t), z i (t) = log x i (t) log x i (t) (i = 1, 2,..., n), L(t) = ζ i z i (t) + i=1 + ζ i i, t ζ i i, t t s t τ ij (t) b ij (ψ 1 ij (s)) 1 τ ij (ψ 1 ij (s)) w j(s) ds c ij (θ + s, s) w j (θ) dθds. (2.15) L() L(t) (1.5) dl(t) = ζ i sign(z i (t)) a ii (t)w i (t) a ij (t)w j (t) b ij (t)w j (t τ ij (t)) dt i=1, j i ] bij (ψ 1 ij c ij (t, s)w j (t s)ds + ζ (t)) i 1 τ i, ij (ψ 1 ij (t)) w j(t) ] b ij (t) w j (t τ ij (t)) + ζ i c ij (t + s, s) w j (t) ds = c ij (t, s) w j (t s) ds ζ i a ii (t) i=1, j i i, ] ζ j a ji (t) ] ζ j c ji (t + s, s) ds w i (t) β i (t) w i (t). i=1 ζ j b ji (ψ 1 ji (t)) 1 τ ji (ψ 1 ji (t))

16 + dl(t) dt i=1 β i (t) w i (t) dt L() < +. (2.19) L(t) x(t) (1.5) x(t), ) β i (t) H, (2.19) x (t) lim t x(t) x (t) =. i=1 L 1 (t) = ζ i z i (t) e εt + i=1 + ζ i i, i, t t s t ζ i L 1 (t) (1.5) t τ ij (t) b ij (ψ 1 ij (s)) 1 τ ij (ψ 1 ij (s)) w j(s) e εψ 1 ij (s) ds c ij (θ + s, s) w j (θ) e ε(θ+s) dθds. dl 1 (t) dt = ζ i sign(z i (t))e εz εt i (t) a ii (t)w i (t) i=1 + + b ij (t)w j (t τ ij (t)) e εt. i,, j i a ij (t)w j (t) c ij (t, s)w j (t s)ds bij (ψ 1 ζ i e εt ij (t)) ] 1 τ ij (ψ 1 ij (t)) w j(t) e ε(ψ 1 ij (t) t) b ij (t) w j (t τ ij (t)) ] ζ i e εt c ij (t + s, s) w j (t) e εs ds c ij (t, s) w j (t s) ds i, ζ i (a ii (t) εp) i=1, j i ] ζ j c ji (t + s, s) e εs ds w i (t) ζ j a ji (t) ζ j ] b ji (ψ 1 ji (t)) 1 τ ji (ψ 1 ji (t))eε(ψ 1 ji (t) t) L 1 (t) L 1 (t) ζ i log x i (t) log x i (t) L 1 ()e εt. (2.2) i=1

17 x (t) m 1 m 2 m 1 x i (t) m 2 t > i = 1, 2,..., n q x i (t) x i (t) q log x i (t) log x i (t) (2.21) t > i = 1, 2,..., n (2.2) (2.21) ζ i x i (t) x i (t) ql 1 ()e εt. (2.22) i=1 x {ζ,1} = (2.22) ζ i x i, i=1 x(t) x (t) {ζ,1} = O(e εt ). x (t) ε. 4 x (t) m 1 m 2 m 1 x i (t) m 2 t > i = 1, 2,..., n (2.17) p 3, 25, 26] (2.16) 3 1 3 4 ξ 1, ξ 2,..., ξ n, ζ 1, ζ 2,..., ζ n b i (t) ξ i a ii (t) ξ j a ij (t) ξ j b ij (t) ξ j c ij (t, s)ds <, t >, ω ζ i a ii (t), j i b i (u), j i, j i ζ j a ji (t) ξ j a + ij (u) ξ j b + ij (u) ξ j c + ij ]du (u, s) >, ζ j b ji (ψ 1 ji (t)) 1 τ ji (ψ 1 ji (t)) ζ j c ji (t + s, s) ds H i = 1, 2,..., n (1.5) ω x (t). ε > p > log x i (t) log x i (t) p x i (t) x i (t)

18 ζ i (a ii (t) εp), j i ζ j a ji (t) ζ j b ji (ψ 1 ji (t)) 1 τ ji (ψ 1 ji (t)eε(ψ 1 ji (t) t) ζ j c ji (t + s, s) e εs ds t > i = 1, 2,..., n x (t) ε. { ω 3 b i (u) ζ i a ii (t) (1.5) ζ 1, ζ 2,..., ζ n, j i, j i ] bj a ij (u) a jj m ζ j a ji (t) ζ j ] bj b ij (u) a jj m b ji (ψ 1 ji (t)) 1 τ ji (ψ 1 ji (t)) ] } bj c ij (u, s)ds du >, a jj m ζ j c ji (t + s, s) ds H i = 1, 2,..., n (1.5) ω x (t). ε > p > log x i (t) log x i (t) p x i (t) x i (t) ζ i (a ii (t) εp), j i ζ j a ji (t) ζ j b ji (ψ 1 ji (t)) 1 τ ji (ψ 1 ji (t)eε(ψ 1 ji (t) t) ζ j c ji (t + s, s) e εs ds t > i = 1, 2,..., n x (t) ε. 1 3 4 ξ i a ii (t) + ζ i a ii (t) (1.5) ξ 1, ξ 2,..., ξ n, ζ 1, ζ 2,..., ζ n, j i, j i ξ j a ij (t) + ζ j a ji (t) ξ j b ij (t) + ζ j ξ j c ij (t, s)ds >, t >, b ji (ψ 1 ji (t)) 1 τ ji (ψ 1 ji (t)) ζ j c ji (t + s, s) ds H

19 i = 1, 2,..., n (1.5) ω x (t). ε > p > ζ i (a ii (t) εp) log x i (t) log x i (t) p x i (t) x i (t), j i ζ j a ji (t) ζ j b ji (ψ 1 ji (t)) 1 τ ji (ψ 1 ji (t)eε(ψ 1 ji (t) t) ζ j c ji (t + s, s) e εs ds t > i = 1, 2,..., n x (t) ε. 2 3

3.1 Lotka Volterra (1.2) 5 ξ 1, ξ 2,..., ξ n ξ i a ii (t) + ξ j a ij (t) + ξ j d s µ ij (t, s)] > (3.1), j i t < ω i = 1, 2,..., n (1.2) x(t) M i x i (t) M i t > i = 1, 2,..., n x(t) α i = inf t { ξ i a ii (t) +, j i H = max i { λ > max i } ξ j a ij (t) + ξ j d s µ ij (t, s)] >, { } sups φ i (s), sup t<ω ξ i b + i (t) α i M i = λξ i (i = 1, 2,..., n). φ i (s) Hξ i λξ i = M i s t i ], H x i (t ) = M i, x i (t) M i, t < t, }, j i x j (t) M j, t t.

21 d log x i (t) dt = b i (t ) a i j(t )x j (t ) x j (t s)d s µ i j(t, s) t=t b i (t ) a i i (t )M i a i j (t )M j M j d s µ i j(t, s)], j i { } = b i (t ) λ ξ i a i i (t ) + ξ j a i j (t ) + ξ j d s µ i j(t, s)], j i b i (t ) λα i <, t > i = 1, 2,..., n x i (t) M i. x(t) (1.2) x(t) x(t) 5 x(t) M i H, x(t) 31] 3.2 (1.2) (1.2) ω 6 (1.2) η 1, η 2,..., η n η i a ii (t) η j a ji (t) η j dk ji (s) > (3.2), j i t < ω i = 1, 2,..., n (1.2) ω w i (t) = x i (t+ω) x i (t), z i (t) = log x i (t+ω) log x i (t) (i = 1, 2,..., n), L(t) = η i z i (t) + η i t i=1 i, t s w j (θ) dθ dk ij (s).

22 (2.15) L() { } β = min inf η i a ii (t) η j a ji (t) η j dk ji (s) >. i t, j i L(t) (1.2) dl(t) = η i sign(z i (t)) a ii (t)w i (t) dt i=1 + η i w j (t) dk ij (s) i, η i a ii (t) w i (t) + i=1 + =, j i η i w j (t) dk ij (s) i, η i a ii (t) i=1 β w(t),, j i η j a ji (t), j i a ij (t)w j (t) w j (t s) dk ij (s) a ij (t) w j (t) + w j (t s) dk ij (s) ] w j (t s)d s µ ij (t, s) w j (t s) dk ij (s) ] ] η j dk ji (s) w i (t) w(t) = n i=1 w i(t). + L(t) w(t) n=1 ω w(t) dt 1 L() < +. β x(t + nω) x(t + (n 1)ω) dt < +. Cauchy x(t + nω) L 1, ω] x(t) (1.2) x(t) {x(t + nω)} Arzéla Ascoli {x(t + n k ω)} R x (t). x (t) {x(t + nω)} L 1 ω lim x(t + nω) x (t) dt =. n f n (t) = x(t + nω) x (t). 4 f n (t), ω] x(t + nω) x (t), ω] x(t + nω) x (t) R ] ]

23 x (t) (1.2) ω x (t + ω) = lim n x ( t + (n + 1)ω ) = lim n x(t + nω) = x (t), x (t) ω (1.2) x nk (t) x(t), x nk (t) i x n k i dx n k i (t) dt = x n k i (t) b i (t) a ij (t)x n k j (t), (t) x n k j (t s)d sµ ij (t, s) ] i = 1, 2,..., n. k (1.3) {x nk (t)} R x i (t) b i (t) dx i (t) = x i (t) b i (t) dt a ij (t)x j(t) a ij (t)x j(t) x (t) (1.2). t = t + nω, t < ω, x j(t s)d s µ ij (t, s) x j(t s)d s µ ij (t, s) x(t) x (t) = x(t + nω) x (t ). {x(t + nω)}, ω] ] ]., i = 1, 2,..., n, lim x(t) t x (t) =. (3.3) (1.2) x (t). y(t) w i (t) = y i (t) x i (t) z i (t) = log y i (t) log x i (t) (i = 1, 2,..., n). x(t) y(t) (3.3) y(t) x(t) dt < +. lim y(t) x(t) =. t, lim y(t) t x (t) =.

24 ( 5) (3.1) (3.2), M a ii = inf t a ii (t) a ij = sup t a ij (t) (i j). 3 7 ξ 1, ξ 2,..., ξ n ξ i a ii ξ j a ij ξ j dk ij (s) > (3.4), j i i = 1, 2,..., n (1.2) ω (3.4) (3.1) 5 (1.2) a ii C = (c ij ) = a ij dk ii (s), i = j,, j i dk ij (s), i j. 3 (3.4) η 1, η 2,..., η n η i a ii η j a ji η j dk ji (s) > (3.5) i = 1, 2,..., n (3.2) 6 ξ 1, ξ 2,..., ξ n (3.4) ξ i = 1 (i = 1, 2,..., n), (3.4) ( 1). 7 2, 5 (3.5) C M (1.2) ω M 2 (a), M

25 6 Gauss 2] 3 3 2]

4.1 (1.2) 1 Lotka Volterra dx 1 (t) = x 1 (t)7 + sin t (6 + sin t)x 1 (t) (2 + cos t)x 2 (t 1) + (1 + sin t)x 3 (t 1)], dt dx 2 (t) = x 2 (t)4 + cos t (1 + sin t)x 1 (t 1) (5 + sin t)x 2 (t) + (2 + cos t)x 3 (t 1)], dt dx 3 (t) = x 3 (t)1 + sin t (3 + cos t)x 1 (t 1) + (1 + cos t)x 2 (t 1) (9 + cos t)x 3 (t)]. dt 1 4.1 5 (3.5) 5 3 2 C = 2 4 3. 4 2 8 C (3.4) ξ i = 1 (i = 1, 2,..., n) 5 3 2 5 3 5 >, = 14 >, 2 4 3 = 6 >. 2 4 4 2 8 3 (a) C M 5 1 ω Matlab dde23 1 4.2 4.3 4.2 t 2π 4.3

27 4.1 1 1.4 1.2 1.8 x i.6.4.2 5 1 15 2 25 3 35 t 4.2 1 2π x(s) (1,.5,.5) T.

28 1.8.6 x 3.4.2 1.2 1.8 x.6 2.4.2.4.6.8 x 1 1 1.2 1.4 4.3 1 x 3 = 2π x(s) (1,.5,.5) T, x(s) (.5, 1,.5) T x(s) (.5,.5, 1) T. x 3 = 1 (b 1 (t), b 2 (t), b 3 (t)) (7+sin t, 4+cos t, 4+sin t), (7+sin t, 1+cos t, 1+sin t) ( 1+sin t, 1+ cos t, 1 + sin t), 4.4 4.2 1 4.2 1 5 (1.2) ω 7 5 2 7, 8 (1.2) ξ 1, ξ 2,..., ξ n ξ i a ii ξ j a ij ξ j dk ij (s) > (4.1), j i i = 1, 2,..., n ω

29 x i x i (a) 1.4 1.2 1.8.6.4.2 5 1 15 2 25 3 35 (b) 1.4 1.2 1.8.6.4.2 (c) 5 1 15 2 25 3 35 1 t t.8.6 x i.4.2 2 4 6 8 1 t 4.4 1 (b 1 (t), b 2 (t), b 3 (t)) (a) (7 + sin t, 4 + cos t, 4 + sin t), (b) (7 + sin t, 1 + cos t, 1 + sin t), (c) ( 1 + sin t, 1 + cos t, 1 + sin t).

3 (4.1) 2 (2.6). 7 2 (1.2) ω x (t), ω x +(t). lim t x +(t) x (t) =. x (t) x +(t). ω 7 7 7 (1.2) 1 Lotka Volterra (1.2) dk ij (s). Lotka Volterra dx i (t) = x i (t) b i (t) dt a ij (t)x j (t) ] b ij (t)x j (t τ ij ), i = 1, 2,..., n. 7, ξ 1, ξ 2,..., ξ n ξ i a ii, j i i = 1, 2,..., n a ii ξ j a ij ξ j b ij > = inf t a ii (t), a ij = sup t a ij (t) (i j), b ij = sup t b ij (t). τ ij

31 (3.1) (3.2) t, 7 (3.4) (3.1) (3.2) 3 1 ξ 1, ξ 2,..., ξ n ξ i a ii (t) ξ j a ij (t) ξ j dk ij (s) >, j i t < ω i = 1, 2,..., n (1.2) ω Lotka Volterra (1) (2) (3) 31] Lotka Volterra (complete stability), () Lotka Volterra Lotka Volterra

1] 24. 2] T. Asai, M. Ohtani, and H. Yonezu. Analog integrated circuits for the Lotka Volterra competitive neural networks. IEEE Trans. Neural Networks, 1: 1222 1231, 1999. 3] H. Bereketoglu and I. Győri. Global asymptotic stability in a nonautonomous Lotka Volterra type system with infinite delay. J. Math. Anal. Appl., 21: 279 291, 1997. 4] A. Berman and R.J. Plemmons. Nonnegative matrices in the mathematical sciences. Academic, New York, 1979. 5] F. Brauer and C. Castillo-Chávez. Mathematical Models in Population Biology and Epidemiology. Springer, New York, 21. 6] J.C. Eilbeck and J. López-Gómez. On the periodic Lotka Volterra competition model. J. Math. Anal. Appl., 21: 58 87, 1997. 7] T. Fukai and S. Tanaka. A simple neural network exhibiting selective activation of neuronal ensembles: From winner-take-all to winners-share-all. Neural Comput., 9: 77 97, 1997. 8] K. Gopalsamy. Stability and Oscillations in Delay Differential Equations of Population Dynamics. Kluwer Academic, Dordrecht, Netherlands, 1992. 9] Y. Kuang. Delay Differential Equations with Applications in Population Dynamics. Academic, Boston, 1993. 1] Y. Li. Periodic solutions for delay Lotka Volterra competition systems. J. Math. Anal. Appl., 246: 23 244, 2. 11] Y. Li and Y. Kuang. Periodic solutions of periodic delay Lotka Volterra equations and systems. J. Math. Anal. Appl., 255: 26 28, 21. 12] A.J. Lotka. Elements of Physical Biology. Williams & Wilkins, Baltimore, 1925.

33 13] W. Lu and T. Chen. On periodic dynamical systems. Chinese Ann. Math. Ser. B, 25: 455 462, 24. 14] O. Malcai, O. Biham, P. Richmond, and S. Solomon. Theoretical analysis and simulations of the generalized Lotka Volterra model. Phys. Rev. E, 66: 3112, 22. 15] F. Montes de Oca and M.L. Zeeman. Balancing Survival and extinction in nonautonomous competitive Lotka Volterra systems. J. Math. Anal. Appl., 192: 36 37, 1995. 16] F. Montes de Oca and M.L. Zeeman. Extinction in nonautonomous competitive Lotka Volterra systems. Proc. Amer. Math. Soc., 124: 3677 3687, 1996. 17] Y. Moreau, S. Louies, J. Vandewalle, and L. Brenig. Embedding recurrent neural networks into predator prey models. Neural Networks, 12: 237 245, 1999. 18] S.A. Morris and D. Pratt. Analysis of the Lotka Volterra competition equations as a technological substitution model. Technol. Forecast. Soc. Change, 7: 13 133, 23. 19] J.D. Murray. Mathematical Biology I: An Introduction. Springer, New York, 3rd ed., 22. 2] J.M. Peña. A stable test to check if a matrix is a nonsingular M-matrix. Math. Comput., 73: 1385 1392, 24. 21] H.L. Smith. Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems. American Mathematical Society, Providence, 1995. 22] J.C. Sprott. Competition with evolution in ecology and finance. Phys. Lett. A, 325: 329 333, 24. 23] Y. Takeuchi. Global Dynamical Properties of Lotka Volterra Systems. World Scientific, Singapore, 1996. 24] B. Tang and Y. Kuang. Existence, uniqueness and asymptotic stability of periodic solutions of periodic functional differential systems. Tohoku Math. J., 49: 217 239, 1997. 25] Z. Teng. Nonautonomous Lotka Volterra systems with delays. J. Differential Equations, 179: 538 561, 22.

34 26] Z. Teng and L. Chen. Global asymptotic stability of periodic Lotka Volterra systems with delays. Nonlinear Anal., 45: 181 195, 21. 27] Z. Teng and Y. Yu. Some new results of nonautonomous Lotka Volterra competitive systems with delays. J. Math. Anal. Appl., 241: 254-275, 2. 28] A. Tineo. Existence of global attractors for a class of periodic Kolmogorov systems. J. Math. Anal. Appl., 279: 365 371, 23. 29] V. Volterra. Variazionie fluttuazioni del numero d individui in specie animali conviventi. Mem. Acad. Lincei., 2: 31 113, 1926. Variations and fluctuations of the number of individuals in animal species living together. Translation by R.N. Chapman. In: Animal Ecology. pp. 49 448. McGraw Hill, New York, 1931. 3] W. Wang, P. Fergola, and C. Tenneriello. Global attractivity of periodic solutions of population models. J. Math. Anal. Appl., 211: 498 511, 1997. 31] Z. Yi and K.K. Tan. Dynamic stability conditions for Lotka Volterra recurrent neural networks with delays. Phys. Rev. E, 66: 1191, 22. 32] J. Zhou, Z.R. Liu, and G.R. Chen. Dynamics of periodic delayed neural networks. Neural Networks, 17: 87 11, 24.

1] W. Lin and T. Chen. Positive periodic solutions of delayed periodic Lotka Volterra systems. Phys. Lett. A, 334: 273 287, 25. 2] W. Lin and T. Chen. Controlling chaos in a chaotic neuron model. Int. J. Bifurcation Chaos, accepted for publication. 3] W. Lin and T. Chen. Analysis of two restart algorithms. Neurocomputing, accepted for publication. 4] W. Lin and T. Chen. Dynamics of delayed periodic Lotka Volterra systems.