Financial Economic Theory and Engineering Formula Sheet

Σχετικά έγγραφα
Financial Economic Theory and Engineering Formula Sheet

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

Credit Risk. Finance and Insurance - Stochastic Analysis and Practical Methods Spring School Jena, March 2009

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Mean-Variance Analysis

Financial Risk Management

Homework 8 Model Solution Section

Probability and Random Processes (Part II)

(1) P(Ω) = 1. i=1 A i) = i=1 P(A i)

FORMULAS FOR STATISTICS 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Homework for 1/27 Due 2/5

Financial Risk Management

Part III - Pricing A Down-And-Out Call Option

Math 6 SL Probability Distributions Practice Test Mark Scheme

6. MAXIMUM LIKELIHOOD ESTIMATION


Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Statistical Inference I Locally most powerful tests

2 Composition. Invertible Mappings


Other Test Constructions: Likelihood Ratio & Bayes Tests

Instruction Execution Times

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

Το άτομο του Υδρογόνου

Solution Series 9. i=1 x i and i=1 x i.

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Νόµοςπεριοδικότητας του Moseley:Η χηµική συµπεριφορά (οι ιδιότητες) των στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Every set of first-order formulas is equivalent to an independent set

The ε-pseudospectrum of a Matrix

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

An Inventory of Continuous Distributions

ST5224: Advanced Statistical Theory II

(x y) = (X = x Y = y) = (Y = y) (x y) = f X,Y (x, y) x f X

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

SPECIAL FUNCTIONS and POLYNOMIALS

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

4.6 Autoregressive Moving Average Model ARMA(1,1)

No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Matrices and Determinants

Math221: HW# 1 solutions

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

Lifting Entry (continued)

Advanced Subsidiary Unit 1: Understanding and Written Response


Ι ΙΟΤΗΤΕΣ ΤΩΝ ΑΤΟΜΩΝ. Παππάς Χρήστος Επίκουρος Καθηγητής

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

Solutions to Exercise Sheet 5

Areas and Lengths in Polar Coordinates

5.4 The Poisson Distribution.

C.S. 430 Assignment 6, Sample Solutions

Approximation of distance between locations on earth given by latitude and longitude

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Areas and Lengths in Polar Coordinates

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

( ) ( ) ( ) ( ) ( ) 槡 槡 槡 ( ) 槡 槡 槡 槡 ( ) ( )

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Lecture 7: Overdispersion in Poisson regression

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ΠΕΡΙΟΔΙΚΟΣ ΠΙΝΑΚΑΣ ΣΤΟΙΧΕΙΩΝ

Gaussian related distributions

Introduction to the ML Estimation of ARMA processes

Premia 14 Closed Formula Methods

( y) Partial Differential Equations

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Limit theorems under sublinear expectations and probabilities

m i N 1 F i = j i F ij + F x

6.3 Forecasting ARMA processes

Calculating the propagation delay of coaxial cable

MOTORCAR INSURANCE I

Depth versus Rigidity in the Design of International Trade Agreements. Leslie Johns

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

ΜΕΤΡΑ ΚΙΝΔΥΝΟΥ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

On the Galois Group of Linear Difference-Differential Equations

Geodesic Equations for the Wormhole Metric

Empirical best prediction under area-level Poisson mixed models

TeSys contactors a.c. coils for 3-pole contactors LC1-D


Homework 3 Solutions

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

X(f) E(ft) df x[i] = 1 F. x(t) E( ft) dt X(f) = x[i] = 1 F

Partial Differential Equations in Biology The boundary element method. March 26, 2013

D Alembert s Solution to the Wave Equation

τροχιακά Η στιβάδα καθορίζεται από τον κύριο κβαντικό αριθµό (n) Η υποστιβάδα καθορίζεται από τους δύο πρώτους κβαντικούς αριθµούς (n, l)

Lecture 26: Circular domains

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Transcript:

Financial Economic heory and Engineering Formula Sheet 2011 Morning and afternoon exam booklets will include a formula package identical to the one attached to this study note. he exam committee felt that by providing many key formulas, candidates would be able to focus more of their exam preparation time on the application of the formulas and concepts to demonstrate their understanding of the syllabus material and less time on the memorization of the formulas. he formula sheet was developed sequentially by reviewing the syllabus material for each major syllabus topic. Candidates should be able to follow the flow of the formula package easily. We recommend that candidates use the formula package concurrently with the syllabus material. Not every formula in the syllabus is in the formula package. Candidates are responsible for all formulas on the syllabus, including those not on the formula sheet. Candidates should carefully observe the sometimes subtle differences in formulas and their application to slightly different situations. For example, there are several versions of the Black-Scholes-Merton option pricing formula to differentiate between instruments paying dividends, tied to an index, etc. Candidates will be expected to recognize the correct formula to apply in a specific situation of an exam question. Candidates will note that the formula package does not generally provide names or definitions of the formula or symbols used in the formula. With the wide variety of references and authors of the syllabus, candidates should recognize that the letter conventions and use of symbols may vary from one part of the syllabus to another and thus from one formula to another. We trust that you will find the inclusion of the formula package to be a valuable study aide that will allow for more of your preparation time to be spent on mastering the learning objectives and learning outcomes. 1

General Formulas Lognormal distribution: { 1 fx) = xσ 2π exp 1 } lnx) µ) 2 2 σ 2 ) EX = e µ+σ2 /2 VX = e 2µ+σ2 e σ2 1 ) lnx) µ PrX x = Φ σ x > 0 Normal distribution: fx) = 1 { σ 2π exp 1 } x µ) 2 2 σ 2 Capital Asset Pricing Model: ER i = R f + β i ER m R f ) where β i = CovR i, R m ) VarR m Weighted Average Cost of Capital: B WACC = 1 τ c )k b B + S + k S s B + S where k b =return on debt, k s =return in equity. GARCH1,1) Model Y t = µ + σ t ɛ t σ 2 t = α 0 + α 1 Y t 1 µ) 2 + βσ 2 t 1 RSLN-2 Model Y t ρ t N µ ρt, σ 2 ρ t ) where {ρt }, t = 1, 2,..., is a Markov process with 2-states. p ij = Prρ t+1 = j ρ t = i Conditional ail Expectation For loss L, continuous at V α = F 1 L α): CE α L) = EL L > V α L) If there is a probability mass at V α, define β = max{β : V α = V β }, then CE α L) = 1 β )E X X > V α + β α)v α 1 α 2

Vasicek Model dr = ab r)dt + σdz Pt, ) = At, )e Bt,)rt) t) 1 e a Bt, ) + t)a 2 b σ 2 /2) Bt, ) = At, ) = exp σ2 Bt, ) 2 a a 2 4a Cox Ingersoll Ross Model dr = ab r)dt + σ rdz Bt, ) = Ho-Lee Model 2e γ t) 1) γ + a)e γ t) 1) + 2γ dr = θt)dt + σdz rt) t) Pt, ) = At, )e lnat, ) = ln Pt, ) = At, )e Bt,)rt) At, ) = θt) = F t 0, t) + σ 2 t P0, ) P0, t) + t)f0, t) 1 2 σ2 t t) 2 Hull-White Extended Vasicek) Model dr = θt) ar)dt + σdz Pt, ) = At, )e Bt,)rt) a+γ) t)/2 2γe γ + a)e γ t) 1) + 2γ θt) = F t 0, t) + af0, t) + σ2 ) 1 e 2at 2a t) 1 e a Bt, ) = a P0, ) 1 lnat, ) = ln + Bt, )F0, t) e a e at) 2 e 2at 1 ) P0, t) 4a 3σ2 Itô s Lemma Let X be an Itô process such that dx t = ut, X t )dt + vt, X t )dw t, and let gt, x) denote a twice differentiable function, then for Y t = gt, X t ) dy t = gt, X t) t dt + gt, X t) x Geometric Brownian Motion dx t + 1 2 2 gt, X t ) x 2 dx t ) 2. 2ab/σ 2 ds t S t = µdt + σ dz t Black-Scholes Pricing Formulas c t = S t Nd 1 ) Ke r t) Nd 2 ) 3

p t = Ke r t) N d 2 ) S t N d 1 ) where d 1 = lns t/k) + r + σ 2 /2) t) σ t and d 2 = d 1 σ t 4

Copeland, Weston, Shastri: Financial heory and Corporate Policy Chapter 2 2.2) Rev t + m t S t = Div t + W&S) t + I t 2.5) NI t = Rev t W&S) t dep t 2.7) NI t A t S 0 = 1 + k s ) t t=1 2.13) FCF = EBI1 τ c ) + dep I Chapter 6 6.34) R jt = ER jt ) + β j δ mt + ε jt 6.36) R jt R ft = R mt R ft )β j + ε jt 6.36) R pt = γ 0 + γ 1 β p + ε pt 6.37) R it = α i + β i R mt + ε it 6.38) ER i ) = ER Z ) + ER m ) ER Z ) β i 6.40) ER i ) R f = b i ER m ) R f + s i ESMB) + h i EHML) 6.41) λ i = ER m ) ER Z ) 6.46) R it = γ 0t + γ 1t β it + ε it 6.49) ER i ) = ER z,i ) + ER I ) ER z,i )β i,i 6.50) R i = E R i ) + b i1 F 1 +... + b ik F k + ε i 6.57) E R i ) = λ 0 + λ 1 b i1 +... + λ k b ik 6.59) ER i ) R f = δ1 R f bi1 +... + δk R f bik 6.60) b ik = CovR i, δ k )/V arδ k ) Chapter 9 9.1) CS A, S B, ) = S A Nd 1 ) S B Nd 2 ) where d 1 = lns A /S B ) + V 2 /V ; d 2 = d 1 V and V 2 = V 2 A 2ρ AB V A V B + V 2 B Chapter 10 10.1) V η) m qm) max a pe m)ua, e) V η 0 ) e 5

10.4) pr c 2 ) + 1 p)dr c 2 ) = pr/d c 1 ) + 1 p)r c 1 ) 10.7) Fair Game: ε j,t+1 = P j,t+1 P jt P jt EP j,t+1 η t ) P jt P jt = 0 10.9a) Submartingale: EP j,t+1 η t ) P jt P jt = Er j,t+1 η t ) > 0 10.9b) Martingale: EP j,t+1 η t ) P jt = Er j,t+1 η t ) = 0 P jt 10.14) ER jt β jt ) = R jt + ER mt β mt ) R ft βjt Chapter 11 11.2) R jt = α j + β 1j R mt R ft ) + β 2j RLE t RSE t ) + β 3j HBM t LBM t ) + ε jt 11.3) NI jt = â + ˆb j m t + ε jt 11.4) NI j,t+1 = â + ˆb j m t+1 Chapter 12 12.1) V α) = 1 µα) λ 1 + r) 12.3) W 0 = X + βv M + Y 1 α)v α) 12.4) W 1 = αµ + ε µα) + λ + β M 1 + r)v M + 1 + r)w 0 X) + µα) λ )) E U W 1 ) 12.5) = E U W1 µ + ε µα) + λ + 1 α)µ α ) = 0 α )) E U W 1 ) 12.6) = E U W 1 ) M 1 + r)v M = 0 where µ α = µ β α ) E U W 1 ε + λ) 12.7) 1 α)µ α = ) E U W1 12.15) ED) = 1 V D) + µ τ p D β 1 + r 12.16) ED) = 1 1 + r D X V D) + t2 τ pd β D2 2t 12.17) V D ) = τ p + β D t 12.18) V D t) = 1 t r 2 τ pd t) β D t) 2 2t 6 X D)fX)dX

12.20) V D t) = τ p + βa)d t) 12.21) τp 1 + r τp A = + β 1 + 2r β 12.22) I + D = C + Np e = C + P e L τ p D + 12.24) max D 12.25) τ p = τ p + P ) D 1 + r 1 + 1 + 2r P + τp D L P + τ p D + I C L + I C P + τ p D + I C X 12.26) DX) = 1 τ p maxi C + L, 0)ln X 12.30) V0 old = P E + S + a + b) P + E 12.36) W 0 z) = αpz) + βp m, P) 12.37) W s n, z) = α Pn, z) + βp n, p) 12.38) W n = α P n t 2 p γ 1 = 0 ) X 12.40) Pn, z) = kn + cz) 1/γ where k = t 2 γ/α) 1/γ β1 + 2r) τ 2 p 1 + r) 2 12.41) Mn, z) = Pn, z) n, P) = k1 t 1 )n + cz) 1/γ t 2 nk 1 γ n + cz) 1 γ)/γ 12.45) V 0 = 1 t)x 0 12.46) EX n) = Xn) = X 0s 0 + Ŷmn)s m s 0 + s m 12.47) V 1 n) = Xn) n) C 12.50) V 2, Y ) = X 0s 0 + Ŷ m s m + Y Fs E s 0 + s m + Fs XtX/n), Ŷm, Y C X 0 s 0 +Y ms m s 0 +s m )Fs X 0 s 0 + Ŷ m s m + 12.51) EV 2 ) Y m = C s 0 + s m + Fs ) ) dα B 12.54) V n) Bn, D) αd) = 0 dd D ) ) ) ) d 2 α dα B 2 B 12.55) V n) Bn, D) 2 αd) < 0 dd 2 dd D D 2 12.56) α D n)) V n) B n, D n)) V n) I = 0 d 2 α dα B 12.57) V B) 2 dd2 dd D B dd α 2 D 2 dn = dα dd 12.58) εα, D) = a D 0 ) 2 + D 2 1 α α 2 7 B n dv dn ) ) 2 B + α n D

αɛ γ) 12.59) D = X 1 1 α)1 ɛ)γ 12.60) max U s cs, p) fs, p a)dsdp 12.61) 12.63) cs,p),a V cs, p) fs, p a)dsdp Ga) V U s cs, p) V cs, p) 12.65) max Uk) + λ a 12.68) max cs),a 12.70) 12.73) max cs,p),a 12.74) 12.75) = λ V cs, p)fs, p a)dsdp Ga) V Us cs)fs a)ds + λ +µ V cs) f a s a)ds G a) U s cs) = λ + µ f as a) V cs) fs a) U s cs, p) fs, p a)dsdp+λ +µ U s cs, p) V cs, p) U s cp) V cp) V cs, p)f a s, p a)dsdp G a) = λ + µ f as, p a) fs, p a) V cs)fs a)ds Ga) V f a1 p a) = λ + µ 1 fp a) + µ f a1 p a) 2 fp a) +... + µ f a1 p a) n fp a) 12.81) max cs,p,m),am),mm) E s,p,m U s cs,p, m) am) 12.82) Subject to for all m) E s,p m V cs,p, m) Gam) am) V V X ) X = PX ) X CX ) X = 0 12.83) S = 1 β)es) α λ1 β)covs, R M) 1 + r f 12.86) max α,β V cs, p)fs, p a)dsdp Ga) V 1 β)es) α λ1 β)covs, R M ) 1 + r f +µ a EW) + α + βes) b VarW) + 2βCovW, s) + β 2 Vars) V ) 12.90) β = λacovs, R M) CovW, s) 2bVars) Vars) { ) V + db 12.94) B new B = D P D + dd, 1,, r f, σ V + P 8 )} V D, 1,, r f, σ V = D P X +P Y )

Chapter 15 15.2) V U = E FCF) or V U = EẼBI)1 τ c ) ρ ρ ) 15.3) ÑI + k d D = Rev Ṽ C FCC dep 1 τ c ) + k d Dτ c 15.4) V L = EẼBI)1 τ c ) ρ 15.6) V L = V U + τ c B 15.9) 15.11) V L I = S0 I + Sn + B 0 I 1 τ c ) EEBI) I > ρ + k ddτ c k b = S0 I + 1 ) 1 τ c B I 15.18) k s = NI/ S = ρ + 1 τ c )ρ k b ) B S 15.20) G = V L V U = τ c B 15.21) V U = EEBI)1 τ c)1 τ ps ) ρ 15.23) V L = V U + 1 1 τ c)1 τ ps ) 1 τ pb ) 15.28) β L = 1 + 1 τ c ) B S β U B where B = k d D1 τ pb )/k b 15.33) R f S L + λ 1 τ c )CovEBI, R m ) λ 1 τ c )B CovR bj, R m ) = EEBI)1 τ c ) ER bj )B1 τ c ) 15.38) ds = S S dv + V t dt + 1 2 S V 2 dt 2 2 V 2σ2 15.40) r s = S V V S r V 15.43) S = V Nd 1 ) e r f DNd 2 ) 15.46) β S = 1 1 D/V )e r f Nd 2 )/Nd 1 ) β V 15.47/8) k s = R f + R m R f )Nd 1 ) V S β V = R f + Nd 1 )R v R f ) V S 15.52) k b = R f + ρ R f )N d 1 ) V B Note: his is a correction to the formula in the reading. 15.55) dv V = µv, t)dt + σdw 9

15.57) 1 2 σ2 V 2 F V V V ) + rv F V V ) rfv ) + C = 0 15.58) FV ) = A 0 + A 1 V + A 2 V 2r/σ2 ) 15.59) V = V B BV ) = 1 α)v B V BV ) C/r 15.61) BV ) = 1 p B )C/r + p B 1 α)v B where p B = V/V B ) 2r/σ2 15.62) V = V B DCV ) = αv B V DCV ) 0 15.63) DCV ) = αv B V/V B ) 2r/σ2 15.67) V L V ) = V U V ) + c BV ) DCV ) = V U V ) + c B p B c B αv B p B { V1 if V 15.68) M = 1 + r)γ 0 V 0 + γ 1 D 1 V 1 C if V 1 < D 15.69) { γ0 1 + r) V 1a 1+r M a = 1V 1a if D < D V 1a γ 0 1 + r) V 1b 1+r 1V 1a if D < D 15.70) { γ0 1 + r) V 1a 1+r M b = 1V 1b C) if D D V 1a γ 0 1 + r) V 1b 1+r 1V 1b if D < D Chapter 16 16.2) V i t) = Div it + 1) + n i t)p i t + 1) 1 + k u t + 1) 16.8) Ṽ i t) = ẼBI it + 1) Ĩit + 1) + Ṽit + 1) 1 + k u t + 1) ) 16.9) Ỹ di = ẼBI rdc 1 τ c ) rd pi 1 τ pi ) 16.10) Ỹ gi = ẼBI rd c )1 τ c )1 τ gi ) rd pi 1 τ pi ) 16.26) S 1 ES 1 ) = ε 1 1 + γ = EBI 1 E 0 EBI 1 ) 1 + k 16.27) Div it = a i + c i Div it Div i,t 1 ) + U it 16.33) Div t = β 1 Div t 1 + β 2 NI t + β 3 NI t 1 + Z t 16.35) P it = a + bdiv it + cre it + ε it 16.38) Rj = γ 0 + Rm γ 0 β j + γ 1 DY j DY m /DY m + ε j ) W PE P 0 P P 0 16.43) = 1 F P ) + F P N 0 P 0 P 0 P 0 1 + γ 1 + k 10

Hull: Options Futures and Other Derivatives Chapter 12: Binomial rees 12.1) = f u f d S 0 u S 0 d 12.5/6) f = e r t pf u + 1 p)f d where p = er t d u d 12.13/14) u = e σ t d = e σ t Chapter 13: Wiener Processes and Itôs Lemma 13.17) G = lns dg = µ σ 2 /2 ) dt + σ dz Chapter 14: he Black-Scholes-Merton model f f 14.9) df = µs + S t + 1 ) 2 f S 2 dt + f 2 S 2σ2 S σsdz 14.16) f t + rs f S + 1 2 σ2 S 2 2 f S 2 = rf Chapter 18: Greek Letters 18. ) call) = Nd 1 ) put) = Nd 1 ) 1 18.2) Θcall) = S 0N d 1 )σ 2 18.2) Θput) = S 0N d 1 )σ 2 18. ) Γcall) = Γput) = N d 1 ) S 0 σ 18.4) Θ + rs + 1 2 σ2 S 2 Γ = rπ rke r Nd 2 ) 18. ) Vcall) = Vput) = S 0 N d 1 ) 18. ) rhocall) = Ke r Nd 2 ) 18. ) rhoput) = Ke r N d 2 ) + rke r N d 2 ) Chapter 20: Basic Numerical Procedures 20.8) = f 1,1 f 1,0 S 0 u S 0 d 11

20.9) Γ = f 2,2 f 2,1 )/S 0 u 2 S 0 ) f 2,1 f 2,0 )/S 0 S 0 d 2 ) h 20.10) Θ = f 2,1 f 0,0 2 t 20.12) p = eft) gt) t d u d 20.27) a j f i,j 1 + b j f i,j + c j f i,j+1 = f i+1,j where a j = 1 2 r q)j t 1 2 σ2 j 2 t, b j = 1 + σ 2 j 2 t + r t and c j = 1 2 r q)j t 1 2 σ2 j 2 t 20.34) f i,j = a j f i+1,j 1 + b j f i+1,j + c j f i+1,j+1 where a j = 1 1 1 + r t 2 r q)j t + 1 ) 2 σ2 j 2 t, b j = 1 1 σ 2 j 2 t ) 1 + r t and c 1 1 j = 1 + r t 2 r q)j t + 1 ) 2 σ2 j 2 t 20.35) α j f i,j 1 + β j f i,j + γ j f i,j+1 = f i+1,j where α j = t ) r q σ2 2 Z 2 and γ j = t ) r q σ2 2 Z 2 t 2 Z 2σ2 t 2 Z 2σ2 β j = 1 + t Z 2σ2 + r t 20.36) α jf i+1,j 1 + βjf i+1,j + γj f i+1,j+1 = f i,j where α 1 j = t ) r q σ2 1 + r t 2 Z 2 and βj = 1 1 t ) 1 + r t Z 2σ2 and γ j = 1 1 + r t t 2 Z r q σ2 2 ) + t 2 Z 2σ2 + t 2 Z 2σ2 Chapter 22: Estimating Volatilities and Correlations 22.7) σ 2 n = λσ2 n 1 + 1 λ)u2 n 1 22.8) σn 2 = γv L + αu 2 n 1 + βσ2 n 1 m 22.12) lnv i ) u2 i i=1 22.13) E σn+t 2 = VL + α + β) ) t σn 2 V L v i 12

Chapter 25: Exotic Options Call on a call S 0 e q 2 M a 1, b 1 ; ) 1 / 2 K 2 e r 2 M a 2, b 2 ; ) 1 / 2 e r 1 K 1 Na 2 ) where a 1 = lns 0/S ) + r q + σ 2 /2) 1 σ 1 a 2 = a 1 σ 1 b 1 = lns 0/K 2 ) + r q + σ 2 /2) 2 σ 2 b 2 = b 1 σ 2 Put on a call K 2 e r 2 M a 2, b 2 ; ) 1 / 2 S 0 e q 2 M a 1, b 1 ; ) 1 / 2 + e r 1 K 1 N a 2 ) Call on a put K 2 e r 2 M a 2, b 2 ; ) 1 / 2 S 0 e q 2 M a 1, b 1 ; ) 1 / 2 e r 1 K 1 N a 2 ) Put on a put S 0 e q 2 M a 1, b 1 ; ) 1 / 2 K 2 e r 2 M a 2, b 2 ; ) 1 / 2 + e r 1 K 1 Na 2 ) Chooser maxc, p) = c + e q 2 1 ) max 0, Ke r q) 2 1 ) S 1 ) Barrier Options λ = r q + σ2 /2 σ 2 x 1 = lns 0/H) σ If H K y = lnh2 /S 0 K) σ + λσ y 1 = lnh/s 0) σ + λσ + λσ c di = S 0 e q H/S 0 ) 2λ Ny) Ke r H/S 0 ) 2λ 2 N If H K c do = S 0 Nx 1 )e q Ke r N x 1 σ ) S 0 e q H/S 0 ) 2λ Ny 1 ) + Ke r H/S 0 ) 2λ 2 N If H > K c ui = S 0 Nx 1 )e q Ke r N x 1 σ ) S 0 e q H/S 0 ) 2λ N y) N y 1 ) +Ke r H/S 0 ) 2λ 2 y + σ ) N 13 y σ ) y 1 σ ) y 1 + σ )

If H K p ui = S 0 e q H/S 0 ) 2λ N y) + Ke r H/S 0 ) 2λ 2 N If H K p uo = S 0 N x 1 )e q + Ke r N x 1 + σ ) +S 0 e q H/S 0 ) 2λ N y 1 ) Ke r H/S 0 ) 2λ 2 N y + σ ) y 1 + σ ) If H K p di = S 0 N x 1 )e q + Ke r N x 1 + σ ) + S 0 e q H/S 0 ) 2λ Ny) Ny 1 ) Ke r H/S 0 ) N 2λ 2 y σ ) N y 1 σ ) Lookback Options c fl = S 0 e q Na 1 ) S 0 e q σ 2 where a 1 = lns 0/S min )+r q+σ 2 /2) σ a 3 = lns 0/S min )+ r+q+σ 2 /2) σ Y 1 = 2r q σ2 /2)lnS 0 /S min ) σ 2 p fl = S max e r Nb 1 ) where b 1 = lnsmax/s 0)+ r+q+σ 2 /2) σ b 2 = b 1 σ b 3 = lnsmax/s 0)+r q σ 2 /2) σ Y 2 = 2r q σ2 /2)lnS max/s 0 ) σ 2 Exchange Options 25.5) V 0 e q V Nd 1 ) U 0 e q U Nd 2 ) 2r q) N a 1) S min e r a 2 = a 1 σ where d 1 = lnv 0/U 0 ) + q U q V + ˆσ 2 /2) ˆσ and ˆσ = σu 2 + σ2 V 2ρσ Uσ V Realized volatility: σ = 252 n 1 ln n 2 25.6) Ê V ) = 2 ln F 0 S 2 ) Na 2 ) σ2 2r q) ey 1 N a 3 ) σ2 2r q) ey 2 N b 3 ) )+S 0 e q σ 2 2r q) N b 2) S 0 e q Nb 2 ) i=1 F0 S 1 + 2 Si+1 14 S i S K=0 d 2 = d 1 ˆσ ) 2 1 1 pk)dk + ck)dk K 2er K=S K 2er

25.7) L var Ê V ) V K e r 25.8) S K=0 25.9) Ê σ) = 1 K 2er pk)dk + Ê V ) ck)dk = K 2er { } 1 1 var V ) 8 Ê V ) 2 K=S 1 ) 2 F0 25.10) Ê V ) = S 1 + 2 n i=1 K i e r QK Ki 2 i ) n i=1 K i e r QK Ki 2 i ) Chapter 26: More on Models and Numerical Procedures 26.2, 3) ds S = r q)dt + V dz S dv = av L V )dt + ξv α dz V Chapter 27: Martingales and Measures 27.4) Π = σ 2 f 2 )f 1 σ 1 f 1 ) f 2 27.5) Π = µ 1 σ 2 f 1 f 2 µ 2 σ 1 f 1 f 2 ) t 27.7) df = µdt + σdz f 27.8) µ r = λ σ n 27.13) µ r = λ i σ i 27.14) d i=1 ) f = σ f σ g ) f g g dz 27.20) f 0 = P0, )E f ) 27.23) st) = Pt, 0) Pt, N ) At) f 27.25) f 0 = A0)E A A) 27.26) c = P0, )E maxs K, 0) ) V 27.31) f 0 = U 0 E U max 1, 0 U 27.32) f 0 = V 0 Nd 1 ) U 0 Nd 2 ) 27.35) α v = ρσ v σ w 15

Chapter 28: Interest Rate Derivatives: he Standard Market Models 28.1) c = P0, )F B Nd 1 ) KNd 2 ) 28.2) p = P0, )KN d 2 ) F B N d 1 ) where d 1 = lnf B/K) + σ 2 B/2 σ B 28.3) F B = B 0 I P0, ) 28.4) σ B = Dy 0 σ y d 2 = d 1 σ B 28.7, Caplet) Lδ k P0, t k+1 )F k Nd 1 ) R K Nd 2 ) where d 1 = lnf k/r K ) + σ 2 k t k/2 σ k tk d 2 = d 1 σ k tk 28.8, Floorlet) Lδ k P0, t k+1 )R K N d 2 ) F k N d 1 ) 28.10) LA s 0 Nd 1 ) s k Nd 2 ) where A = 1 m mn i=1 P0, i ) Chapter 29: Convexity, iming, and Quanto Adjustments 29.1) E y ) = y 0 1 2 y2 0σ 2 y G y 0 ) G y 0 ) 29.2) E R ) = R 0 + R2 0σ 2 Rτ 1 + R 0 τ 29.3) α V = ρ V W σ V σ W 29.4) E V ) = E V )exp ρ V Rσ V σ R R 0 ) 1 + R 0 /m Chapter 30: Interest Rate Derivatives: Models of the Short Rate 30.20) c = LP0, s)nh) KP0, )Nh σ p ) p = KP0, )N h + σ p ) LP0, s)n h) h = 1 σ p ln σ p = σ a 30.24) P m+1 = LP0, s) P0, )K + σ p 2 1 e as ) 1 e 2a n m 2a j= n m Q m,j exp g α m + j x) t 16

Chapter 32: Swaps Revisited 32.1) F i + F 2 i σ 2 i τ i t i 1 + F i τ i 31.2) y i 1 2 y2 i σ 2 y,it i G i y i) G i y i) y iτ i F i ρ i σ y,i σ F,i t i 1 + F i τ i 32.3) V i + V i ρ i σ W,i σ V,i t i Hardy: Investment Guarantees Chapter 2 AR1) 2.7): 2.7) Y t = µ + ay t 1 µ) + σε t ARCH1) 2.8-9): ε t independent and identically distributed iid), ε t N0, 1) 2.8) Y t = µ + σ t ε t 2.9) σt 2 = a 0 + a 1 Y t 1 µ) 2 ARCH1) with AR1) stock price 2.10-11): 2.10) Y t = µ + ay t 1 µ) + σ t ε t ε t iid N0, 1) 2.11) σt 2 = a 0 + αy t 1 µ) 2 GARCH1,1) 2.12-13): 2.12) Y t = µ + σ t ε t 2.13) σ 2 t = a 0 + α 1 Y t 1 µ) 2 + βσ 2 t 1 GARCH1,1) with AR1) stock price 2.14-15): 2.14) Y t = µ + ay t 1 µ) + σ t ε t ε t iid N0, 1) 2.15) σ 2 t = α 0 + α 1 Y t 1 µ) 2 + βσ 2 t 1 Chapter 3 3.1) Lθ) = fx 1, X 2,..., X n ; θ) 3.2) Lθ) = n fx t ; θ) lθ) = t=1 n logfx t ; θ) t=1 17

3.3) Lθ) = fx 1 ; θ)fx 2 ; θ x 1 )fx 3 ; θ x 1, x 2 ) fx n ; θ x 1,..., x n 1 ) n 3.4) lθ) = logfx t ; θ x 1,..., x t 1 ) t=1 3.5) EY t = µ for all t 3.6) EY t µ)y t j µ) = γ j for all t and j 3.7) bθ) = Eˆθ θ Lognormal model 3.13-14,22-23): 3.13) ˆµ = ȳ n t=1 3.14) ˆσ = y t ˆµ) 2 n ) σ 3.22) Σ = 2 /n 0 0 σ 2 /2n ) ˆσ 3.23) Σ 2 /n 0 0 ˆσ 2 /2n AR1) model 3.24-27): 3.24) Y t Y t 1 Nµ1 a) + ay t 1, σ 2 ) t = 2, 3,..., n 1 a 2 3.25, 26) lµ, σ, a) = log 2πσ exp 2 + n log t=2 { 1 2 { 1 2πσ 2exp 1 2 )} ) Y1 µ) 2 1 a 2 ) σ 2 )} ) Yt 1 a)µ ay t 1 ) 2 = n 2 log2π) + 1 2 log1 a2 ) nlogσ { 1 Y1 ) µ) 2 1 a 2 ) n ) } Yt 1 a)µ ay t 1 ) 2 + 2 σ 2 σ 2 t=2 σ 2 3.27) V ˆµ ARCH1) 3.28-30): σ 2 n1 a 2 ) V ˆσ σ2 2n 1 a2 V â n 3.28) Y t = µ + σ t ε t 3.29) σ 2 t = a 0 + a 1 Y t 1 µ) 2 3.30) Y t Y t 1 N µ, a 0 + a 1 Y t 1 µ) 2) t = 2, 3,..., n 18

GARCH1,1) 3.31-33): 3.31) Y t = µ + σ t ε t 3.32) σ 2 t = α 0 + α 1 Y t 1 µ) 2 + βσ 2 t 1 3.33) Y t Y t 1 Nµ, σt 2 ) t = 2, 3,..., n 3.35) µ = ȳ σ = s y Chapter 8 8. ) F = F 0 S S 0 1 m) 8.3) P 0 = Ge r Φ d 2 ) S 0 1 m) Φ d 1 ) where d 1 = log S 0 1 m) /G ) + r + σ 2 /2) σ d 2 = d 1 σ ) n 8.8) H0) = Ge rt Φ d 2 ) ) n tp τ x µd) x,t dt + S0 1 m) t Φ d 1 ) ) tp τ x µd) x,t dt 0 8.9) H0, t 3 ) = P S t 1 ) + S 0 1 m) t 1) { 1 + Pt2 t 1 )1 + Pt 3 t 2 )) + 1 m) t 2 t 1 Pt 3 t 2 ) } 8.15) α = S 0 1 m) t 1 where P S t 1 ) = BSPS 0 1 m) t 1, G, t 1 ) B S 0 ä τ x:n i 8.19) HE t = Ht) + t 1 q d x G Ft ) +) Ht ) 8.22) C t = τ S t Ψ t Ψ t 1 0 FE-108-07 and FE-165-08: Doherty; Integrated Risk Management Chapter 13 p. 465) p. 481) V E) = V F) V D) = V F) D DF + PV F), D) = CV F), D) V F) = S + D 1 + m ) n p. 494) V R E) = C + V RF) D + P {V r F), D} = C + V R D + P R V NE) = V N F) D + P {V N F), D} = V N D + P N 19

Chapter 16 16.1) + E + P)1 + r i ) L 16.2) E) = E P RI; S))1 + ER i )) ELa)) + hci; S) a 16.3) E) a = ELa)) a 1 + h C I I L L a = 0 Manistre and Hancock; Variance of the CE Estimator p. 130) C ˆEα) = 1 k k j=1 x j) p. 131) V ARC ˆE) = EV ARC ˆE X k) ) + V AREC ˆE X k) ) p. 131) V ARC ˆE) V ARx 1),..., x k) ) + α C ˆE x k) ) 2 p. 132) C ˆEα) = 1 k p. 133) IF V ar x) = k i=1 x i) 1 α) fv ar) k V ârα) = x k) x < V ar 0 x = V ar x > V ar α fv ar) { V ar CE x < V ar p. 133) IF CE x) = V ar CE + x > V ar x V ar 1 α p. 133) V ARC ˆE n ) EIF CE) 2 n = V ARX X > V ar) + α CE V ar)2 n 1 α) p. 133) V ARV âr n ) EIF V ar) 2 n = α 1 α) n fv ar) 2 p. 133) CovC ˆE n, V âr n ) EIF CE IF V ar n = α CE V ar) n fv ar) p. 134) FSECE) = V ARX 1),..., X k) ) + α C ˆE X k) ) 2 20 n 1 α)

p. 134) FSEV ar) = 1 α 1 α) ˆfV ar) n p. 134) CôvCE, V ar) = α C ˆE X k) ) n ˆfV âr) p. 146) V ARV âr n ) E GIF V ar ) 2 n = V AR GWH n fv ar) 2 p. 146) V ARC ˆE n ) E GIF CE ) 2 n = V AR GWX V ar)h n 1 α) 2 p. 146) CovC ˆE n, V âr n ) E GIF CE IF V ar n = Cov GWH, WHX V ar) n fv ar) 1 α) p. 146) V ARV âr n ) 1 α) EFW X V ar 1 + α n fv ar) 2 p. 146) V ARC ˆE n ) V AR F WHX V ar) n 1 α) 2 = E FW X V ar V AR F X V ar n 1 α) + CE V ar)2 E F W X V ar 1 + α) n 1 α) + Cov FW, X V ar) 2 X V ar n 1 α) p. 146) CovC ˆE, V âr) Cov FW, X V ar X V ar n fv ar) + 1 α n fv ar) {E FW X V ar 1 + α} 21

FE-106-07: Ho and Lee, he Oxford Guide to Financial Modeling Chapter 5: Interest Rate Derivatives: Interest Rate Models 5.10) dr = a 1 + b 1 l r)dt + rσ 1 dz dl = a 2 + b 2 r + c 2 l)dt + lσ 2 dw 5.12) dv = Mt, r)dt + Ωt, r)dz Mt, r) = V t + µt, r)v r + 1 2 σt, r)2 V rr Ωt, r) = σt, r)v r Chapter 6: Implied Volatility Surface: Calibrating the Models 6.10) Lk, j + 1) = Lk, j)exp k i=j+1 6.13) P, i ; ) = P + ) P ) Li,j) Λ 1+Li,j) i j 1Λ k j 1 Λ2 k j 1 2 2 + 1 t= 1 t=1 ht) ht) δ i where ht) = 1 1 + δ t ) + k j 1 Z FE-114-07: Capital Allocation in Financial Firms p.116 NPV = 1 d)v {S + } C µ) 1 + m)v {S } = µ dv {S + } + mv {S }) V {S + } V {S } z = σnz)+znz)) 1+r) = σnz) zn z)) 1+r) = C1 + r)/σ FE-151-08: Babbel and Merrill, Real and Illusory Value Creation by Insurance Companies 2) V E) = F + V A ) PV L) + O Smith: Investor & Management Expectations of the Return on Equity Measure vs. Some Basic ruths of Financial Accounting E t EV t = t ROEx IRR)E x 1 1 + IRR) t x x=1 22