HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι είδαμε την προηγούμενη φορά. Συνεκτικότητα. 25 -Γράφοι

Σχετικά έγγραφα
HY118-Διακριτά Μαθηματικά. Τι είδαμε την προηγούμενη φορά. Θεωρία γράφων / γραφήματα. 25 -Γράφοι. ΗΥ118, Διακριτά Μαθηματικά Άνοιξη 2017

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είδαµε την προηγούµενη φορά. Συνεκτικότητα Γράφοι

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων/ γραφήματα. Τι έχουμε δει μέχρι τώρα. Ισομορφισμός γράφων: Μία σχέση ισοδυναμίας μεταξύ γράφων.

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι έχουµε δει µέχρι τώρα. Υπογράφηµα Γράφοι

HY118-Διακριτά Μαθηματικά

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων / γραφήματα. Τι έχουμε δει μέχρι τώρα. Υπογράφημα. 24 -Γράφοι

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

HY118-Διακριτά Μαθηματικά

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

ΣΧΕΔΙΑΣΗ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Βασικές Έννοιες Θεωρίας Γραφημάτων

HY118-Διακριτά Μαθηματικά. Θεωρία γράφων / γραφήματα. Τι είναι οι γράφοι; Εφαρμογές των γράφων. 23-Γράφοι

Βασικές Έννοιες Θεωρίας Γραφημάτων

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Μαθηματικά Πληροφορικής

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 2: Γραφήματα

βασικές έννοιες (τόμος Β)

Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

2 ) d i = 2e 28, i=1. a b c

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Φροντιστήριο #8 Ασκήσεις σε Γράφους 24/5/2016

Μαθηματικά Πληροφορικής

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Φροντιστήριο #9 Ασκήσεις σε Γράφους 18/5/2018

Ασκήσεις στους Γράφους. 1 ο Σετ Ασκήσεων Βαθμός Μονοπάτια Κύκλος Euler Κύκλος Hamilton Συνεκτικότητα

d(v) = 3 S. q(g \ S) S

Μη κατευθυνόµενα γραφήµατα. Στοιχεία Θεωρίας Γραφηµάτων (1) Υπογραφήµατα.

Chapter 7, 8 : Completeness

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

HY118- ιακριτά Μαθηµατικά. Θεωρία γράφων / γραφήµατα. Τι είναι οι γράφοι; Εφαρµογές των γράφων Γράφοι

Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 3: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΓΡΑΦΗΜΑΤΑ

Αναζήτηση Κατά Πλάτος

HY118- ιακριτά Μαθηµατικά

q(g \ S ) = q(g \ S) S + d = S.

ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων

Φροντιστήριο #8 Ασκήσεις σε Γράφους 16/5/2017

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Φροντιστήριο #9 Λυμένες Ασκήσεις σε Γράφους

Οι 7 Γέφυρες του Königsberg

Αναζήτηση Κατά Πλάτος

u v 4 w G 2 G 1 u v w x y z 4

ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

Το πρόβλημα μονοδρόμησης (The One-Way Street Problem)

Εισαγωγή στην Επιστήμη των Υπολογιστών

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Γραφήματα. Θέματα Υπολογισμού στον Πολιτισμό Γραφήματα

Παράδειγµα (4) Στοιχεία Θεωρίας Γραφηµάτων (2) Ορέστης Τελέλης. Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς. v 2. u 3.

Εισαγωγή στη Θεωρία Γράφων

Πολυπλοκότητα. Παράμετροι της αποδοτικότητας ενός αλγόριθμου: Χρόνος εκτέλεσης. Απαιτούμενοι πόροι, π.χ. μνήμη, εύρος ζώνης. Προσπάθεια υλοποίησης

Θεωρία Υπολογισμού και Πολυπλοκότητα

Θεωρία γραφημάτων. Παλιό αντικείμενο 18 ος αιώνας Leonhard Euler (Ελβετός μαθηματικός): πρόβλημα γεφυρών της πόλης Königsberg

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής Εξάμηνο ΣΤ ΘΕΩΡΙΑ ΓΡΑΦΩΝ

ΘΕΩΡΙΑ ΓΡΑΦΩΝ. 7 η Διάλεξη Συνεκτικότητα (Συνδεσμικότητα) Βασικές έννοιες και ιδιότητες Το θεώρημα του Merger Ισομορφισμός

Θεωρία Γραφημάτων 6η Διάλεξη

Δοµές Δεδοµένων & Ανάλυση Αλγορίθµων 3ο Εξάµηνο. Γραφήµατα. (Graphs)

Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων

Ασκήσεις στους Γράφους. 2 ο Σετ Ασκήσεων. Δέντρα

Αναζήτηση Κατά Πλάτος

Στοιχεία Θεωρίας Γραφηµάτων (2)

Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα

Τίτλος Μαθήματος: Θεωρία Γραφημάτων. Ενότητα: Συνεκτικότητα και Δισυνεκτικότητα. Διδάσκων: Λέκτορας Xάρης Παπαδόπουλος. Τμήμα: Μαθηματικών

Γράφοι: κατευθυνόμενοι και μη

f e Γράφημα (Graph) Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ

Επίπεδα Γραφήματα (planar graphs)

Υπολογιστικό Πρόβληµα

ΠΛΗ 20, 5 η ΟΣΣ: Θεωρία Γραφημάτων

(elementary graph algorithms)

Αναζήτηση Κατά Πλάτος

Κλάσεις Πολυπλοκότητας

Συνεκτικότητα Γραφήματος

για NP-Δύσκολα Προβλήματα

Θεωρία Γραφημάτων 5η Διάλεξη

Θεωρία Γραφημάτων 5η Διάλεξη

Κατευθυνόμενα και μη κατευθυνόμενα γραφήματα

Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ

Δομές Δεδομένων και Αλγόριθμοι

Προσεγγιστικοί Αλγόριθμοι

Αλγόριθµοι και Πολυπλοκότητα

HY118-Διακριτά Μαθηματικά

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Κλάση NP, NP-Complete Προβλήματα

Γράφοι. Αλγόριθμοι και πολυπλοκότητα. Στάθης Ζάχος, Δημήτρης Φωτάκης

Εισαγωγικές Έννοιες. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Σεπτέμβριος 2017

Επίπεδα Γραφήματα : Προβλήματα και Υπολογιστική Πολυπλοκότητα

Chapter 7, 8 : Time, Space Complexity

Θεωρία Γραφημάτων και Εφαρμογές - Διακριτά Μαθηματικά ΙΙ Φεβρουάριος 2017

Πρόλογος. Πρόλογος 13. Πώς χρησιμοποείται αυτό το βιβλίο 17

Αλγόριθµοι Γραφηµάτων

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Transcript:

HY118-Διακριτά Μαθηματικά Θεωρία γράφων/ γραφήματα Πέμπτη, 17/05/2018 Αντώνης Α. Αργυρός e-mail: argyros@csd.uoc.gr 17-May-18 1 1 17-May-18 2 2 Τι είδαμε την προηγούμενη φορά Ισομορφισμός γράφων Υπολογιστική πολυπλοκότητα Πρακτικώς επιλύσιμα προβλήματα Δυσεπίλυτα προβλήματα Μονοπάτια (απλά στοιχειώδη) Κυκλώματα(απλά στοιχειώδη) Συνεκτικότητα Ένας μη κατευθυνόμενος γράφος είναι συνεκτικός αν και μόνο αν υπάρχει ένα μονοπάτι μεταξύ κάθε ζεύγους διαφορετικών κόμβων του. Θεώρημα: Υπάρχει ένα απλόμονοπάτιγια κάθε ζεύγος διαφορετικών κορυφών σε ένα συνεκτικό, μη κατευθυνόμενο γράφο. 17-May-18 3 3 17-May-18 4 4 1

Κατευθυνόμενη συνεκτικότητα Συνεκτικότητα, παραδείγματα Ένας κατευθυνόμενος γράφος είναι: ισχυρά συνεκτικός αν και μόνο αν υπάρχει ένα κατευθυνόμενο μονοπάτι από το a στοb για κάθε δύο διαφορετικές κορυφές a και b. Ασθενώς συνεκτικός αν ο αντίστοιχος μη κατευθυνόμενος γράφος (δηλ., αυτός στον οποίο έχουμε βγάλει τον προσανατολισμό των ακμών) είναι συνεκτικός. 17-May-18 5 5 17-May-18 6 6 Μονοπάτια Euler και Hamilton Θα μιλήσουμε για το πρόβλημα που παρακίνησε τον Euler να επινοήσει τη θεωρία των γράφων: οι γέφυρες του Koenigsberg(πόλη που σήμερα λέγεται Kaliningrad) Το πρόβλημα των γεφυρών του Königsberg Μπορούμε να περιδιαβούμε την πόλη και, πρν επιστρέψουμε στην αρχική μας θέση, να έχουμε περάσει κάθε γέφυρα μία μόνο φορά; 17-May-18 7 7 17-May-18 8 8 2

Το πρόβλημα των γεφυρών του Königsberg Μπορούμε να περιδιαβούμε την πόλη και, πριν επιστρέψουμε στην αρχική μας θέση, να έχουμε περάσει κάθε γέφυρα μία μόνο φορά; Το αρχικό πρόβλημα Μπορείτε να «μοντελοποιήσετε» το πρόβλημα χρησιμοποιώντας όσα ξέρουμε για τους γράφους; Το πρόβλημα των γεφυρών του Königsberg Μπορούμε να περιδιαβούμε την πόλη και, πριν επιστρέψουμε στην αρχική μας θέση, να έχουμε περάσει κάθε γέφυρα μία μόνο φορά; B Το αρχικό πρόβλημα A C D Αντίστοιχος πολυγράφος 17-May-18 9 9 17-May-18 10 10 Μονοπάτια Euler & Hamilton Ορολογία: ΈναμονοπάτιEuler σε ένα γράφο G είναι ένα απλό μονοπάτι του G που περιλαμβάνει όλες τις ακμές του G. Ένακύκλωμα Euler σε ένα γράφο G είναι ένα απλό κύκλωμα του G που περιλαμβάνει όλες τις ακμές του G. Γέφυρες του Koenigsberg Οι γέφυρες είναι ακμές. Επομένως, η απάντηση στο πρόβλημα είναι ΘΕΤΙΚΗ αν και μόνο αν ο γράφος του προβλήματος περιλαμβάνει ένα κύκλωμα Euler. Στην πραγματικότητα, δεν περιέχει 17-May-18 11 11 17-May-18 12 12 3

Θεωρήματα για την ύπαρξη μονοπατιών/κυκλωμάτων Euler Θεώρημα: Ένας συνεκτικός πολυγράφος περιλαμβάνει κύκλωμα Euler αν και μόνο αν κάθε κορυφή έχει άρτιο βαθμό. Γέφυρες του Koenigsberg επομένως δεν υπάρχει κύκλωμα Euler. A Θεώρημα: Ένας συνεκτικός πολυγράφοςέχει ένα μονοπάτιeuler αν και μόνο αν έχει ακριβώς 2 κορυφές περιττού βαθμού. B C Το αρχικό πρόβλημα D Αντίστοιχος πολυγράφος 17-May-18 13 13 17-May-18 14 14 Μονοπάτια/κυκλώματα Euler Τι λέτε για τον παρακάτω γράφο; Θεώρημα για την ύπαρξη κυκλώματος Euler Σχέδιο απόδειξης για το ότι ο άρτιος βαθμός των κορυφών συνεπάγεται την ύπαρξη κυκλώματος Euler: Ξεκινάμε από ένα τυχαίο κόμβο. Κατασκευάζουμε ένα απλό μονοπάτι προσπαθώντας να φτάσουμε εκεί απ όπου ξεκινήσαμε. Ο γράφος είναι συνεκτικός και κάθε κόμβος έχει άρτιο βαθμό, επομένως μπορούμε να επισκεφτούμε κάθε κόμβο και αν «πάμε» σε κάποιο κόμβο μπορούμε να φύγουμε από αυτόν Το ότι ο γράφος είναι πεπερασμένος συνεπάγεται ότι η διαδικασία τελικά θα τερματίσει. Σημειώστε ότι η πλήρης απόδειξη δίνει ένα αλγόριθμο: πρόκειται για μία κατασκευαστική απόδειξη μίας πρότασης. 17-May-18 15 15 17-May-18 16 16 4

Κυκλώματα Euler για κατευθυνόμενους γράφους Ένας συνεκτικός κατευθυνόμενος γράφος περιλαμβάνει κύκλωμα Euler αν και μόνο αν για κάθε κορυφή του v ισχύει ότι deg + (v) = deg - (v) Μονοπάτια/κυκλώματα Hamilton Ένα μονοπάτιeuler στο Gείναι ένα απλόμονοπάτι που περιέχειόλες τις ακμέςτου G. ΈνακύκλωμαEuler στο G είναι ένα απλό κύκλωμαπου περιέχειόλες τις ακμέςτου G. ΈναμονοπάτιHamilton του G είναι ένα στοιχειώδες μονοπάτιπου περνά από όλες τις κορυφέςτου G. ΈνακύκλωμαHamilton του Gείναι ένα στοιχειώδες κύκλωμαπου περιέχει όλες τις κορυφές του G. 17-May-18 17 17 17-May-18 18 18 Θεωρήματα Παραδείγματα Θεώρημα του Dirac: Εάν(αλλά όχι μόνο αν) ένας γράφος G είναι συνεκτικός, απλός, έχει n 3 κορυφές, και v deg(v) n/2, τότεο G περιλαμβάνει ένα κύκλωμα Hamilton. 17-May-18 19 19 17-May-18 20 20 5

Πρόβλημα Έστω το εξής πρόβλημα: Δοσμένου ενός απλού γράφου G, περιέχει το G ένα κύκλωμα Hamilton; Αυτό το πρόβλημα έχει είναι NP-πλήρες (NPcomplete) Όπως είπαμε, αυτό σημαίνει πως, εάν βρεθεί ένας αλγόριθμος που να λύνει αυτό το πρόβλημα σε πολυωνυμικό χρόνο, θα μπορούσε να χρησιμοποιηθεί για να επιλύσει όλα ταυπόλοιπα NP προβλήματα σε πολυωνυμικό χρόνο. Βεβαρυμένος γράφος Ένας γράφος G=(V, E, f, h) όπου: V, E όπως έχουμε ήδη δει f: V R (συνάρτηση βαρών κορυφών) h: E R (συνάρτηση βαρών ακμών) Μία από τις δύο συναρτήσεις μπορεί να λείπει. 17-May-18 21 21 17-May-18 22 22 Βεβαρυμένος γράφος, παράδειγμα Βεβαρυμένος γράφος, προβλήματα Το πρόβλημα του συντομότερου μονοπατιού: Δοσμένου ενός συνεκτικού, βεβαρυμένου γράφου όπου τα βάρη των ακμών εκφράζουν απόσταση κόμβων, βρες το συντομότερο μονοπάτι από ένα συγεκριμένο κόμβο σε ένα άλλο (Αλγόριθμος του Dijkstra, πολυπλοκότητα n 2 ) Το πρόβλημα των συντομότερων μονοπατιών μεταξύ όλων των δυνατών ζευγών κόμβων: Αλγόριθμος Floyd-Warshal, πολυπλοκότητα n 3 17-May-18 23 23 17-May-18 24 24 6

Βεβαρυμένος γράφος, προβλήματα Βεβαρυμένος γράφος, προβλήματα Το πρόβλημα του περιοδεύοντος πωλητή(traveling salesman):ένας πωλητής θέλει να ξεκινήσει από την πόλη του, να επισκεφτεί όλες τις άλλες πόλεις μία μόνο φορά και να επιστρέψει πίσω στην πόλη του έχοντας διανύσει την ελάχιστη δυνατή απόσταση. Η «μετάφραση» στη θεωρία γράφων:δοσμένου ενός συνεκτικού, βεβαρυμένουγράφου όπου τα βάρη των ακμών εκφράζουν απόσταση κόμβων, βρες το κύκλωμα Hamilton με το μικρότερο δυνατό άθροισμα βαρών των ακμών που συμμετέχουν. 17-May-18 25 25 17-May-18 26 26 Επίπεδοι γράφοι Ένας γράφος ονομάζεται επίπεδος (planar) αν μπορούμε να τον σχεδιάσουμε στο επίπεδο με τέτοιο τρόπο ώστε οι ακμές του να μην τέμνονται μεταξύ τους. Επίπεδοι γράφοι Για ένα απλό, συνεκτικό, επίπεδογράφο με nκορυφές και e ακμές, τα ακόλουθα θεωρήματα ισχύουν: Θεώρημα1: Εάν n 3 τότε e 3n 6 Θεώρημα2. Εάν n> 3 και δεν υπάρχουν κύκλοι μήκους3, τότε e 2n 4. 17-May-18 27 27 17-May-18 28 28 7

Επίπεδοι γράφοι: ο τύπος του Euler Εάν ένας συνεκτικός, επίπεδος γράφος σχεδιαστεί στο επίπεδο χωρίς οι ακμές του να τέμνονται, καιn το πλήθος των κορυφών, eτο πλήθος των ακμών και f το πλήθος των περιοχών, τότε n e+ f= 2. Επίπεδοι γράφοι Το πρόβλημα του να αποφασιστεί κατά πόσον δύο επίπεδοι γράφοι είναι ισομορφικοί μπορεί να λυθεί σε πολυωνυμικό χρόνο! 17-May-18 29 29 17-May-18 30 30 Δέντρα Δέντροονομάζεται οποιοσδήποτε συνεκτικός γράφος χωρίς κύκλωμα Δάσος:Μη συνεκτικός γράφοςτου οποίου οι συνεκτικές συνιστώσες είναι δέντρα Ένας κόμβος με βαθμό 1 ονομάζεται τερματικός ή φύλλο, και όλοι οι υπόλοιποι εσωτερικοί Κάθε δέντρο με n κόμβους έχειn 1 ακμές Κάθε συνεκτικός γράφοςμε n 1 ακμές είναι ένα δέντρο Πολλές χρήσεις: Δέντρα απόφασης, συντακτικά δέντρα, Δέντρα κάλυψης Ένα υπογράφημαt ενός γράφουg ονομάζεται δέντρο κάλυψης εάν το T είναι δέντρο και περιλαμβάνει όλους τους κόμβους του G Κάθε συνεκτικός γράφοςέχει ένα δέντρο κάλυψης Ένα ελάχιστο δέντρο κάλυψης είναι ένα δέντρο κάλυψης με τον ελάχιστο συνολικό βάρος ακμών. 8

Ε Π Ι Λ Ο Γ Ο Σ Ολοκλήρωση της θεωρίας του ΗΥ118 Καλή επιτυχία στις εξετάσεις σας! Καλό καλοκαίρι!! Ραντεβού στα ΗΥ472, ΗΥ672 σε λίγα χρόνια!!! Καλή επιτυχία στις υπόλοιπες σπουδές σας!!!! 17-May-18 33 33 9