EN40: Dynamics and Vibrations

Σχετικά έγγραφα
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

IIT JEE (2013) (Trigonomtery 1) Solutions

Consider a single-degree-of-freedom system in a free-fall due to gravity. &&x

Solve the difference equation


ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

α β

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 8.3 Trigonometric Equations

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Second Order RLC Filters

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Matrices and Determinants

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Homework 3 Solutions

LAD Estimation for Time Series Models With Finite and Infinite Variance

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

the total number of electrons passing through the lamp.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

The Simply Typed Lambda Calculus

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Fourier Series. Fourier Series

Example Sheet 3 Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Forced Pendulum Numerical approach

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Section 8.2 Graphs of Polar Equations

Section 9.2 Polar Equations and Graphs

Inverse trigonometric functions & General Solution of Trigonometric Equations

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Probability and Random Processes (Part II)

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Every set of first-order formulas is equivalent to an independent set

2 Composition. Invertible Mappings

Outline. Detection Theory. Background. Background (Cont.)

SPECIAL FUNCTIONS and POLYNOMIALS

Homework 8 Model Solution Section

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Spherical Coordinates

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Solutions to Exercise Sheet 5

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

, -.

EE 570: Location and Navigation

10.7 Performance of Second-Order System (Unit Step Response)

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Partial Differential Equations in Biology The boundary element method. March 26, 2013

6.003: Signals and Systems. Modulation

Test Data Management in Practice

Approximation of distance between locations on earth given by latitude and longitude

«Συμπεριφορά μαθητών δευτεροβάθμιας εκπαίδευσης ως προς την κατανάλωση τροφίμων στο σχολείο»

Fractional Colorings and Zykov Products of graphs

derivation of the Laplacian from rectangular to spherical coordinates

Homework for 1/27 Due 2/5

Differentiation exercise show differential equation

EE512: Error Control Coding

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

( y) Partial Differential Equations

Outline. M/M/1 Queue (infinite buffer) M/M/1/N (finite buffer) Networks of M/M/1 Queues M/G/1 Priority Queue

DERIVATION OF MILES EQUATION Revision D

4.6 Autoregressive Moving Average Model ARMA(1,1)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ME 374, System Dynamics Analysis and Design Homework 9: Solution (June 9, 2008) by Jason Frye

Solutions: Homework 3

Section 7.6 Double and Half Angle Formulas

Trigonometry 1.TRIGONOMETRIC RATIOS

Degenerate Perturbation Theory

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

Dynamic types, Lambda calculus machines Section and Practice Problems Apr 21 22, 2016

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Laplace s Equation in Spherical Polar Coördinates

6. MAXIMUM LIKELIHOOD ESTIMATION

Statistical Inference I Locally most powerful tests

Presentation of complex number in Cartesian and polar coordinate system

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Areas and Lengths in Polar Coordinates

Nonlinear Motion. x M x. x x. cos. 2sin. tan. x x. Sextupoles cause nonlinear dynamics, which can be chaotic and unstable. CHESS & LEPP CHESS & LEPP

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Bessel function for complex variable

Finite Field Problems: Solutions

Other Test Constructions: Likelihood Ratio & Bayes Tests

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΟΔΟΝΤΙΑΤΡΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΟΔΟΝΤΙΚΗΣ ΚΑΙ ΑΝΩΤΕΡΑΣ ΠΡΟΣΘΕΤΙΚΗΣ

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Transcript:

EN40: Dyamics a Vibratios School of Egieerig Brow Uiversity Solutios to Differetial Equatios of Motio for Vibratig Systems Here, we summarize the solutios to the most importat ifferetial equatios of motio that we ecouter whe aalyzig sigle egree of freeom liear systems. The solutios are erive here if you are curious, but we wo t ask you to erive the solutios i exams. ASE I: ASE II ASE III ASE IV 1 x + x= 1 x x= α 1 x ς + + x= 1 x ς + + x = + KF() t with Ft ( ) = F 0 sit ASE V 1 x ς ς y + + x= + K y + with y = Y 0 sit ASE VI 1 x ς K y x + + = with y = Y0 sit

SOLUTION 1: The equatio 1 with iitial coitios has solutio or, equivaletly x + x= x= x = v t = ( φ) x= + X0 si t+ 1 ( x0 ) X0 ( x0 ) v0 / ta = + φ = v0 v xt ( ) = + ( x 0 0 )cost+ sit SOLUTION The equatio with iitial coitios 1 x x= α has solutio x= x = v t = 1 v0 1 v ( ) ( 0 x t = + x0 ) exp t ( x0 ) exp t + α + + α ( α ) ( α )

SOLUTION 3 The equatio with iitial coitios has the followig solutios: 1 x ς + + x= x= x = v t = ase I: Overampe System ς > 1 v0 + ( ς )( 0 ) 0 ( )( 0 ) ( ) exp( ) + x v + ς exp( ) x xt = + ςt exp( ) where = ς 1 ase II: ritically Dampe System ς = 1 x( t) = + ( x ) + v + ( x ) t exp( t) { [ ] } 0 0 0 ase III: Uerampe System ς < 1 v0 + ς ( 0 ) ( ) exp( ) ( 0 )cos x xt = + ςt x + si where = 1 ς The graphs below show x(t) for two types of iitial coitio: the first graph shows results with v =, while the seco graph shows results with x 0 = 0. Both results are for =0. 0 0 Graphs of solutios to ODE goverig free vibratio of a ampe sprig-mass system

SOLUTION 4: 1 x ς + + x = + KF() t with Ft ( ) = F 0 sit a iitial coitios x= x0 = v0 t = 0 has solutio of the form xt () = + xh() t + xp() t where the steay state solutio (or particular itegral) is xp( t) = X0si ( t + φ) X0 = KF0M ( /, ζ) 1 M ( /, ζ) = φ = ta ( 1 / ) + ( ς / ) ς / 1 1/ 1 / while the trasiet solutio (or homogeeous solutio, or complemetary solutio) is: ase I: Overampe System ς > 1 h h h h v0 + ( ς ) 0 0 ( ) ( ) exp( ) + x v + ς exp( ) x x 0 h t = ςt exp( ) where = ς 1 ase II: ritically Dampe System ς = 1 h h h { 0 0 0 } xh( t) = x + v + x t exp( t) ase III: Uerampe System ς < 1 where = 1 ς h h h v ( ) exp( ) 0 + ς 0 0 cos x xh t = ςt x + si I all three preceig cases, we have set h x = x x (0) = x X siφ 0 0 p 0 0 h p v0 = v0 = v0 X0cos t= 0 Observe that for large time, the trasiet solutio always ecays to zero. φ

The graphs below plot the amplitue of the steay state vibratio a the steay state phase lea. (a) (b) Steay state respose of a force sprig mass system (a) amplitue a (b) phase SOLUTION 5 The equatio a iitial coitios has solutio of the form 1 x ς ς y + + x= + K y + x= x = v t = xt () = xh() t + xp() t with yt ( ) = Y0 sit where the steay state solutio (or particular itegral) is x ( t) = X si t + φ X = KY M ( /, ζ) p ( ) { 1+ ( ς / ) } 1/ 3 3 1 ς / M ( /, ) ta ζ = φ = 1/ 1 (1 4 ς ) / ( 1 / ) + ( ς / ) while the trasiet solutio (or homogeeous solutio) is: ase I: Overampe System ς > 1 h h h h v0 + ( ς ) 0 0 ( ) ( ) exp( ) + x v + ς exp( ) x x 0 h t = ςt exp( )

where = ς 1 ase II: ritically Dampe System ς = 1 h h h { 0 0 0 } xh( t) = x + v + x t exp( t) ase III: Uerampe System ς < 1 where = 1 ς h h h v ( ) exp( ) 0 + ς 0 0 cos x xh t = ςt x + si I all three preceig cases, we have set h x = x x (0) = x X siφ 0 0 p 0 0 h p v0 = v0 = v0 X0cos t= 0 Observe that for large time, the trasiet solutio always ecays to zero. The graphs below show the steay state amplitue a phase φ (a) (b) Steay state respose of a base excite sprig mass system (a) Amplitue a (b) Phase

SOLUTION 6 The equatio 1 x ς K y x + + = with y = Y0 sit a iitial coitios x= x0 = v0 t = 0 has solutio of the form xt () = x () t + x () t where the steay state solutio (or particular itegral) is x ( t) = X si t + φ X = KY M ( /, ζ) p ( ) h / 1 / ( /, ) ς M ta ζ = φ = 1/ 1 / ( 1 / ) + ( ς / ) p while the trasiet solutio (or homogeeous solutio) is: ase I: Overampe System ς > 1 h h h h v0 + ( ς ) 0 0 ( ) ( ) exp( ) + x v + ς exp( ) x x 0 h t = ςt exp( ) where = ς 1 ase II: ritically Dampe System ς = 1 h h h { 0 0 0 } xh( t) = x + v + x t exp( t) ase III: Uerampe System ς < 1 where = 1 ς I all three preceig cases, we have set h h h v ( ) exp( ) 0 + ς 0 0 cos x xh t = ςt x + si

h x0 = x0 xp (0) = x0 X0si h p v0 = v0 = v0 X0cosφ t= 0 Observe that for large time, the trasiet solutio always ecays to zero. The graphs below show the steay state amplitue a phase lea for ase 6. φ (a) (b) Steay state respose of a rotor excite sprig mass system (a) Amplitue; (b) Phase