Critical Dynamics in Driven-Dissipative Bose-Einstein Condensation

Σχετικά έγγραφα
Higher spin gauge theories and their CFT duals

Markov chains model reduction

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ERG for a Yukawa Theory in 3 Dimensions

([28] Bao-Feng Feng (UTP-TX), ( ), [20], [16], [24]. 1 ([3], [17]) p t = 1 2 κ2 T + κ s N -259-

Forced Pendulum Numerical approach

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

The Feynman-Vernon Influence Functional Approach in QED

LTI Systems (1A) Young Won Lim 3/21/15

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

EE 570: Location and Navigation


Ηλεκτρονικοί Υπολογιστές IV

Parametrized Surfaces

( y) Partial Differential Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

Probability and Random Processes (Part II)

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Geodesic paths for quantum many-body systems

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

D Alembert s Solution to the Wave Equation

8.324 Relativistic Quantum Field Theory II

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

UV fixed-point structure of the 3d Thirring model

Non-Gaussianity from Lifshitz Scalar

Constitutive Relations in Chiral Media

Bayesian modeling of inseparable space-time variation in disease risk

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

PHASE TRANSITIONS IN QED THROUGH THE SCHWINGER DYSON FORMALISM

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Supplementary Appendix

A thermodynamic characterization of some regularity structures near the subcriticality threshold

The Wilson-Fisher Fixed Point via ERG

Lifting Entry (continued)

Connec&ng thermodynamics to sta&s&cal mechanics for strong system-environment coupling

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

The Spiral of Theodorus, Numerical Analysis, and Special Functions

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Motion analysis and simulation of a stratospheric airship

Thesis presentation. Turo Brunou

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Distances in Sierpiński Triangle Graphs

Thermoelectrics: A theoretical approach to the search for better materials

SPECIAL FUNCTIONS and POLYNOMIALS

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Hartree-Fock Theory. Solving electronic structure problem on computers

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Derivation of Optical-Bloch Equations

Computing the Gradient

CorV CVAC. CorV TU317. 1

Higher Derivative Gravity Theories

Biostatistics for Health Sciences Review Sheet

Dark matter from Dark Energy-Baryonic Matter Couplings

Survival Analysis: One-Sample Problem /Two-Sample Problem/Regression. Lu Tian and Richard Olshen Stanford University

Chapter 9 Ginzburg-Landau theory

Free Energy and Phase equilibria

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Reminders: linear functions

Fundamentals of Signals, Systems and Filtering

Exercises to Statistics of Material Fatigue No. 5

On the Galois Group of Linear Difference-Differential Equations

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ECON 381 SC ASSIGNMENT 2

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

A Lambda Model Characterizing Computational Behaviours of Terms

4.6 Autoregressive Moving Average Model ARMA(1,1)

EE512: Error Control Coding

Homework 8 Model Solution Section

u = g(u) in R N, u > 0 in R N, u H 1 (R N ).. (1), u 2 dx G(u) dx : H 1 (R N ) R

Φαινόμενο Unruh. Δημήτρης Μάγγος. Εθνικό Μετσόβιο Πολυτεχνείο September 26, / 20. Δημήτρης Μάγγος Φαινόμενο Unruh 1/20

ΔΗΜΟΣΙΕΥΣΕΙΣ σε περιοδικά με κριτές

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China


Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

ΕΚΠ 413 / ΕΚΠ 606 Αυτόνοµοι (Ροµ οτικοί) Πράκτορες


Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Space-Time Symmetries

100x W=0.1 W=

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Supplementary Information Chemical Partition of the Radiative Decay Rate of Luminescence of Europium Complexes

Optical Feedback Cooling in Optomechanical Systems

Variational Wavefunction for the Helium Atom

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

ˆ ˆŠ - Œ ˆ Œˆ Šˆ ˆ ƒˆ

DuPont Suva 95 Refrigerant

Approximation of dynamic boundary condition: The Allen Cahn equation

Supplementary Material for The Cusp Catastrophe Model as Cross-Sectional and Longitudinal Mixture Structural Equation Models

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

Comparison of Evapotranspiration between Indigenous Vegetation and Invading Vegetation in a Bog

Srednicki Chapter 55

Transcript:

Critical Dynamics in Driven-Dissipative Bose-Einstein Condensation Uwe C. Täber 1 and Sebastian Diehl Weigang Li 1 1 Department of Physics, Virginia Tech, Blacsbrg, Virginia, USA Institte of Theoretical Physics, TU Dresden, Germany Renormalization Methods in Statistical Physics and Lattice Field Theories Montpellier, 8 Agst 015 Ref.: Phys. Rev. X 4, 01010 (014); arxiv:131.518

Otline Experimental Motivation Langevin Description of Critical Dynamics Driven-Dissipative Bose Einstein Condensation Relationship with Eilibrim Critical Dynamics Scaling Laws and Critical Exponents Onsager Machlp Fnctional Janssen De Dominicis Response Fnctional One-Loop Renormalization Grop Analysis Two-Loop Renormalization Grop Analysis Conserved Dynamics Variant Critical Aging and Otloo

Experimental Motivation Pmped semicondctor antm wells in optical cavities: driven Bose Einstein condensation of exciton-polaritons J. Kasprza et al., Natre 443, 409 (006); K.G. Lagodais et al., Natre Physics 4, 706 (008) Theoretical approach: I nonlinear Langevin dynamics, mapped to path integral I pertrbatively analyze ltraviolet divergences (d dc = 4) I scale (µ) dependence, flow eations for rnning coplings I emerging symmetry: ξ indces scale invariance I critical RG fixed point scale invariance, infrared scaling laws I loop expansion in ϵ = dc d 1 critical exponents

Langevin Description of Critical Dynamics Critical slowing-down as correlated regions grow (τ T T c ): relaxation time t c (τ) ξ(τ) z τ zν, dynamic exponent z coarse-grained description: fast modes random noise mesoscopic Langevin eation for slow variables S α (x, t) Example: prely relaxational critical dynamics ( model A ): S α (x, t) t = D δh[s] δs α (x, t) + ζα (x, t), ζ α (x, t) = 0, ζ α (x, t) ζ β (x, t ) = D B T δ(x x ) δ(t t ) δ αβ Einstein relation garantees that P[S, t] e H[S]/ BT as t non-conserved order parameter: D = const. conserved order parameter: relaxes diffsively, D D Generally: mode coplings to additional conserved, slow fields varios dynamic niversality classes

Driven-Dissipative Bose Einstein Condensation Noisy Gross Pitaevsii eation for complex bosonic field ψ: ψ(x, t) [ i = (A id) µ + iχ t + (λ iκ) ψ(x, t) ] ψ(x, t) + ζ(x, t) A = 1/m eff ; D diffsivity (dissipative); µ chemical potential; χ pmp rate - loss; λ, κ > 0: two-body interaction / loss noise correlators: (γ = 4D B T in eilibrim) ζ(x, t) = 0 = ζ(x, t) ζ(x, t ) ζ (x, t) ζ(x, t ) = γ δ(x x ) δ(t t ) r = χ D, r = µ D, = 6κ D, r K = A D, r U = λ κ, ζ iζ time-dependent complex Ginzbrg Landa eation ψ(x, t) t = D [ r + ir (1 + ir K ) + 6 (1 + ir U) ψ(x, t) ] ψ(x, t) + ζ(x, t)

Relationship with Eilibrim Critical Dynamics Model A relaxational inetics for non-conserved order parameter: ψ(x, t) t = D δ H[ψ] δψ + ζ(x, t) (x, t) with non-hermitean Hamiltonian [ (r H[ψ] = d d x + ir ) ψ(x, t) + (1 + ir K ) ψ(x, t) + 1 (1 + ir U) ψ(x, t) 4] (1) r = r K = r U = 0: eilibrim model A for non-conserved two-component order parameter, GL-Hamiltonian H[ψ] () r = r U r, r K = r U 0: S 1/ = Re/Imψ, H = (1 + ir K ) H S α (x, t) t = D δh[ S] δs α (x, t) + Dr K β ϵ αβ δh[ S] δs β (x, t) + η α(x, t) η α (x, t) = 0, η α (x, t) η β (x, t ) = γ δ αβ δ(x x ) δ(t t ) effective eilibrim dynamics with detailed balance (FDT)

Scaling Laws and Critical Exponents (Bi-)critical point τ, τ = r K τ 0: correlation length ξ(τ) τ ν niversal scaling for dynamic response and correlation fnctions: 1 ( ω ) χ(, ω, τ) η (1 + ia η η ˆχ c ) z (1 + ia η η, ξ c ) 1 ( ω ) C(, ω, τ) Ĉ z, ξ, a η η c +z η five independent critical exponents (three in eilibrim: ν, η, z) Non-pertrbative (nmerical) renormalization grop stdy: d = 3: ν 0.716, η = η 0.039, z.11, η c 0.3 L.M. Sieberer, S.D. Hber, E. Altman, S. Diehl, Phys. Rev. Lett. 88, 04570 (013); Phys. Rev. B 89, 134310 (014) Thermalization: one-loop scenario (); two-loop model A (1) Critical exponents in ϵ = 4 d expansion: ν = 1 + ϵ 10 + O(ϵ ), η = ϵ 50 + O(ϵ3 ) z = + cη, c = 6 ln 4 3 1 + O(ϵ) as for eilibrim model A; in addition, novel critical exponent: η c = c η, c = ( 4 ln 4 3 1) + O(ϵ), bt FDT η = η ϵ = 1: ν 0.65, η = η 0.0, z.0145, η c 0.0030146

Onsager Machlp Fnctional Copled Langevin eations for mesoscopic stochastic variables: S α (x, t) = F α [S](x, t) + ζ α (x, t), ζ α (x, t) = 0, t ζ α (x, t)ζ β (x, t ) = L α δ(x x ) δ(t t ) δ αβ systematic forces F α [S], stochastic forces (noise) ζ α noise correlator L α : can be operator, fnctional of S α Assme Gassian stochastic process probability distribtion: [ W[ζ] exp 1 tf d d x dt ζ α (x, t) [ (L α ) 1 ζ α (x, t) ]] 4 0 α switch variables ζ α S α : W[ζ] D[ζ] = P[S]D[S] e G[S] D[S], with Onsager-Machlp fnctional providing field theory action: G[S] = 1 d d x dt ( t S α F α [S]) [ (L α ) 1 ( t S α F α [S]) ] 4 α fnctional determinant = 1 with forward (Itô) discrectization normalization: D[ζ]W [ζ] = 1 partition fnction = 1 problems: (L α ) 1, high non-linearities F α [S] (L α ) 1 F α [S]

Janssen De Dominicis Response Fnctional Average over noise histories : A[S] ζ D[ζ] A[S(ζ)] W [ζ]: se 1 = D[S] α (x,t) δ( t S α (x, t) F α [S](x, t) ζ α (x, t) ) = D[i S] D[S] exp [ d d x dt S α α ( t S α F α [S] ζ α ) ] [ A[S] ζ D[i S] D[S] exp d d x dt ] S α ( t S α F α [S]) α ( A[S] D[ζ] exp d d x dt α perform Gassian integral over noise ζ α : A[S] ζ = D[S] A[S] P[S], P[S] [ ]) 1 4 ζα (L α ) 1 ζ α S α ζ α D[i S] e A[ S,S], with Janssen De Dominicis response fnctional tf A[ S, S] = d d x dt [ Sα ( t S α F α [S]) S ] α L α Sα 0 α D[i S] D[S] e A[ S,S] = 1; integrate ot S α Onsager Machlp

One-Loop Renormalization Grop Analysis Casality: propagator directed line, noise two-point vertex two-point vertex fnction with γ = 4DT, r = r U r, = T : [ Γ ψψ (, ω) = iω+d r(1+ir U )+(1+ir K ) + 3 (1+ir U) + ] 1 r + flctation-indced shift of critical point: τ = r r c, τ = r U τ + + + ( ) = r U r K : β = R 1 + r KR R + R R3 1+rKR R 0 [ ] β = R ϵ + 5 3 R R 3(1+rKR ) R R thermalization; to O(ϵ): ν 1 = 5 ϵ, η = η c = η = 0, z =

Two-Loop Renormalization Grop Analysis two-loop Feynman graphs for two-point vertex fnctions Γ ψ ψ (, ω), Γ ψψ (, ω) special case r = 0: T. Risler, J. Prost, and F. Jülicher, Phys. Rev. E 7, 016130 (005) + + - + - + + RG beta fnction β rk : r KR 0, hence to O(ϵ ): + 9ΒrK R 1 + + η = η = ϵ 50 + O(ϵ3 ) ( z = + ϵ 50 6 ln 4 3 ( 1) η c = ϵ 50 4 ln 4 3 1) 10 8 6 4 sbleading scaling exponent 0.5 1.0 1.5.0.5 3.0 rkr

Conserved Dynamics Variant Complex model B variant for conserved order parameter: t ψ(x, t) = D δ H[ψ] δψ + ζ(x, t), ζ(x, t) = 0 (x, t) ζ (x, t) ζ(x, t ) = 4T D δ(x x ) δ(t t ) non-linear vertex to all orders: Γ ψψ ( = 0, ω) = iω, Γ ψ ψ (, ω = 0) =0 = DT exact scaling relations: η = η, z = 4 η dynamic scaling laws: 1 ( χ(, ω, τ) η (1 + ia η η ˆχ c ) C(, ω, τ) 1 6 η Ĉ ( ω 4 η, ξ, a η ηc ) ω 4 η (1 + ia η η c ), ξ to two-loop order: η c = η + O(ϵ 3 ) = ϵ 50 + O(ϵ3 ) non-eilibrim drive indces no independent critical exponent )

Critical Aging and Otloo Qench from random initial conditions onto critical point: time translation invariance broen t c : system always remembers disordered initial state critical aging scaling in limit t /t 0: ( t ) θ χ(, t, t z +η (, τ) t 1 + ia η η ˆχ z ( 1 + ia ) ) η ηc t, ξ c model A: θ = γ 0 /z, γ 0 = 5 ϵ + O(ϵ ) as in eilibrim inetics model B: θ = 0 exactly Crrent and ftre projects: critical ench of driven complex Model A: two-loop analysis coarsening, critical aging in sitable spherical model limit? thermalization and emerging Model E dynamics?