Determination of the Optimum Configuration for the FGM Rotating Cylinder Based on Thermo-mechanical Stresses
|
|
- Αταλάντη Μαγγίνας
- 6 χρόνια πριν
- Προβολές:
Transcript
1 5-4! *-./ -,-+.-./, ()*+' %&' -)68 4 ' / - - >. - < ; : >. - < ; : ' 9 )6 '& * * ;<+ > Q P< A K LMN ; OF.. H I. J - < ABC YZ 5 J Q F H O VW. X ) H 5C? 5CK S T 4 : U J 5 5 Q K. 4 A< Q P< A BBC ) K. ] 5 T 4 / Q \C B< [ K. VW... 4 FN. :: A K a D F - F4 5 / Q \C 4 _ `B; 58< 5 [ /. H A< BZ - ] ^..4 FN. [ 58C K. Q J 8 BBC A< - < ABC :9?- Deteination of the Optiu Configuation fo the FGM otating Cylinde Based on Theo-echanical Stesses F. Vakili-Tahai S. Saadatand Hashei A. asoulian Faculty of Mechanical ngineeing, Univesity of Tabiz, Tabiz, Ian Young eseaches and lite Club, Tabiz Banch, Islaic Azad Univesity, Tabiz, Ian Young eseaches and lite Club, Tabiz Banch, Islaic Azad Univesity, Tabiz, Ian Abstact In this pape theo-echanical analysis fo a tating thick cylinde ade of FGM is caied out. Fo this pupose, govening diffeential equations of the tepeatue and displaceent distibution fo the FGM cylinde have been developed assuing plane stain and axial syety. Then, by consideing an exponential function fo fo the ateial ppety distibution of the FGM along the cylinde thickness; and, using analytical solution ethod, the govening diffeential equations fo tepeatue distibution have been solved. Based on the calculated tepeatue distibution and govening diffeential equations fo displaceent the echanical behavio of the cylinde has been investigated. Finally, accoding to the stess distibutions fo diffeent tating speed and intenal pessue, the safety factos have been obtained and the optiu ateial distibution is deteined. Keywods: Theo-echanical Analysis, Analytical Solution, otating Cylinde, Functionally Gaded Mateial (FGM), Optiu Mateial Distibution. K. 4 BZ - C / J 8 5. L ] /.. u / 58A4 O <.J U J Q ; \ K. P;D : J 8. 5> 5 l. [] J8 LMN S89. I. C lb 5C /: T T. Bv P< _: A K. \ V 4 JN A K LMN A ow YZ 4 5P? 5N ^N4 /: l. [] 8 6:9- - C J 8.M. 5> 5 q. ; y ].M l U BZ ; FJ8 :Z BZ 58M J 8 M 5> 6 l. [4] x 5.Z J 8 z> C J ; b] -.M / Z A - J 8 YZ. O d L Nc. af. ] e;- H ^ F.. h?c f. ibj 58g;- 4 Z4. YZ L ] : W YZ F l 5M a k>z? :. ]. L J 8 N 6 - H 58 :.. 4 `B; L/: LK 58 AJC BI 585*H AJC `B; Q - C ; K. on. HH L/: H `B; [] p q. J8 ; Z. F 5 ; 586: 8S hi A< 5> l. * a.s.asoulian@tabizu.ac.i : 95/4/8 :! 95// :) *!
2 BZ - H l?.4 U BBC C J 8 V: P;D : 5. a D.M l.z yn4 N PB S H 5^. 5> 6 l. H a D [9] Z P;D 5*H - H 58S ^N4 5.. YZ 5 S89.. Z. ] :Z \: B BZ \: H O H BZ -.M 5N 58S l. FJ8 [] - [. I. C ^64. BZ \: 5. 5 ow S? 8.4 (`g <) J J ABC D< S89 A K LMN ; OF.. H I. T 4 : U J 5 :: Q O VW. X ) H 5C? 5CK S ) K. YZ 5 J Q F H F K. Q A BBC K. VW... 4 A< :: A Q 5 T 4 / Q \C B< [ [ /. H A< BZ - ^. ] F4 5 / Q \C 4 _ `B; 58< 5.4 FN. [. Jb a D F - C -+ - D& F-6G yn4 ^ :: K ^ u U : 4 5. Lg; jc ^N4 S T du u ε, ε θθ jc S H ε θθ :4 L 5C? ^N4 S () 58S : U S -S T.4 σ ( λ + µ ) ε + λεθθ (λ + µ ) αt() σ θθ ( λ + µ ) ε θθ + λε (λ + µ ) αt() ε.4 jc ^N4 58S a :4 _ L σ θθ () (4) () T /- M o µ λ FqJ8 ν λ ( + ν)( ν) σ :4 ` N µ (4) ( + ν). a D ν.m l - T F :4 L 5. Lg; dσ + ( σ σ θθ ) () (5) l 5 Q U b] BZ - - Nj b] 5 * K a D.M l : K4 S 5 on 8 ] F C A< >. l. FJ8. YZ 5CK S S 58<.>-.M A< [5] J/. J L 5K}.. [6] 5CK S < - C Z 58. A< 5> 6 l. [] :x8 ) ^N4 5. YZ jz L ] FJ8) o YZ FJ8 8M. 5P? 5> l. [8] q. _ ( J8 F H O 8S Q - 5?... J L.M l L ] FN ; - >^ 8}K. N A_ M J S89 FJ8..>-.M 5> l. [9] V > ABC A.>.M. J HL 58U. - J P8 Z AZ PB.M l l. FJ8 [] J8.4 y 4 Z AZ a D.M l L ] 5 58Q i; C J 8.M A4 ] u H /b. I Nj BBC L H 5*H.M ABC 5> 9 l. [] b [] J 5<.Z J ; J 8 P;D : ;.>-.M l. FJ8 [ ABC l.> l. BZ - C [] AJ q.. ALA59/Sicp V: S ABC 5> 9 l. ^N4 /: -..Z - C J 8.M l BJ: YZ L ] 4 U J 8 :I.4 U 8; Q. a D 58..M 5> l. [4] / < J 58S F H O J 8 P;D : 5/ l. FJ8.. S Q ABC U J 8.M [5] J8. ABC ^N4 Z ƒ Q ] ;D jz ƒ ABC 5> 4 l. [6] : 5J< 5*H C FGM Z 58.M Q hj ;D 5. ] YZ Z 5> 4 l. [] >ƒ JO^. H O. J 8 A- Q? z> 5N L...J 8 5 I.. 4 H O H Q ABC 5> 5 l. [8]... J 8 Q FN 4
3 JN.. / B J48. k() k o :4 ` N L YZ. () H. 5 BN o k o K..4 YZ Q d + dt() [ ] :. A4 A4 Q 5 Hl A T() + A T 4 K..4 5 Hl o hj A A A () :. A (4) 5 Hl o () T : 5 Cf Cf A ( ) + Ca C (Ca ) ( ) Cb + C (Cb ) ( ) + Ca (Ca )f ( ) Cb + (Cb )f A ( ) + Ca C (Ca ) ( ) Cb + C (Cb ) :4 FN (5) T N!. Q F V l< (5) : -: () :: Q P< A K d u du ν + ( + ) + ( )u ν + ν A α o[(( + )( ) + A ) ν + (+ )A ] d u du ν + ( + ) + ( )u ν A + A4 :4 ` N (8) T + ν A A α o(+ ) ν + ν A 4 A α o( + ) ν gz i: A 4 A a D lj^ J^ i: N A< 5 (6) () (8) :4 ` N L J^ i: 4 ` N g u B α α + B K. α α.4 J^ i: a D (9) :. () L^ L N ν α( α ) + ( + ) α + ( ) ν ν α + α + ( ) ν B B () N L S89 F YZ : () o, α () αo :4 4 U a D.M l BN o a α o o a< (6) / 5*:.4 YZ Q 58 H : () T L () T.M l M o o σ [( ν + ν) ε ( + ν)( ν) + νεθθ ( + ν) αt()] o σ θθ [( ν + ν) εθθ ( + ν)( ν) :. 4 A< (8) + νε ( + ν) αt()] dσ o d u [( ν ) ( + ν)( 5 Hh- du du u + ( ν ) + ν ( ) dt + ν u / ( + ν)( αo + α o T + αo ln N (8) () T 5*: d u du ( ν ) + [( ν ) + ( ν)] + [ ν ( + ν )]u dt ( + ν) α o[(+ )T + ] A4 :: 5 () (8) :4 A< (9) A K A K d u du ν + ( + ) + ( )u ν + ν dt α o(( + )T + ) F (9) :4 A< j. 5 k>z 4 5 () N JI * X4.C Q BZ. H 8. H ABC 5 5v 5>Z <& F-6G.- -- I Q P< A ;. 5 5 T 4 J8 I F.. 4 K. d dt() (k() ), a b dt(a) CT(a) + C f dt(b) CT(b) + C f :4 () H BN o f f C C C C / k.4 H. k :Z BZ yn4 b a V: 4
4 +α d [( ν) α + ν]a +α d [( ν) α + ν]a +α d [( ν) α + ν]b +α d 4 [( ν) α + ν]b p i( + ν)( ν) d5 o + [(( ν ) + )D ( + ν) αoa ] a [(( ν)( ) + )D + ν + + α oa ] a p o( + ν)( ν) d6 o + [(( ν ) + )D ( + ν) αoa ] b [(( ν)( ) + )D + ν + + α oa ] b :. 4 o a< :: N / α α + + u() B + B + D + D () (4) (5) & D& F-6G.- ;- *- HI- -- U F Z C l< ω ^.. 4 J6< \ H 5 lj^ N LMN : I F N YZ 5.N58.4 A< ρω u T, U, T ɵ o u T k α ρ K, α,, ρ ko αo o ρo K, α,, ρ 4 H. a yn4 T U N ρ α K 58 u.m l (6) H 4.4 N 5 :: YZ ρ o o α o k o.4 YZ Q 58 T * ɵu :Z yn4 o.4. :Z yn4 58 lj^.4 :: N dσ + ( σ σ θθ ) + ρω o ( ν) ɵ d du d U { u( + ) ( ν )( + ν) d d o d νuɵ d du U + ( U + ) d d o T αo d dt dα ( + ν) (Tα + α + T )} d d d o ɵ du U + u( ) + ρρ oω ( + ν) d o :4 A< ρ o o ω : 8Z L () ln () (8) F b P? ν.5 α, α ± ( + ) 4 ν i: N FJ8 k b B N A4 : p + + u D + D () :4 ` N () L^ L gz o * A K N gz i: 5*: A A D 4, D q q () :. () T hb D D () :4 ` N (4) T L q q o / ν q [( + ) + ( + )( + ) + ( )] ν q [( + )( ) ν + ( + )( + ) + ( )] :4 ` N ν A B i: p g u() u + u α α + + B + B + D + D :4 ` N () (6).J ^N4 58S α α ε Bα + Bα + D ( + ) + D ( + ) α α ε B B D D θθ T K. 8S S Q FN V o α σ [(( ν) α + ν)b ( + ν)( ν) α + (( ν) α + ν)b + ((( ν ) + )D ( + ν) αoa ) + ν + ((( ν)( ) + )D + αoa ) ] o α σ θθ [( ν ) + να)b ( + ν)( ν) α + (( ν ) + να)b + (( ν + )D ( + ν) αoa ) + ν + (( ν( ) + )D + αoa ) ] (4) (5) (6) () :J.C S -S K. 8S 5 T 4 l< σ pi θθ σ σ po σ θθ (8) (9) :. 5 Hl o 4 5*: :F.4 :Z BZ - a () p o p i σ (a) p i, σ (b) po () (9) (8) S LMN () 5 T 4 -: d5d4 dd6 dd 6 d5d B, B dd 4 dd dd 4 dd :. J^ i: o () :4 ` N (4) () T L d 6 d o /... J 8 Q FN 44
5 JN.. / B J48. Cf Cf G a a (+ ) C (C ( ) C ( ) ) G C (C C ) a a (+ ) (C ( ) C ( ) )f (C C )f a ( ) C (C ( a + ) C ( ) ) o C (C C ) YZ N 5 -: a F (48) :4 _ L. A d U du ν + ( + ) + ( ) U d d ν + G 4 + G4 + G5 :4 ` N hj G 5 G 4 G + ν G G ( + ) ν + ν G4 G ( + ) ν (ν )( + ν) G5 ( ν) (49) a D gz i: J^ A< 5 (5) :4 L J^ i: 4 ` N g U H γ γ + H. 4 J^ i: K. ν γ( γ ) + ( + ) γ + ( ) ν ν γ + γ + ( ) ν ν.5 γ, γ ± ( + ) 4 ν i: N FJ8 k b B H γ H (5) γ. :. (5) L^ A4 : (5) (5) :4 ` N L gz p + U W 4 W gz i: Z W W W o F 5 (54) Z o A< H *: * A K ν Z ( + ) + ( + )( + ) + ( ) ν Z ( + )( ) ν + ( + )( + ) + ( ) ν Z ( + 4)( + 4) ν + ( + )( + 4) + ( ) ν :4 ` N L Z :. (56) T hj gz i: oa F G G4 G W 5, W, W Z Z Z :4 ` N A B i: (55) (56) o ( ν) ɵ d du d U { u( + ) ( ν )( + ν) ρo ω d d d νuɵ d du U + ( U + ) ρ d d o ω T αo d dt dα ( + ν) (Tα + α + T )} o ρ d d d o ω o ɵ du U + u( ) + ρ ( + ν) d o ρoω N N 58 N 5.N 5 (9) 5.N l/6 58 a F H k*< :. (4) L^ hj :: ɵ ρo ω ρo ω u, T (4) o A4 N < 6: A F o {( ν )( d du + d U ) ( ν )( + ν) d d d ν d du U + ( U + ) d d d dt dα ( + ν)(tα + α + T )} d d d du U + ( ) + ρ ( + ν) d :. (4).. AI < J8 N 5 Q (4) & <& F-6G (6) T 4` N T K. JI F :4 ;. N < J8 T dt ko dk dt T T d T Kko + + Kk o o d d d d dt dk dt d T K + + K d d d d (4) (4) (45) (44) LMN H. 5*: dt dt + d T + + d d d d T dt + ( + ) d d @N A< a F T G + G () T 5 T 4 lj^ (44) (45) :4 A< L.4 N o G (46) G :4 A< (4) G a a (+ ) C ( ( ) + G ) + C ( G ( ) ) f C (G + G ) + C ( G ) f (4).4 N BN o f f C C C C G o (4) LMN. A< G :4 FN (48) T 45
6 o (6) 5 T 4 5*: :. hj H H J^ i: y5y4 yy6 yy6 y5y H, H yy4 yy yy4 yy :4 ` N (69) (68) T L γ y [( ν) γ + ν]a γ y [( ν) γ + ν]a y [( ν) γ + ν] (6) y 6 y o / y 4 [( ν) γ + ν] a y i 5 P ( + ν)( ν)( ) a [(( ν ) + )W ( + ν)g ]( ) a [(( ν)( ) + )W ( + ν)g ]( ) a + [( 4 + 4)( ν ) + ν]w ( ) o y6 P o( + ν)( ν) [(( ν ) + )W ( + ν)g ] [(( ν)( ) + )W ( + ν)g ] [( + 4)( ν ) + ν]w :4 FN 4 o a< :: N / γ γ + U H + H + W W 4 + W N < 5 S S LMN a F (68) (69) () Q LMN 4 _ S; F q hj.. 58< jc ^N4 S Q LMN 6: O [ BBC ) A< V 4 ;. `B;.4 A< J). :.I- - J M ABC H 6 [] J8 5: T. 5> l. T 4 5 I YZ Q U Lg;- 5 J 8. 5CK S [ l: 4_ YZ 5 T 4 AI S; : T [ 6.^ O.J _ Q: [. l: 4_ T 4 5 : ^ :. M.. 4? [].. 4 H O K ^. * S89 [] ;- : 4N9M)-6DKGL- H U K? / 5 g;- BZ :Z ji i () BZ yn4 (p) ^. (ºC) BZ \: (ºC) :Z \: (MPa) BZ \: - (MPa) :Z \: - (ºC) Q: 5 p g γ γ + U U + U H + H + W W 4 + W :4 ` N (59) (58) T.J ^N4 58S γ γ ε Hγ + Hγ + W ( + ) + W ( + ) + + W 4 ( + 4) γ γ ε H θθ + H + W + + W 4 + W S -S T K. 8S V (5) (58) (59) :.C (6) (6) T A4 γ σ [( ν) γ + ν)h ( + ν)( ν) γ + (( ν) γ + ν)h + ((( ν ) + )W ( + ν)g ) + ((( ν)( ) + )W ( + ν)g ) + + (( 4 + 4)( ν ) + ν)w ] γ σ θθ [( ν ) + νγ)h ( + ν)( ν) γ + (( ν ) + νγ) H + (( ν + )W ( + ν)g ) + (( ν( ) + )W ( + ν)g ) + + (( ν ) + ν( 4 + 4))W ] F 4 5*: 8S 5 T 4 l< (6) (6) F 5.. J^ i: o a σ P i σ θθ :4 6 BZ j. 5 N S F.4 N BN BZ - a σ ( ) P i (6) S : ( a P i (6) ) BZ : 5 T 4 5*: a γ a γ H [( ν) γ + ν ]( ) + H [( ν) γ + ν]( ) a P i( +ν)( ν) ( ) a [(( ν ) + )W ( + ν)g ]( ) a [(( ν)( ) + )W ( + ν)g ]( ) a + [( 4 + 4)( ν ) + ν]w ( ) o (6) :. :4 6 :Z j. 5 a FJ8 σ Po σ θθ N S F X4 N BN :Z - σ () Po : 4 8Z P o (64) (65) b ( o ) :Z : o o (66)... J 8 Q FN 46
7 JN.. / B J48. A< [ 5? 58J P... 4.C T K..4.C / YZ Q 58S :: Q 58J _. H F N <.J jc ^N4? F J FN : lb Jb a D VW.. H 5.4 H O. A Jb a D ^ ^. ] `B; 58< 8 5 C ^. /. YZ Q `B; T 4. H FN. YZ Q 4 l: B LgZ O... 4 _ [] ;- : 4N S6 )Q -+/ - H T/T(a) ν / (GPa) ρ (kg/ ) k (W/ K) α (/K) -6 /, Pesent study, Pesent study -, Pesent study, ef [], ef [] -, ef [] 4 &<\ + -, M)-6 DKGL - H U K? ν / 5 / 5 / g;- BZ :Z ji i () BZ yn4 (p) ^. (ºC) BZ \: (ºC) :Z \: (MPa) BZ \: - (MPa) :Z \: - (ºC) Q: 5 C C a D C C a D f a D f a D [].- + )Q -+/ -4 H (GPa) 4 ρ (kg/ ) k (W/K) α (/K) -6 / N 58 a< A4 hj Q P Al SiC : 5 T 4 B^ 4 O<> jj / `B; Q N :: : 5 Q K. 4 A4 hj YZ Q `B; 58 5 N ^N4 S? 6: Q. V 8-5 A4 jj8.. `B; 58 5? :Z BZ : 5 T 4 : 4 `B; ^N4 S LM< : lb Q LK B^..4 LK / 5 S Q `B; N jc S 6 A4 ^N4 S J8. H _ YZ Q `B; 58 5 N yn4 a< 5 jc 58S 4 O<> 6 A4 jj8. QjI J8 / 9 < N yn4 `B; 58 S jc S? S? F AI σ /p i /a 6VW 4N XU & - T & Y& Z[W6 [] (6 ++ J). -.6, Pesent study, Pesent study -, Pesent study -.8, ef [], ef [] -, ef [] -.5. /a.5. J). 6VW 4N XU I& 4 ' ()*+' - T & Y& Z[W6 [] (6 ++ D< S89. 5 A4 `B; 58 5 SJ8 5: T. 4_ [ ^N4 S A4.8 SJ YZ Q 5 [] Q: 4_ [ D< S89 4.C S Q J F.8 - YZ Q `B; 58.8 SJ BZ yn4 a< BZ - 4N ^N4 J C [ 4 O<> jj8 `B; 58< [] Q: [ ^N4 S Q C 58A4 4_ [ :.4 hj.4 n A< [ BBC A< ) 4 C O ; - H Q U H I. BZ - Jb a D FN ; \: S Q YZ.4.C `B; 58< J) ^. YZ Q 5 Q 5 `B; \: 58 BZ Jb a D. F FN \: S ::
8 < <eq FS & Y& Z[W6 & \ 4 ' ()*+' -6 T / ()*+' ].G ;-+' & Y& Z[W6 & H& 4 ' ()*+' - T 5 -+/ ()*+' ].G ;-+' S8 S jc S yn4 F N \C ibj K 58 AC F AI ^. FN N.4 ibj 58? F N ( σ eq ) V N ln 58S jc ^N4 58S. 5 T 4 J8 YZ Q `B; N yn4 a< ln S A4. 8- A4 qu.. 4 _ YZ Q `B; `B; 58 5 / 9 < ^N4 ln 58S 4 yn4 F F. J. \C. QjI J8 T U. S8 S ln S 4 O<> qu & Y& Z[W6 & ()*+' - T -+/ ()*+' ].G ;-+' J 8 Q FN 5 FS S /σ y & Y& Z[W6 ; ^- Z)6V -8 T eq -+/ ()*+' ].G ;-+' K. ln S FN N. YZ Q `B; 58 5 Jb a D a D. e;- 8 A4 qu.. 4 _ 8 A4 jj8. QjI J8 / 9 < ^N4 Jb Jb a D? S. J. 4 O<>. J. \C 5 H 4 qu F S 5 - Jb a D 6 58 Bv ibj 58 C F ^ 4 (: u J. \C.4 Jb a D F J l< 8. _ NjI 5 O / J < & Y& Z[W6 & ) ;- -4 T / ()*+' ].G ;-+' & Y& Z[W6 & I& 4 ' ()*+' -5 T -+/ ()*+' ].G ;-+' -6 48
9 JN.. / B J48. L. A Jb a D ^. o Q 8 - A4 F.J _ A4 5 J l< 8 Jb a D (<-) K J Jb a D F - /5 l< F^ 4 ; Jb a D ] 58A4.4 A< < p 58^. 5 a BZ - FS FS in P. `B; Q ƒ ω (p) ; ^- Z)6V D-6_' - T H` /- L ].G - UI / ()*+' ].G ;-+' T9 ; ^- Z)6V 6_' - T -+/ ()*+' ].G ;-+' Z[W6 ].G L FS in pub - UI T9 ; ^- Z)6V 6_' - T -+/ ()*+' ].G ;-+' Z[W6 ].G L - UI6 ; P i MPa P i MPa P MPa i P i MPa Optiu Line P i MPa P i MPa P i MPa P i 4 MPa Optiu Line H?B. A Jb a D ^ : lb? - ^. S 8 - [. M. S8 Jb a D S S J :Z J Q L : lb PB S? /9 \: PB S? Q < N yn4 l... 4 U Jb a l. 6/.. H I K , ()*+' %&' ^. ] on J 9 A4. H I. `B; YZ Q 5 Q a<. A Jb a D ].. 4 _ l. o BZ - `B; 58^. < ^. Jb a D L ] a FJ8 e;- uu.. 4 _ A4 BZ - FS in FS in. S8 Jb a D? ^. S T9 ; ^- Z)6V 6_' -9 T -+/ ()*+' ].G ;-+' Z[W6 ].G UI6 H` /- L -+/ ()*+' ].G ;-+' Z[W6 ].G UI6 /- L +aw ; YZ Q [ >^ ω p ω5 p ω p ω5 p ω p Optiu Line 5 4 ω 5 p ω p ω 5 p ω p 9 ω 5 p 8 Optiu Line T9 ; ^- Z)6V 6_' - T J 8 5. ; 5 Jb a D / 5 <. A< [. -? `B; 58^. 49
10 [] Hongjun X., Zhifei S., and Taotao Z., lastic analyses of hetegeneous hollow cylindes, Mechanics eseach Counications, Vol., No. 5, pp , 6. [8] Tutuncu N., Stesses in thick-walled FGM cylindes with exponentially-vaying ppeties, ngineeing Stuctues, Vol. 9, No.9, pp. -5,. [9] Akis T., and aslan A.N., xact solution of tating FGM shaft pble in the elastoplastic state of stess, Achive of Applied Mechanics, Vol., No., pp ,. [] You L.H., You X.Y., Zhang J.J. and Li J., On tating cicula disks with vaying ateial ppeties, Zeitschift fü angewandte Matheatik und Physik, Vol. 58, No. 6, pp ,. [] Tahani M., and Talebian T., Analysis of Functionally Gaded Cylinical Vessels unde Mechanical and Theal Loads, Aikabi Jounal Of Mechanical ngineeing, Vol. 4, No., pp , 9. (In Pesian) [] Heidai A., and Kazei M., lastic-plastic analysis of thick-walled FGM vessels unde intenal pessue, Majlesi Jounal of Mechanical ngineeing, Vol., No., pp. - 8, 9. (In Pesian) [] Tutuncu N., and Teel B., A novel appach to stess analysis of pessuized FGM cylindes, disks and sphees, Coposite Stuctues, Vol. 9, No., pp. 85-9, 9. [4] Ghaja., and Mehabiani S., Theo-echanical analysis of thick-walled cylinde with intenal FGM coating, consideing theal esidual stesses, Jounal of Mechanical ngineeing, Vol. 4, No., pp. 5-66,. (In Pesian) [5] Mahdavi A., Hojati M., and Alashti., Theo-elastic analysis of a tating FGM disk, with vaiable thickness, In ISM Confeence,. (In Pesian) [6] Ahadi Nokhandan M., Jabbazadeh M., Nonlinea theoelastic analysis of FGM annula tating discs with FSDT and TSDT shea defoation plate theoies, Modaes Mechanical ngineeing, Vol. 4, No., pp. 5-88, 4. (In Pesian) [] Azii A., and Gholai Sh., Tepeatue distibution in a hollow cylinde coposed of functionally gaded ateial using non-fouie factional single phase lag odel, Modaes Mechanical ngineeing, Vol. 4, No., pp. 6-6, 4. (In Pesian) [8] Ghanbai Mobaakeh M., and Fahatnia F., Theo lasto- Plastic analysis of functionally gaded thick-walled cylinical shells based on Pandtl-euss flow ule, Modaes Mechanical ngineeing, Vol. 5, No., pp. - 8, 5. (In Pesian) [9] Takabi B., Theoechanical tansient analysis of a thickhollow FGM cylinde, ngineeing Solid Mechanics, Vol. 4, No., pp. 5-, 6. [] Najibi A., and Shojaeefad M.H., lastic Mechanical Stess Analysis in a D-FGM Thick Finite Length Hollow Cylinde with Newly Developed Mateial Model, Acta Mechanica Solida Sinica, Vol. 9, No., pp. 8-9, 6. [] Jabbai M., Sohabpou S., and slai M., Mechanical and theal stesses in a functionally gaded hollow cylinde due to adially syetic loads, Intenational Jounal of Pessue Vessels and Piping, Vol. 9, No., pp ,. [] Loghan A., Aani A.G., Shajai A.., and Ai S., Tie-dependent theoelastic ceep analysis of tating disk ade of Al SiC coposite, Achive of Applied Mechanics, Vol. 8, No., pp ,. a D? BZ - S 4 O<> qu ] 4 8- >^. S8 Jb Q AI < -. A Jb a D 58- Jb a D F - /5 < YZ J - H.. LK D< S89 :8 -. [.. H I. j? J8 ln S jc 58S Q H 6 A FJ8. QjI / 9 N yn4 YZ Q A? < F? 5 ^ j? F..J K. `B; ; ] 5 T 4. [ : 4Z. 58. J 5 BZ - ^. Fn Jb a D F - / 5 < YZ Q AI zj< [ H BZ - C J Z. Q 4 T 4 /5 l 5 ) H FN 5 Jb a D F - (? F Nj.4 A< (-6-6 [] Tutuncu N., and Oztuk M., xact solutions fo stesses in functionally gaded pessue vessels, Coposites Pat B: ngineeing, Vol., No. 8, pp ,. [] uhi M., Angoshtai A., and Naghdabadi., Theoelastic analysis of thick-walled finite-length cylindes of functionally gaded ateials, Jounal of Theal Stesses, Vol. 8, No.4, pp. 9-48, 5. [] You L., Zhang J., and You X., lastic analysis of intenally pessuized thick-walled spheical pessue vessels of functionally gaded ateials, Intenational Jounal of Pessue Vessels and Piping, Vol. 8, No. 5, pp. 4-54, 5. [4] Dai H., Fu Y., and Dong Z., xact solutions fo functionally gaded pessue vessels in a unifo agnetic field, Intenational jounal of solids and stuctues, Vol. 4, No. 8, pp , 6. [5] aslan A., and Akis T., On the plane stain and plane stess solutions of functionally gaded tating solid shaft and solid disk pbles, Acta Mechanica, Vol. 8, No. -, pp. 4-6, 6. [6] aslan A.N., and Akis T., Plane stain analytical solutions fo a functionally gaded elastic plastic pessuized tube, Intenational jounal of pessue vessels and piping, Vol. 8, No. 9, pp , 6. FN 4Z.... J 8 5
Chapter 7a. Elements of Elasticity, Thermal Stresses
Chapte 7a lements of lasticit, Themal Stesses Mechanics of mateials method: 1. Defomation; guesswok, intuition, smmet, pio knowledge, epeiment, etc.. Stain; eact o appoimate solution fom defomation. Stess;
Investigation of Different Material Distributions and Thermal Boundary Conditions on Stress Field of FGM Rotating Hollow Disk
8./0-0 5. ( 67 -(4 *+(,-.( / 0 -+ (3) :; 0. +. ( 64-5 $%& 35 46 75 ) &!&! % ( '!%&! $ #! ) &! &!% ( '!- %&!+,* $ # % */- 8.. =
21. Stresses Around a Hole (I) 21. Stresses Around a Hole (I) I Main Topics
I Main Topics A Intoducon to stess fields and stess concentaons B An axisymmetic poblem B Stesses in a pola (cylindical) efeence fame C quaons of equilibium D Soluon of bounday value poblem fo a pessuized
4.2 Differential Equations in Polar Coordinates
Section 4. 4. Diffeential qations in Pola Coodinates Hee the two-dimensional Catesian elations of Chapte ae e-cast in pola coodinates. 4.. qilibim eqations in Pola Coodinates One wa of epesg the eqations
C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,
1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =
/&25*+* 24.&6,2(2**02)' 24
!! "#$ % (33 &' ())**,"-.&/(,01.2(*(33*( ( &,.*(33*( ( 2&/((,*(33*( 24 /&25** 24.&6,2(2**02)' 24 " 0 " ( 78,' 4 (33 72"08 " 2/((,02..2(& (902)' 4 #% 7' 2"8(7 39$:80(& 2/((,* (33; (* 3: &
! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.
! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$
The Friction Stir Welding Process
1 / 27 The Fiction Sti Welding Pocess Goup membes: Kik Fase, Sean Bohun, Xiulei Cao, Huaxiong Huang, Kate Powes, Aina Rakotondandisa, Mohammad Samani, Zilong Song 8th Monteal Industial Poblem Solving Wokshop
J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n
Vol. 35 ( 215 ) No. 5 J. of Math. (PRC) a, b, a ( a. ; b., 4515) :., [3]. : ; ; MR(21) : 35Q4 : O175. : A : 255-7797(215)5-15-7 1 [1] : [ ( ) ] ε 2 n n t + div 6 n (nt ) + n V =, (1.1) n div(n T ) = n
Parts Manual. Trio Mobile Surgery Platform. Model 1033
Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische
Chapter 7 Transformations of Stress and Strain
Chapter 7 Transformations of Stress and Strain INTRODUCTION Transformation of Plane Stress Mohr s Circle for Plane Stress Application of Mohr s Circle to 3D Analsis 90 60 60 0 0 50 90 Introduction 7-1
Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.
II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai
)))*+,-!-)#..!""-#)/..+-$-*..-!--+ -*
ψ!"#$%&'&( )))*+,-!-)#..!""-#)/..+-$-*..-!--+ -* ψ #-).#!./ #0)1 #2#)--#3#-..-4#32+4#.#34.#-)3$$-!-315$-#+-")3"6.+-32-#-#3-#3#0-.3 ")!4 31-))!7.-3"#*).#03+ --38-#)3#.-!9.-#*-.$-3!#-)#)3!""-#)3#!-*)#!4:--.)))#!-##-.6+#!#+*-.*+.--)-!
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
!"!# ""$ %%"" %$" &" %" "!'! " #$!
" "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
! " #! $ %&! '( #)!' * +#, " -! %&! "!! ! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / # ' -. + &' (, % # , 2**.
! " #! $ %&! '( #)!' * +#, " -! %&! "!!! " #$ % # " &' &'... ()* ( +, # ' -. + &', - + &' / 0123 4 # ' -. + &' (, % #. -5 0126, 2**., 2, + &' %., 0, $!, 3,. 7 8 ', $$, 9, # / 3:*,*2;
... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK
RS-3C WIWM050 014.1.9 P1 :8... 1... 014.0.1 1 A... 014.0. 1... RS-3C()...01.08.03 A.. RS-3C()...01.08.03 3... RS-3C()... 003.11.5 4... RS-3C ()... 00.10.01 5... RS-3C().008.07.16 5 A.. RS-3C().0 1.08.
!"#!$% &' ( )*+*,% $ &$ -.&01#(2$#3 4-$ #35667
!"#!$% & &' ( )*+*,% $ -*(-$ -.*/% $- &$ -.&01#(2$#3 4-$ #35667 5051 & 00000000000000000000000000000000000000000000000000000000000000000000000000000 9 508&:;&& 0000000000000000000000000000000000000000000000000
Mechanics of Materials Lab
Mechanics of Materials Lab Lecture 9 Strain and lasticity Textbook: Mechanical Behavior of Materials Sec. 6.6, 5.3, 5.4 Jiangyu Li Jiangyu Li, Prof. M.. Tuttle Strain: Fundamental Definitions "Strain"
Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers
1/5 Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Deendent Polymers by Yukio SANOMURA Hydrostatic ressure deendence in mechanical behavior of olymers is studied for the constitutive
Example 1: THE ELECTRIC DIPOLE
Example 1: THE ELECTRIC DIPOLE 1 The Electic Dipole: z + P + θ d _ Φ = Q 4πε + Q = Q 4πε 4πε 1 + 1 2 The Electic Dipole: d + _ z + Law of Cosines: θ A B α C A 2 = B 2 + C 2 2ABcosα P ± = 2 ( + d ) 2 2
Electronic Supplementary Information
Electronic Supplementary Information The preferred all-gauche conformations in 3-fluoro-1,2-propanediol Laize A. F. Andrade, a Josué M. Silla, a Claudimar J. Duarte, b Roberto Rittner, b Matheus P. Freitas*,a
!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!
# $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;
Cable Systems - Postive/Negative Seq Impedance
Cable Systems - Postive/Negative Seq Impedance Nomenclature: GMD GMR - geometrical mead distance between conductors; depends on construction of the T-line or cable feeder - geometric mean raduius of conductor
5 Ι ^ο 3 X X X. go > 'α. ο. o f Ο > = S 3. > 3 w»a. *= < ^> ^ o,2 l g f ^ 2-3 ο. χ χ. > ω. m > ο ο ο - * * ^r 2 =>^ 3^ =5 b Ο? UJ. > ο ο.
728!. -θ-cr " -;. '. UW -,2 =*- Os Os rsi Tf co co Os r4 Ι. C Ι m. Ι? U Ι. Ι os ν ) ϋ. Q- o,2 l g f 2-2 CT= ν**? 1? «δ - * * 5 Ι -ΐ j s a* " 'g cn" w *" " 1 cog 'S=o " 1= 2 5 ν s/ O / 0Q Ε!θ Ρ h o."o.
( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain
Continm Mechanics. Official Fom Chapte. Desciption of Motion χ (,) t χ (,) t (,) t χ (,) t t Chapte. Defomation an Stain s S X E X e i ij j i ij j F X X U F J T T T U U i j Uk U k E ( F F ) ( J J J J)
! " #! $ % & $ ' ( % & # ) * +, - ) % $!. /. $! $
[ ] # $ %&$'( %&#) *+,-) %$./.$ $ .$0)(0 1 $( $0 $2 3. 45 6# 27 ) $ # * (.8 %$35 %$'( 9)$- %0)-$) %& ( ),)-)) $)# *) ) ) * $ $ $ %$&) 9 ) )-) %&:: *;$ $$)-) $( $ 0,$# #)$.$0#$ $8 $8 $8 $8,:,:,:,: :: ::
2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.
Experiental Copetition: 14 July 011 Proble Page 1 of. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν. Ένα μικρό σωματίδιο μάζας (μπάλα) βρίσκεται σε σταθερή απόσταση z από το πάνω μέρος ενός
a,b a f a = , , r = = r = T
!" #$%" &' &$%( % ) *+, -./01/ 234 5 0462. 4-7 8 74-9:;:; < =>?@ABC>D E E F GF F H I E JKI L H F I F HMN E O HPQH I RE F S TH FH I U Q E VF E WXY=Z M [ PQ \ TE K JMEPQ EEH I VF F E F GF ]EEI FHPQ HI E
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΧΑΟΤΙΚΕΣ ΚΙΝΗΣΕΙΣ ΓΥΡΩ ΑΠΟ ΜΑΥΡΕΣ ΤΡΥΠΕΣ Γιουνανλής Παναγιώτης Επιβλέπων: Γ.Βουγιατζής Επίκουρος Καθηγητής
High order interpolation function for surface contact problem
3 016 5 Journal of East China Normal University Natural Science No 3 May 016 : 1000-564101603-0009-1 1 1 1 00444; E- 00030 : Lagrange Lobatto Matlab : ; Lagrange; : O41 : A DOI: 103969/jissn1000-56410160300
Research Article Two-Phase Flow in Wire Coating with Heat Transfer Analysis of an Elastic-Viscous Fluid
Advances in Mathematical Physics Volume 016, Aticle ID 9536151, 19 pages http://dx.doi.og/10.1155/016/9536151 Reseach Aticle Two-Phase Flow in Wie Coating with Heat Tansfe Analysis of an Elastic-Viscous
( y) Partial Differential Equations
Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate
!" #$! '() -*,*( *(*)* *. 1#,2 (($3-*-/*/330%#& !" #$ -4*30*/335*
!" #$ %#&! '( (* + #*,*(**!',(+ *,*( *(** *. * #*,*(**( 0* #*,*(**(***&, 1#,2 (($3**330%#&!" #$ 4*30*335* ( 6777330"$% 8.9% '.* &(",*( *(** *. " ( : %$ *.#*,*(**." %#& 6 &;" * (.#*,*(**( #*,*(**(***&,
! "#! & "0/! ).#! 71 1&$ -+ #" &> " %+# "1 2$
"#$" &""'(() *+ , -------------------------------------------------------------------------------------------------------------------. / 0-1 2 $1 " 1 /& 1------------------------------------------------------------------------------------------------------------------------3
)# * ' +," -.(. / ( 01(#(' ( 0 #('( +' ")# *'+,"+ (. 20#('( / )%34"5 "+56336"% (%1/ :8;434(
! "#$" %& ' ' ' ( )# * ' +," -.(. / ( 01(#(' ( 0 #('( +' ")# *'+,"+ (. 20#('( / )%34"5 "+56336"% (%1/7338897394:8;434( * ''
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Department of Mechanical Engineering, University of Tabriz, Iran Department of Mechanical Engineering, University of Tabriz, Iran
9 - "#$ 96 8 0,,, 2&' 0,,&/, -("*,)*+( &' 8 BCD + + = A HOK N = +M 68 6,(8 2 5"6 *+ 2-0 / - + +,- 2-0 / - 8 > =
Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics
Supporting Information (SI) Heterobimetallic Pd-Sn Catalysis: Michael Addition Reaction with C-, N-, -, S- Nucleophiles and In-situ Diagnostics Debjit Das, a Sanjay Pratihar a,b and Sujit Roy c * a rganometallics
!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8
Prey-Taxis Holling-Tanner
Vol. 28 ( 2018 ) No. 1 J. of Math. (PRC) Prey-Taxis Holling-Tanner, (, 730070) : prey-taxis Holling-Tanner.,,.. : Holling-Tanner ; prey-taxis; ; MR(2010) : 35B32; 35B36 : O175.26 : A : 0255-7797(2018)01-0140-07
'( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( +
! " # $ %&&' '( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( + %( ((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((('& %('(,,
Blowup of regular solutions for radial relativistic Euler equations with damping
8 9 Ö 3 3 Sept. 8 Communication on Applied Mathematics and Computation Vol.3 No.3 DOI.3969/j.issn.6-633.8.3.7 Õ Îµ Ï̺ Eule»²Ö µ ÝÙÚ ÛÞ ØßÜ ( Ñ É ÉÕ Ñ 444 Î ÇÄ Eule ± ÆÃ ¼ Û Â Þ Û ¾ ³ ÇÄ Eule ± Å Å Þ Å
Strain gauge and rosettes
Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified
!"# '1,2-0- +,$%& &-
"#.)/-0- '1,2-0- "# $%& &'()* +,$%& &- 3 4 $%&'()*+$,&%$ -. /..-. " 44 3$*)-),-0-5 4 /&30&2&" 4 4 -&" 4 /-&" 4 6 710& 4 5 *& 4 # 1*&.. #"0 4 80*-9 44 0&-)* %&9 4 %&0-:10* &1 0)%&0-4 4.)-0)%&0-44 )-0)%&0-4#
Dr. D. Dinev, Department of Structural Mechanics, UACEG
Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents
(... )..!, ".. (! ) # - $ % % $ & % 2007
(! ), "! ( ) # $ % & % $ % 007 500 ' 67905:5394!33 : (! ) $, -, * +,'; ), -, *! ' - " #!, $ & % $ ( % %): /!, " ; - : - +', 007 5 ISBN 978-5-7596-0766-3 % % - $, $ &- % $ % %, * $ % - % % # $ $,, % % #-
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
MATSEC Intermediate Past Papers Index L. Bonello, A. Vella
2009 MATSEC Intermediate Past Papers Index Louisella Bonello Antonia Vella The Junior College Physics Department 2009 MATSEC INTERMEDIATE PAST PAPERS INDEX WITH ANSWERS TO NUMERICAL PROBLEMS by Louisella
Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines
Space Physics (I) [AP-344] Lectue by Ling-Hsiao Lyu Oct. 2 Lectue. Dipole Magnetic Field and Equations of Magnetic Field Lines.. Dipole Magnetic Field Since = we can define = A (.) whee A is called the
Fundamental Equations of Fluid Mechanics
Fundamental Equations of Fluid Mechanics 1 Calculus 1.1 Gadient of a scala s The gadient of a scala is a vecto quantit. The foms of the diffeential gadient opeato depend on the paticula geomet of inteest.
C M. V n: n =, (D): V 0,M : V M P = ρ ρ V V. = ρ
»»...» -300-0 () -300-03 () -3300 3.. 008 4 54. 4. 5 :.. ;.. «....... :. : 008. 37.. :....... 008.. :. :.... 54. 4. 5 5 6 ... : : 3 V mnu V mn AU 3 m () ; N (); N A 6030 3 ; ( ); V 3. : () 0 () 0 3 ()
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-
!!" !"# "%& ##%&%',-... /. -1.'- -13-',,'- '-...4 %. -5"'-1.... /..'-1.....-"..'-1.. 78::8
ECE Spring Prof. David R. Jackson ECE Dept. Notes 2
ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =
Analytical Expression for Hessian
Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
A SIMPLE WAY TO ESTABLISH THE EQUATION OF SHELLS s YIELD SURFACE
. Ton Tat HOAG LA A SIMPLE WAY TO ESTABLISH THE EQUATIO OF SHELLS s YIELD SURFACE. FACULTY OF CIVIL EGIEERIG, UIVERSITY OF ARCHITECTURE, HCM CITY, VIETAM ABSTRACT: A yield suface is a five dimensional
3.7 Governing Equations and Boundary Conditions for P-Flow
.0 - Maine Hydodynaics, Sping 005 Lectue 10.0 - Maine Hydodynaics Lectue 10 3.7 Govening Equations and Bounday Conditions fo P-Flow 3.7.1 Govening Equations fo P-Flow (a Continuity φ = 0 ( 1 (b Benoulli
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint
1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P, π, rt) cost, t, sint ). b) 5 points) Find curvature of the curve at the point P. Solution: a) r t) sint,,
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Το άτομο του Υδρογόνου
Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες
LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing
2003 61 3, 435 439 ACTA CHIMICA SINICA Vol 61, 2003 No 3, 435 439 2 ΞΞ ( 400715), 2, 2, 2, 3/ 2 2,, 2,, Ne w Methods for the Determination of the Inclusion Constant between Procaine Hydrochloride and 2Cyclodextrin
ITU-R P (2012/02) &' (
ITU-R P.530-4 (0/0) $ % " "#! &' ( P ITU-R P. 530-4 ii.. (IPR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.itu.int/itu-r/go/patents/en. ITU-T/ITU-R/ISO/IEC (http://www.itu.int/publ/r-rec/en ) () ( ) BO BR BS
tel , version 1-7 Feb 2013
!"## $ %&' (") *+ '#),! )%)%' *, -#)&,-'" &. % /%%"&.0. )%# "#",1 2" "'' % /%%"&30 "'' "#", /%%%" 4"," % /%%5" 4"," "#",%" 67 Y% !"!"# $ %& & # &$ ' '#( ''# ))'%&##& *'#$ ##''' "#$ %% +, %'# %+)% $
ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΝΕΚΤΙΚΗΣ ΡΟΗΣ ΜΕ ΕΛΕΥΘΕΡΗ ΕΠΙΦΑΝΕΙΑ ΚΑΤΑ ΤΗ ΙΑ ΟΣΗ ΚΥΜΑΤΩΝ ΠΑΝΩ ΑΠΟ ΠΥΘΜΕΝΑ ΜΕ ΠΤΥΧΩΣΕΙΣ ΠΕΡΙΛΗΨΗ
ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΣΟΜΟΙΩΣΗ ΣΥΝΕΚΤΙΚΗΣ ΡΟΗΣ ΜΕ ΕΛΕΥΘΕΡΗ ΕΠΙΦΑΝΕΙΑ ΚΑΤΑ ΤΗ ΙΑ ΟΣΗ ΚΥΜΑΤΩΝ ΠΑΝΩ ΑΠΟ ΠΥΘΜΕΝΑ ΜΕ ΠΤΥΧΩΣΕΙΣ Γ. Α. Κολοκυθάς, Υποψήφιος ιδάκτωρ Α. Α. ήµας, Επίκουρος Καθηγητής Εργαστήριο Υδραυλικής
!! "#$%& ! " # $ &%"+,(-. (# / 0 1%23%(2443
"#$& " # $ & ' &( &)* &"# &"+,(-. (# / 0 123(2443 2443 56 1 7 & '()(()(*+( ),)(-.(/)((,),24420 8.94: -; :53&:54::549 '()((0)(#'(1)(' ( )(-.(/)((,),24460..94: < * 94&5=>6 '()( 2( )(3(1)((0)('.( )4)((,)
]Zp _[ I 8G4G /<4 6EE =A>/8E>4 06? E6/<; 6008:6> /8= 4; /823 ;1A :40 >176/812; 98/< ;76//40823 E182/;G g= = 4/<1
! " #$ # %$ & ' ( ) *+, ( -+./0123 045067/812 15 96:4; 82 /178/? = 1@4> 82/01@A74; B824= 6/87 60/8567/; C 71 04D47/10; C 82/1 /
Erkki Mäkinen ja Timo Poranen Algoritmit
rkki Mäkinen ja Timo Poranen Algoritmit TITOJNKÄSITTLYTITIDN LAITOS TAMPRN YLIOPISTO D 2008 6 TAMPR 2009 TAMPRN YLIOPISTO TITOJNKÄSITTLYTITIDN LAITOS JULKAISUSARJA D VRKKOJULKAISUT D 2008 6, TOUKOKUU 2009
Exercises to Statistics of Material Fatigue No. 5
Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can
A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards
A Compilation of Iraqi Constitutions And Comparative Studies of International Human Rights Standards Table of Contents Introduction (Arabic)... 1 Introduction (English)...396 Part One: Texts of the Constitutions
ο ο 3 α. 3"* > ω > d καΐ 'Ενορία όλις ή Χώρί ^ 3 < KN < ^ < 13 > ο_ Μ ^~~ > > > > > Ο to X Η > ο_ ο Ο,2 Σχέδι Γλεγμα Ο Σ Ο Ζ < o w *< Χ χ Χ Χ < < < Ο
18 ρ * -sf. NO 1 D... 1: - ( ΰ ΐ - ι- *- 2 - UN _ ί=. r t ' \0 y «. _,2. "* co Ι». =; F S " 5 D 0 g H ', ( co* 5. «ΰ ' δ". o θ * * "ΰ 2 Ι o * "- 1 W co o -o1= to»g ι. *ΰ * Ε fc ΰ Ι.. L j to. Ι Q_ " 'T
!"#$%& '!(#)& a<.21c67.<9 /06 :6>/ 54.6: 1. ]1;A76 _F -. /06 4D26.36 <> A.:4D6:6C C4/4 /06 D:43? C</ O=47?6C b*dp 12 :1?6:E /< D6 3:4221N6C 42 D:A6 O=
! " #$% & '( )*+, -. /012 3045/67 8 96 57626./ 4. 4:;74= 69676.36 D426C
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
Tutorial Note - Week 09 - Solution
Tutoial Note - Week 9 - Solution ouble Integals in Pola Coodinates. a Since + and + 5 ae cicles centeed at oigin with adius and 5, then {,θ 5, θ π } Figue. f, f cos θ, sin θ cos θ sin θ sin θ da 5 69 5
Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =
C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9
Oscillatory Gap Damping
Oscillatory Gap Damping Find the damping due to the linear motion of a viscous gas in in a gap with an oscillating size: ) Find the motion in a gap due to an oscillating external force; ) Recast the solution
Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014
38 6 Vol 38 No 6 204 Journal o Jiangxi Normal UniversityNatural Science Nov 204 000-586220406-055-06 2 * 330022 Nevanlinna 2 2 2 O 74 52 0 B j z 0j = 0 φz 0 0 λ - φ= C j z 0j = 0 ab 0 arg a arg b a = cb0
Laplace s Equation in Spherical Polar Coördinates
Laplace s Equation in Spheical Pola Coödinates C. W. David Dated: Januay 3, 001 We stat with the pimitive definitions I. x = sin θ cos φ y = sin θ sin φ z = cos θ thei inveses = x y z θ = cos 1 z = z cos1
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Model NAST (Separable Type)
Model NAST (Sepaable Type) Mateial abon steel Rolle With cage ylindical oute ing Oute ing shape Spheical oute ing R D di 1 1 d Model NAST ating Model NAST-R Tack load capacity ylindical Spheical limit
The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog
Lecture 12: Introduction to Analytical Mechanics of Continuous Systems Lagrangian Density for Continuous Systems The kinetic and potential energies as T = 1 2 i η2 i (1 and V = 1 2 i+1 η i 2, i (2 where
())*+,-./0-1+*)*2, *67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3*
! " # $ $ %&&' % $ $! " # ())*+,-./0-1+*)*2,-3-4050+*67()(,01-+4(-8 9 0:,*2./0 30 ;+-7 3* *),+*< 7+)0 3* *),+-30 *5 35(2(),+-./0 30 *,0+ 3* (=24(-) 04(-() 18(4-3-) 3-2(>*+)(3-3* *3*+-830-+-2?< +(*2,-30+
Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS
Rose-Hulman Institute of Technology Rose-Hulman Scholar Graduate Theses - Electrical and Computer Engineering Graduate Theses Spring 5-2015 Development and Verification of Multi-Level Sub- Meshing Techniques
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα. 2 η Πρόοδος. 9:00-10:10 μ.μ. (70 λεπτά) Πέμπτη, 30 Μαρτίου, 2017
ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα, 2017-2 η Πρόοδος Πανεπιστήμιο Κύπρου Πολυτεχνική Σχολή ΠΠΜ 221: Ανάλυση Κατασκευών με Μητρώα Τμήμα Πολιτικών Μηχανικών και Μηχανικών Περιβάλλοντος Ακαδημαϊκό Έτος
Q Q Q 2Q b a a b
"! $# % &'()!, "!*.- -0, *# 354 36 4*78 8 :9* :65;< 3= $>?3@ 89A 3; 4CB 8D E :F :G 3$>%H3Ï J @KLK@NMPO O@Ï 3Q S "-T O J3QL'0 U * S -TW 3Q@XYS -Z-TW Q@@[U%'0 * \ * S ]9C;C 8 D_a` 8 b;a b=dce b9 3Q@Q@ 65F
ω α β χ φ() γ Γ θ θ Ξ Μ ν ν ρ σ σ σ σ σ σ τ ω ω ω µ υ ρ α Coefficient of friction Coefficient of friction 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 5 10 15 20 0.90 0.80 0.70 0.60 0.50 0.40 0.30
Lecture 26: Circular domains
Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without eplicit written permission from the copyright owner. 1 Lecture 6: Circular domains
Oscillating dipole system Suppose we have two small spheres separated by a distance s. The charge on one sphere changes with time and is described by
5 Radiation (Chapte 11) 5.1 Electic dipole adiation Oscillating dipole system Suppose we have two small sphees sepaated by a distance s. The chage on one sphee changes with time and is descibed by q(t)
MECHANICAL PROPERTIES OF MATERIALS
MECHANICAL PROPERTIES OF MATERIALS! Simple Tension Test! The Stress-Strain Diagram! Stress-Strain Behavior of Ductile and Brittle Materials! Hooke s Law! Strain Energy! Poisson s Ratio! The Shear Stress-Strain
Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model
1 Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model John E. Athanasakis Applied Mathematics & Computers Laboratory Technical University of Crete Chania 73100,
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Supporting Information
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Synthesis of 3-omosubstituted Pyrroles via Palladium- Catalyzed Intermolecular Oxidative Cyclization
University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution , -.
University of the Witwatersrand The Oxidation and Precipitation of Iron From a Manganese Sulphate Solution! "#$%&'(#$)*+, -. /, Page 1 of 88 University of the Witwatersrand The Oxidation and Precipitation
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ
ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ Θετικής - Τεχνολογικής Κατεύθυνσης Φυσική Γ Λυκείου Επιμέλεια: ΘΕΟΛΟΓΟΣ ΤΣΙΑΡΔΑΚΛΗΣ e-mail: info@iliaskos.gr www.iliaskos.gr - f= f= f t+ 0 ) max