Chapter 7a. Elements of Elasticity, Thermal Stresses

Σχετικά έγγραφα
4.2 Differential Equations in Polar Coordinates

21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics

Fundamental Equations of Fluid Mechanics

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Tutorial Note - Week 09 - Solution

Curvilinear Systems of Coordinates

STEADY, INVISCID ( potential flow, irrotational) INCOMPRESSIBLE + V Φ + i x. Ψ y = Φ. and. Ψ x

ANTENNAS and WAVE PROPAGATION. Solution Manual

The Friction Stir Welding Process

VEKTORANALYS. CURVILINEAR COORDINATES (kroklinjiga koordinatsytem) Kursvecka 4. Kapitel 10 Sidor

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Example 1: THE ELECTRIC DIPOLE

dx x ψ, we should find a similar expression for rθφ L ψ. From L = R P and our knowledge of momentum operators, it follows that + e y z d

e t e r Cylindrical and Spherical Coordinate Representation of grad, div, curl and 2

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Physics 401 Final Exam Cheat Sheet, 17 April t = 0 = 1 c 2 ε 0. = 4π 10 7 c = SI (mks) units. = SI (mks) units H + M

Laplace s Equation in Spherical Polar Coördinates

The Laplacian in Spherical Polar Coordinates

Problems in curvilinear coordinates

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

3.7 Governing Equations and Boundary Conditions for P-Flow

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Homework 8 Model Solution Section

A SIMPLE WAY TO ESTABLISH THE EQUATION OF SHELLS s YIELD SURFACE

Chapter 2. Stress, Principal Stresses, Strain Energy

Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by

Graded Refractive-Index

Strain and stress tensors in spherical coordinates

Course Reader for CHEN 7100/7106. Transport Phenomena I

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΝΕΚΤΙΚΗΣ ΡΟΗΣ ΜΕ ΕΛΕΥΘΕΡΗ ΕΠΙΦΑΝΕΙΑ ΚΑΤΑ ΤΗ ΙΑ ΟΣΗ ΚΥΜΑΤΩΝ ΠΑΝΩ ΑΠΟ ΠΥΘΜΕΝΑ ΜΕ ΠΤΥΧΩΣΕΙΣ ΠΕΡΙΛΗΨΗ

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 8.3 Trigonometric Equations

Orbital angular momentum and the spherical harmonics

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ

d 2 y dt 2 xdy dt + d2 x

Areas and Lengths in Polar Coordinates

Inflation and Reheating in Spontaneously Generated Gravity

Chapter 6 BLM Answers

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Spherical Coordinates

r = x 2 + y 2 and h = z y = r sin sin ϕ

Answer sheet: Third Midterm for Math 2339

ECE 222b Applied Electromagnetics Notes Set 3a

Areas and Lengths in Polar Coordinates

Chapter 7 Transformations of Stress and Strain

九十七學年第一學期 PHYS2310 電磁學期中考試題 ( 共兩頁 )

Example Sheet 3 Solutions

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

ASYMMETRICAL COLD STRIP ROLLING. A NEW ANALYTICAL APPROACH

General Relativity (225A) Fall 2013 Assignment 5 Solutions

Lecture 26: Circular domains

D Alembert s Solution to the Wave Equation

Theoretical Competition: 12 July 2011 Question 1 Page 1 of 2

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Determination of the Optimum Configuration for the FGM Rotating Cylinder Based on Thermo-mechanical Stresses

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

( y) Partial Differential Equations

Differential equations

1 3D Helmholtz Equation

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Numerical Analysis FMN011

If we restrict the domain of y = sin x to [ π 2, π 2

Some Basic Boundary Value Problems for. Complex Partial Differential Equations. in Quarter Ring and Half Hexagon

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Second Order RLC Filters


Forced Pendulum Numerical approach

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

TL-Moments and L-Moments Estimation for the Generalized Pareto Distribution

Analytical Expression for Hessian

Section 7.6 Double and Half Angle Formulas

ADVANCED STRUCTURAL MECHANICS

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Exercises to Statistics of Material Fatigue No. 5

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Kul Models for beam, plate and shell structures, 07/2016

Lifting Entry (continued)

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Stresses in a Plane. Mohr s Circle. Cross Section thru Body. MET 210W Mohr s Circle 1. Some parts experience normal stresses in

Parametrized Surfaces

Matrices and Determinants

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Reminders: linear functions

11.4 Graphing in Polar Coordinates Polar Symmetries

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Ιόνιο Πανεπιστήμιο - Τμήμα Πληροφορικής

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Transcript:

Chapte 7a lements of lasticit, Themal Stesses Mechanics of mateials method: 1. Defomation; guesswok, intuition, smmet, pio knowledge, epeiment, etc.. Stain; eact o appoimate solution fom defomation. Stess; constitutive elationship. Load; integation, equilibium equations 5. Displacement; invesion of defomation-load elationship, integation of stain, eneg method lasticit method: 1. quilibium equations; diffeential fom of Newton's law fo nomal stesses, smmet of shea stesses. Compatibilit; continuum estictions fo stains. Constitutive elationships; stess-stain elationships (isotopic o anisotopic mateial, linea o nonlinea mateial, etc.). Bounda conditions; loads and suppots 5. Solution; analtical o numeical

Isotopic mateial ε ν( ) z α Δ T γ G ε ν( ) z α Δ T γ z z G ε z ν( ) z α Δ T γ z z G 1 ( ν ) G Geneal (-D) state of stess α T ν ε νε νε ( ν)( ν) [( ) ] Δ 1 1 1 1 ν z α T ν ε νε νε ( ν)( ν) [( ) ] Δ 1 1 1 1 ν z α T ν ε νε νε ( ν)( ν) [( ) ] Δ 1 1 1 1 ν z z G γ, z G γ z, z G γ z Plane (-D) state of stess z z z γz γz G γ γ G α ε νε T 1 ν ( ) Δ 1 ν ε ν α Δ T α ε νε T 1 ν ( ) Δ 1 ν ε ν α Δ T ε ν z α Δ T

Plane (-D) state of stain εz γz γz z z γ G γ G (1 ν ) ν (1 ν) ε (1 ν) αδ T (1 ν ) ν (1 ν) ε (1 ν) αδ T ( 1 ν) ε νε ( 1 ν) α ΔT ( 1 ν)( 1 ν) ( 1 ν) ε νε ( 1 ν) α ΔT ( 1 ν)( 1 ν) z νε νε ( 1 ν) αδt ( 1 ν)( 1 ν) Displacements and Stains nomal stain shea stain u() u( d) u( d) u() d d v( d) v() d α α1 o 9 - γ d v() v( d) ε, ε v, ε z w z γ v, γ z w v, γ z z z w z v, w v, z w z

-D Compatibilit (in the - plane) plane stain plane stess (appoimate) ε z γ z γ z z z z v w, z z v ε z ν( ε ε ), z z ε, ε v, γ v ε ε γ quilibium equations z Β z d d dz taction foces bod foces z d d z d d z d d z d dz d dz z d dz d dz d dz d dz Β d d dz Β d d dz

-diection: [ ( d) ( )] d dz [ ( d) ( )] d dz [ z( z dz) z( z)] d d B d d dz ( d) ( ) ( d) ( ) z( z dz) z( z) d d dz B z B z z B z z z z Bz z Bounda conditions suface tactions Φ dr da, Φ dr da, Φ dr z z da dr z dr da z m, dr n z z z Φ z Φ z m n Φz z z n i mj n k ( m n 1) fee bounda conditions Φ Φ Φz igid bounda conditions

slip bounda conditions u u uz (u v w ) u n ( ui u j uzk) ( i mj nk) u um uzn hdostatic bounda conditions shea-flow Φ n o Φ Φ n Φ p p Φ m p n Φz z s S T s S T s S V suface nomal n i bounda nomal S S j Sz k bounda tangent s s j sz k S o s s S z z z z Stess field solution fo plane stess poblems 1. quilibium equations. Compatibilit. Constitutive elationships. Bounda conditions 5. Solution

Plane stess in isotopic mateials (without themal stains and bod foces) 1. quilibium equations z z z z z z z z z z z. Compatibilit ε ε γ. Constitutive elationships ε ν, ε 1 ( ν) G ν, γ 1 ( ν) G G Compatibilit elationship in tems of stess ν ν ( 1 ν)( ) ( )( ) ( )

Ai Stess Function F (, ) (without bod foces and themal epansion) F, F, F z z z z z F F z F F z z z z z i.e., the equilibium equations ae automaticall satisfied ε ε γ ε ν, ε 1 ( ν) G ν, γ 1 ( ν) G G ν ν ν 1 ( ) F ν ν F F F F 1 ( ν) F F F

hamonic diffeential (Laplacian) opeato f f bihamonic diffeential (Laplacian-squae) opeato ( ) compatibilit elationship fo plane stess in an isotopic medium F Polnomial solutions in Catesian coodinates quadatic stess function F a1 a a a, a 1, a (unifom stess distibution) cubic stess function F a1 a a a (plus quadatic tems) a 6a, 6a1 a, a a pue bending (linea stess distibutions) F a1 a

6 a, 6 a 1, quatic stess function F a1 a a a a5 (plus quadatic and cubic tems) F ( )F a1 a5 8a shea bending 1 a 6 a a 5 1 a 6 a a 1 a a a 6 a, 6 a, a a quintic stess function F a a a a a a 1 5 5 (plus quadatic, cubic, and quatic tems) 6 5 F 1 a a 1 a a a a 1 6 5 a a5, 5a1 a, 5a6 a bending unde unning load of constant intensit (see tetbook) Displacements calculated fom stesses integation of stains ample: pue bending

, v M, u c L b M M I c, b M ε c b v M ε ν c b u M c b f v ν M c b f γ v f M f c b f M a 1 c b M f a 1 a c b f a 1 f a1 a u M a a c b 1 v ν M M a1 a c b c b bounda conditions M L u L a 1 and a c b ν M ML v L a c b c b

v L, a ML c b v a L L M L c b 1 v M c b L [( ) ν ] accoding to Saint-Venant's pinciple, the discepanc at the ight end ma be ignoed

Plane Stess Poblems in Pola Coodinates, z,,, z cos, sin and, tan 1 z z z γ z γ z constitutive elationships G γ γ G α ε νε T 1 ν ( ) Δ 1 ν ε ν α Δ T α ε νε T 1 ν ( ) Δ 1 ν ε ν α Δ T ε ν z α Δ T

equilibium equations: ( d ) ( d) ( d) ( ) B B ( d) ( ) ( ) d ( ) d O -diection: ( d)( d) d dz ( ) d dz ( d ) ( d) d dz d O ( d) ( ) d B ( ) ( ) d ( d) ddz ( ) ddz B d d dz o 1 ( d)( d) ( ) d 1 ( d) ( ) d B 1 ( ) 1 B 1 B

-diection: ( d ) ( d) ( ) B ( d) ( ) ( d) d dz ( ) d dz ( d)( d) ddz ( ) ddz d dz d d ( ) d B dd dz o O 1 1 B 1 B Stain-displacement elationships ε, ε u 1 u, γ 1 u ε u ( d) ε u u ( d) u ( ) u ( ) u ( ) d d d d O O

u ( d, ) u (, ) u ( d) γ 1 ε 1 u ( ) u (, ) d d d d O O u (, d ) u (, ) u ( d ) u ( ) γ u (, ) u γ u ( ) d d d d O O aismmetic case ( / ) ε, ε u, γ u no shea case (u C, u u ) ε, ε u, γ

ample I: Cicula Hole ma b D t in clindical coodinates d d ( b, ) and ( b, 9 )

lasticit Method: quilibium equations Compatibilit Constitutive elationships Solution Bounda conditions Mechanics of Solids Method: "Solution" Constitutive elationships quilibium equations Compatibilit Bounda conditions equilibium: 1 1 compatibilit: ( ) 1 1 bounda conditions: ( b, ) and ( b, ) lim (, ) (1 cos ), lim (, ) (1 cos ), and lim (, ) sin

Ai Stess Function in Clinbdical Coodinates 1 F 1 F, F, 1 1 F 1 F 1 F z z z 1 1 F 1 F 1 F F F (, ) f() g ()cos 1 f 1 f 1 g 1 g g f () C 1 ln C Cln C C g () C 7 5 C6 C 8 C 6C7 C8 C1(1 ln ) C C 5 cos C 6C7 C1( ln ) C C 5 1C6 cos 6C7 C8 C5 6C6 sin out of 8 constants C is ielevant C 1 C6 (boundedness) 5 bounda conditions

lasticit Solution b b b ( 1 ) ( 1 )cos ( 1 b ) ( 1 b )cos b b ( 1 )sin afte nomalization (b 1) 1 1 1 ( ) ( )cos 1 1 1 ( ) ( )cos 1 ( )sin equilibium equations: individual tems 1 1 1 ( ) ( )cos 5 1 6 ( )cos 5 1 1 1 ( ) ( )cos 5 1 1 ( )sin 5 1 ( )sin 5

6 ( )sin 5 1 1 ( )cos 5 -diection 1 1 6 ( )cos 5 1 1 1 ( ) ( )cos 5 1 1 1 ( ) ( )cos 5 1 ( )cos 5 1 1 1 1 1 1 1 ( ) ( ) 6 1 1 1 1 1 ( ) ( ) ( ) ( ) 5 5 5 5 -diection 1 1 6 1 ( )sin 5 ( )sin 5 ( )sin 5 1 6 1 5 5 5 compatibilit 1 1 ( ),

cos 1 8 ( ) cos cos cos bounda conditions ( b, ) and ( b, ) lim (, ) (1 cos ), lim (, ) (1 cos ), and lim (, ) sin b b b ( 1 ) ( 1 )cos ( 1 b ) ( 1 b )cos b b ( 1 )sin stess concentation factos ( b, ) cos ( b, ) ( b, 9 )

ample II: Concentated (Line) Load P d d invaiance to scaling: a (, ) f() g() g() 1 ( ) 1 B cos a and equilibium equations cos a, a cos, 1 -diection 1

-diection 1 compatibilit 1 1 ( ), cos a cos cos cos a a a bounda conditions (, 9 ) and (, 9 ) π / π/ cos d P π/ / a π aπ a cos d (1 cos ) d P π/ π/ P cos π

Themal Stess ε ε γ without themal etension: ε ν, ε ν, γ G ( ) with themal etension (ΔT T ): ε ν αt, ε ν αt, γ G ( αt) uniaial stess fee ends, v T T ( ), u c b d d ( αt) αt a 1 a

bounda conditions on the top and the bottom (, ± c) and (, ± c) bounda conditions on the left and the ight ( ±, ) ( ) and ( ±, ) appoimate bounda conditions fo the ends (Saint-Venant's pinciple) F( ± ) and M( ± ) c c ( ) d and ( ) d c c c α T( ) d ca c and c α T( ) d a1 c c c α α α T ( ) T ( ) d T ( ) d c c c c c igidl held ends, v T T ( ), u c b ε α T d ( αt) d ( ) αt ( )

Disk with aismmetic tempeatue distibution ε, ε u 1 u, γ 1 u u u ( ) and u ε, ε u, γ ( ), ( ), equilibium equations 1 1 d d constitutive equations αt du ε νε u ( ) [ ν 1 ν 1 ν 1 ν d α( 1 ν) T] αt u du ( ε νε ) [ ν 1 ν 1 ν 1 ν d α( 1 ν) T] d du u 1 du u [ ( ) T] ν ν α 1 ν [ ] d d d d d du u 1 du u ( ) ν ν ( ) α( 1 ν) d d d u d u 1 du u ν du u dt ν ( ) ( ) α( 1 ν) d d d d d dt d

d u 1 du u dt α( 1 ν) d d d d 1 d ( u) (1 ) dt d α ν d d solution b integation 1 d ( 1 1 d u ) α( ν ) T ( ) C d d ( u ) α( 1 ν) T( ) C 1 u α (1 ν ) T( ) d C1 C b α (1 ν) u T() d C1 b C

ample: Hot spot solid disk with fee edge T T( ) a bounda conditions b C ( a) C1 du u ν α 1 ν T 1 ν [ d ( ) ] u du ν α 1 ν T 1 ν [ d ( ) ] u du (1 ) T() d C α ν 1 T() d (1 ) T() C α ν 1 d α (1 ν) α (1 ν) α (1 ν) [ T() d α (1 ν ) T() C ν T() d νc α (1 ν) T()] 1 ν 1 1 1 α T() d C1 α (1 ν) α (1 ν) αν (1 ν) [ T( ) d C T( ) d αν (1 ν ) T( ) νc α (1 ν) T( )] 1 ν 1 1

1 C () 1 α Td T () α(1 ν) C1 α(1 ν) 1 a T() d a 1 1 [ a 1 1 a α T( ) d T( ) d] α T() d T() d T() a a unifoml heated cicula spot a T c T T T T if c and T else 1 T T() d if c and T c 1 T() d if c< a a a T c () T d a 1 α T c ( 1 ) if c a αt c c α ( ) and a T c c ( ) if c < a a

( a) and c ( a) α T (unheated im) a in plane in plane if c α T c in plane ma{ in plane} α T if c < a at c