t. Neymann-Fisher factorization: where g and h are non-negative function. = is a sufficient statistic. : t( y)

Σχετικά έγγραφα
CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

Estimators when the Correlation Coefficient. is Negative

Exam Statistics 6 th September 2017 Solution

Examples of Cost and Production Functions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Homework for 1/27 Due 2/5

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.

Multi-dimensional Central Limit Theorem

Homework 8 Model Solution Section

Statistical Inference I Locally most powerful tests

( ) S( x ) 2 ( ) = ( ) ( ) = ( ) ( )

ST5224: Advanced Statistical Theory II

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

C.S. 430 Assignment 6, Sample Solutions

Multi-dimensional Central Limit Theorem

ΝΕΑ ΑΠΟΤΕΛΕΣΜΑΤΑ ΣΧΕΤΙΚΑ ΜΕ ΤΗΝ ΥΠΑΡΞΗ ΕΚΤΙΜΗΤΩΝ ΜΕΓΙΣΤΗΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΓΙΑ ΤΗΝ 3-ΠΑΡΑΜΕΤΡΙΚΗ ΓΑΜΜΑ ΚΑΤΑΝΟΜΗ

Markov Processes and Applications

6. MAXIMUM LIKELIHOOD ESTIMATION

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

Lecture 17: Minimum Variance Unbiased (MVUB) Estimators

p n r

Cytotoxicity of ionic liquids and precursor compounds towards human cell line HeLa

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Numerical Analysis FMN011

Outline. Detection Theory. Background. Background (Cont.)

Second Order Partial Differential Equations

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Solution Series 9. i=1 x i and i=1 x i.

Example Sheet 3 Solutions

Article Multivariate Extended Gamma Distribution

Homework 3 Solutions

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Matrices and Determinants

Latent variable models Variational approximations.


SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

Inverse trigonometric functions & General Solution of Trigonometric Equations

The Equivalence Theorem in Optimal Design

Latent variable models Variational approximations.

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Solve the difference equation

Quadratic Expressions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Minimum density power divergence estimator for diffusion processes

EE512: Error Control Coding

Μηχανική Μάθηση Hypothesis Testing

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Exercise 2: The form of the generalized likelihood ratio

2 Composition. Invertible Mappings

Political Science 552

The Simply Typed Lambda Calculus

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

The challenges of non-stable predicates

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

1. For each of the following power series, find the interval of convergence and the radius of convergence:

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Markov Processes and Applications

Solutions: Homework 3

Tridiagonal matrices. Gérard MEURANT. October, 2008

Mean-Variance Analysis

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

557: MATHEMATICAL STATISTICS II RESULTS FROM CLASSICAL HYPOTHESIS TESTING

LAD Estimation for Time Series Models With Finite and Infinite Variance

Studies on Properties and Estimation Problems for Modified Extension of Exponential Distribution

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Areas and Lengths in Polar Coordinates

Solutions to Exercise Sheet 5

rs r r â t át r st tíst Ó P ã t r r r â

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Εδώ θα θέσουμε τα θεμέλια της εκτίμησης κατά Bayes αρχίζοντας με τα μονοπαραμετρικά μοντέλα δηλαδή όταν ϑ : Ω Θ.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

6.3 Forecasting ARMA processes

1. Matrix Algebra and Linear Economic Models

SOLVING CUBICS AND QUARTICS BY RADICALS

Reminders: linear functions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

FORMULAS FOR STATISTICS 1

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

12. Radon-Nikodym Theorem

Three-Dimensional Experimental Kinematics

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Post Graduate Diploma in Applied Statistics (PGDAST)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

The ε-pseudospectrum of a Matrix

MÉTHODES ET EXERCICES

ΕΙ Η ΠΑΛΙΝ ΡΟΜΗΣΗΣ. ΑΠΛΗ ΓΡΑΜΜΙΚΗ ΠΑΛΛΙΝ ΡΟΜΗΣΗ (Simple Linear Regression) ΓΡΑΜΜΙΚΗ ΠΑΛΙΝ ΡΟΜΗΣΗ (Regression) ΠΑΛΙΝ ΡΟΜΗΣΗ.

Theorem 8 Let φ be the most powerful size α test of H

Every set of first-order formulas is equivalent to an independent set

Suppose Mr. Bump observes the selling price and sales volume of milk gallons for 10 randomly selected weeks as follows

Optimal stopping under nonlinear expectation

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Formal Semantics. 1 Type Logic

Transcript:

Statstcs et Y ~ p( ; ( ; ( ; ( ( ; ( p Y t p g t h Y suffcet statstc (for the parametrc faml p( ; s depedet of t Nema-Fsher factorzato: where g ad h are o-egatve fucto p( ; Smple bar hpotheses: {, } : t( p( ; p( ; p( ; For {,, }, t (,, p( ; p( ; Suffcet a (measurable fucto h ( such that t( ht ( s a suffcet statstc s a suffcet statstc t s a mmal suffcet statstc f, for a other suffcet t, there s Suppose there exsts a fucto p( x; the rato p( ; he t s complete f A statstc ( Y such that for two sample pots x ad, s a costat as a fucto of f ad ol f ( x ( Y s a mmal suffcet statstc for Prg t Y Λ ( Eg t Y g t p ; d ( Y complete ad suffcet mmal suffcet ad uque Ex X ~ (, t( x max{ x} d U, K-parameter expoetal faml: A faml of dstrbutos s sad to be a K- parameter expoetal faml f ( ; exp K c t + d + s IA K p c( t( e f ( h( IA ( If c {( c,, c K, Λ} has a teror pot, the t ( ( t (,, tk ( s complete ad suffcet mmal suffcet ad uque Setup Parameter space { } Pr where IA ( s the dcator fucto ot related to Λ Λ P( Θ Λ Λ Pr [ Θ ] Θ Θ Λ pothess: : ~ ( ; Observato space Γ d Y p Λ,,,, -

A determstc detector : {,, -} Parttos the observato space Γ to K dsjot subsets Γ wth Θ Whe Θ { }, : Λ { } ( : pdf/pmf o {,,, } ( ( Γ ad detf A radomzed detector ( D Y Pr ( he detecto D d s a realzato accordg to D ( Cost: C(, Cost C(, j Cost j Uform cost: [ ], Assume Cj > C for all, j he Baesa Detector Baesa / Baes Rs: R E p R R p R d ( [ Cost] ( ( ( Codtoal rs: Cost R E Y (, Pr Θ (, ( ; R C D C p d Γ C, C j, Λ j C, Pr Γ Θ C, p ; d for determstc detector R R d Λ Baesa Detector B argm R o the detector, the Baesa detector for a gve : B ( argmr( argme Cost Y Smple potheses: { } he Baesa detector s determstc: Because the dstrbuto of does t depeds,,, Pr D Y, o/ w d argme Cost D Y, argm Cj jp ; j where E Cost D Y, C p Θ Y C p ; j j j j j j j p j (, Pr Θ (, ( ; R C D C p d Γ,

R( j Cj p( ; j d Wth uform cost, t s the probablt of j Γ error, Baesa detector for pror p(, τ ( C C d ( p( where τ ( C C, otherwse ( C p ( C p ( C p ( C p ( + + c Γ : p τp Γ Bar Smple potheses: Pr[ ] B, { ( } + + + ( ( ; ( ; ( ; ( ; R C p d C p d C p d C p d Γ Γ Γ Γ Ex : Y ~ N (, σ, : Y ~ (, σ N < + σ C C he, Γ : γ + l For uform cost, ( CC γ γ R( Q + Q σ σ a b a τ b + a + b Uform cost wth dett cost matrx Composte Bar pothess estg Pr[ Θ ] p( Θ Λ p( Pr Θ Θ Λ d p( d Λ p( Pr[ ] d Θ Λ Pr[ Θ ] Λ Pr Θ Θ Λ Λ, ( τ ( C C B τ where, ( < τ ( C C P( Θ Λ Pr [ Θ ] d Λ Λ

( p p ( Θ Λ ( Θ Λ Λ Λ p d Pr[ Θ ] ( C C τ ( Pr[ Θ ] p d R Pr D Θ Λ + Pr D Θ Λ C C p dp Λ d + p dp Λ d Λ Γ Λ Γ p p dd+ p p dd Γ Λ Γ Λ p p dd+ p p dd Λ Γ Λ Γ max Detecto max detector/rule/crtero: If we ow Θ ~ Λ mmax R Λ R R d Smple bar hpothess testg: the mmax detector s mmax R Rs for gve pror : r(, R ( ( R ( r(, r(, B, max detector s mmax { R, R} mum Baesa rs V( r(, B, ( ( V r, B, + (ear wrt R ( B, V ( r (, B, R ( ( ( V R R ( B, Cocave ad cotuous [,]

argmaxv ( least favorable pror If V ( exsts at ( ( B, B,, the r (, B, V R R V at s a taget le of ( Cost (, ( ; + (, ( ( ; B, R E C p d C p d ( Cost (, ( ; + (, ( ( ; R E C p d C p d the Baesa detector desged at ( B, argm r, mum Baesa rs gve pror: r r ν,,, Solvg for max detector for bar smple hpotheses: Equalzer rule: If there exsts a pror s the least favorable pror V( V ( B, If ot the, If or, the B, B, such that R ( R ( B, B,, the, ad the mmax detector Otherwse, (f V ( s lear the small eghborhood of ( wth probablt q ad B, B, R +, ( ( R ( B, + B, ( ( + ( +,, ( R + R +,, ( R( B, R(, B B B, cosder wth q from wth probablt q + + ( V ( R R B B V q V ( (, B, V r (, (, B, r r ( (, B, V r r (, B, r (, r (, B, +

he mmax rs V( R ( B, R ( B, A detector there exsts a pror Radomzed Baesa Detector: ( ( ( for all cases s mmax f t satsfes the equalzer rule R ( R such that V( ( wth probablt q wth probablt q R qr + q R R r (, R( R( R R( R( ad he equalzer rule remas vald for composte hpotheses If the m Baesa rs s dfferetable at the least favorable pror, the the Baesa detector s the mmax detector Nema-Pearso Detector m ( subject to R K R α, < K Bar potheses: : Y p( ; alteratve, Λ,, : ull hpothess : the Smple bar hpotheses: : Y p( ; ; : Y p( ; rego; Γ : rejecto rego Γ : acceptace False alarm (I P ( ; Pr[ D ; ] ( p( ; F d E ( ( he sze / level of a detector α( sup P F ( ; Λ Λ ss detecto (II P ( ; Pr[ D ; ] ( ( p( ; d E ( ( Λ he power of a detector P ( ; Pr[ D ; ] ( p( ; d E ( ( Λ P ( ; P ( ; D D F D has the same formula but usg from dfferet sets Uforml most powerful (UP: A sze α detector UP s UP f of sze α, P ( ; P ( ; D UP D Λ For smple bar hpotheses, (If Λ P ( ; ad P ( ; Λ ( α( α( P ( ; P ( ; UP ( ; UP D UP D ( arg max P ; E Pr D ; α UP UP s a sze α NP detector for : Y p ( ; ; : Y p ; for a Λ? For smple bar hpotheses, NP detector s arg max P arg m P arg m R wth uform cost PF ( α D P PF α R α α D, the

Nema-Pearso emma for smple bar hpotheses: Optmalt A p( > ηp(, ( ; ( ; p( ηp(, ; ; γ p ηp, ; < ; γ, s the best of ts sze [ ] ( ( η ( ( D D F F P P > P P for all Exstece α [,] η, there exsts a detector of the form above m η γ ( Pr ( > η; α for some η ad γ, Pr η ; arbtrar, otherwse Pr ( > η ; s a complmetar dstrbuto fucto, rght cotuous, ad mootocall decreasg γ ( α Pr > η ; Pr η ; ( α P Pr ( η ; γ Pr ( η ; F > + 3 Uqueess If s a sze α NP detector, the ( has the form above except perhaps for a set of wth zero probablt uder both ad P Pr D ; Pr η ; γ Pr η ; D > + Sce Note: [ ] > η Pr ; s also mootocall decreasg, we wat low η to get hgh P elpful to plot Pr D ( > η ; stead of ( whe the trasformato s :, creasg vs η 3 Ca wor wth t ( UP detector et be a real parameter he real-parameter faml ( ; lelhood rato ( ( f <, p( ; ad ( ; p( ; ( ;, s a odecreasg fucto of some real valued p( ; Ex Ce µ σ ( u ( Q ( c h e d Beroull, ( Oe-sded potheses estg: Y p( > : ; p has mootoe p are dstct ad whe Q ( s mootoe 3 Y p( : ; > (or he Kal Rub heorem: et be a real parameter ad let p( ; have mootoe lelhood rato ( For testg the oe-sded hpotheses, there

exsts a sze α UP detector of the form ( are determed b the sze costrat τ ( ;, > τ γ, τ, < τ m τ, Pr > τ ; α E p d α τ ad γ are fuctos of Gve a <, ad P ; P ; where τ ad γ wth NP form he F F E ( Pr D s a odecreasg ( fucto of So, for Λ (, s α( sup PF( ; PF( ;, the sze (false alarm of wo-sded pothess: ( ; Λ a ( b wth odecreasg p h e UP detector for : or, : (, of the form, c < < c ( γ, c where c < c ad γ are determed b, otherwse E ( ( α E If s surrouded b, the suspect o UP detector Baesa Estmao Estmate radom ~ p( a Θ from Y ~ p( he cost s EC( ΘΘ mmze EC( ( Y Θ Baesa ( argm R ( R( ( Θ ( C p( d estmator E C Y SE: ( argm Baesa SE p d EΘ Y SE, µ +Λ Y Λ YY µ N Θ Θ Y I addto, f µ µ are zero, the ( Λ Λ, lear For For jotl Gaussa Θ ad Y,, Θ Y example, let Y a N SE, N, Θ Y YY d Θ+,,, Θ ~ N (,σ Θ N ~ N (, σn σ Θ SE, N, ( a where γ If a, the σ N aa+ γ γ SE, N, ( + γ ear observato model: et Y S + W, S W, S ~ N ( µ, Σ S S, W ~ N (, ΣW, the the SE estmator s he

E SY µ +Σ S S ( Σ +Σ S W ( Y µ S Error covarace matrx: CovSY Σ Σ ( Σ +Σ Σ S S S W S C C x C x, ad covex, Gve, assume s smmetrcal, e Θ, the p( +, the ( ( let E m ( ( m ( m p p s smmetrcal wth respect to m, e Baesa SE m ( argm p( d argm p AE p d p d Θ Y For C u, ( argmax + +, >, (, ( p d et d + + u, argm p( d, the AP ( argmax p( SE For E X X ubased, Cov( X X E ( X X( X X SE( X X X X trace( ( X E Cov X X E ear SE: EΘ? Gve zero mea radom varables Y,,,, Θ f Y fy f EΘY ( YY E mmzes SE ΘΘ E Θ E ΘY E YY E YΘ E to Θ s the orthogoal projecto of Θ oto { Y Y } E ΘΘ For Y C, X C, m F XY E E YY spa,, X s the lear SE estmate of X X s also the optmal lear estmate usg the weghted cost fucto m E ( X F Y Λ( X F Y for a Λ F

ear observato model: Y S + W S, E, W S S Σ SS Cov, W W Σ, the the lear SE estmate of S s gve b WW S ( Y ΣSS Σ +Σ SS WW Affe SE estmator: Gve radom vector Y If E Y ad E X are ow, the the SE affe estmator of X b Y s gve b X µ +Σ Σ X XY Y ( Y µ Y ( Cov X X Σ Σ Σ Σ E X X X XY Y YX (, (, Cov X X Cov X X Σ Σ Σ XY Y YX If s osgular ad u, the the SE affe estmator of x usg s the same as that usg u If W X ad are ucorrelated, ad V BX + W, the the SE affe Y V Y BX Bµ + BΣ Σ Y µ, estmator of V usg Y s gve b X XY Y ( Y Cov V V Pot Estmato ( ( BCov X X B affe,se +Σ g E gy g for a fxed E gy g gy gy + gy g E E E ĝ of g( s ubased f E g ( Y g( he, ( g gy gy E E ; For ubased, ( trace{ Cov( ( Y } Cov Y Cov Y Cov Y + a alwas Crtero: mze SE (rs ( A estmator Note that ( ( UVU A estmator ĝ( of g( s UVU (uforml mmum varace ubased f ubased For all ubased ĝ, ( g ( g Rao-Blacwell heorem: Suppose that estmator for g( wth Eg ( W Y s suffcet for ad that < for all ĝ s a

et g ( Eg( ( Y ( ( ( YY he g g p d, g ( Y g E E gy g( 3 If compoets of ĝ have fte varaces, the the strct equalt holds uless Prg ( Y g( Y E gy g gy g ( Y + g ( Y g( E E Furthermore, f ĝ( s ubased, the 4 ĝ ( s ubased for g( 5 ( ca be wrtte as Varg ( Y Varg( Y ĝ h g g If, the ehma-scheffé heorem: If ( Y s complete suffcet, ad ubased estmator of g( he g ( ( g( Y ( Y ( estmator Shortcut: Kowg ĝy s a E s a UVU Y s complete suffcet, tr fdg ( Y E For oe-parameter expoetal faml, (Y s complete ad suffcet, f t s ubased, the t s UVU CRB: Cramér-Rao ower Boud he score fucto s( l p( ; ; l p( ; E sy; l p( ; K I Es Y; s Y; Cov s Y; Fsher Iformato atrx: Ij E l py ( ; l py ( ; E l p( Y; j j ( l ( ; ( l ( ; l ( ; I E py py py E For scalar, I E l p( ; l p( ; E l p ( ; he Cramér-Rao Boud: et be a scalar ubased estmator of he, CRB: ( Var( Var( ( Y E ( Y I wth equalt ff ( ; l ( ; ( s p I

Iformato lower boud: For based estmator, E ( Y Φ(, the ( Φ ( Var ( Y wth equalt ff s( x; I I ( ( Φ If ( Y acheves formato lower boud, the t has mmum varace amog all s effcet ad UVU Y s estmators ( Y satsfg E ( Y E ( Y Furthermore, f ubased, the ( Y Oe parameter expoetal faml: et Λ be a ope terval, ad p( ; g ( C( e h( ( Y f a ol f ( Y ( Y Wth regulart, the formato lower boud s acheved b Also, (Y s complete ad suffcet 3 If (Y s ubased, the t s UVU ad effcet A ubased estmator s effcet f t acheves CRB A effcet estmator s UVU but a UVU estmator ma ot be effcet (whe CRB s ot achevable Y acheves CRB, the t s the soluto to the lelhood equato If l p( ; effcet estmator dstrbuto of the observato must belog to the expoetal faml he effcet estmator ca be foud b the estmator CRB ubased estmator of, the E ff l p( ; I ( et E wth equalt ( Y ( ( Y I ( g ĝ be a ubased estmator of ( gy g( gy g( ( (, the ( dg I ( ( dg(, wth equalt ff g g dg I l p ; µ Y ~ N µ, Σ µ Σ Σ he, I( Σ + tr Σ Σ j j µ µ ( µ Σ Σ j where,,, et Y ~ N( µ, Σ, the I( ( d µ Σ d µ l p ; dµ Σ µ et Also,

ear model: X + W, W ~ N (, Σ he X ~ N (, Σ, ad I Σ l p ; Σ Σ Σ Σ Σ s UVU, effcet, Gaussa,, east-square Need full colum ra for detfablt ~, ( Σ et Y ~ CN ( µ, Σ, real he I ( j Σ Σ tr Σ Σ j State Estmato N µ µ Re Σ + State Estmato: states: S AS + + U observato: Y S + W Kow dstrbuto of S, put sequece { U }, observato ose { W } E S s, VAR S Σ Fd the SE estmator of S gve Y, Y,, e, s E S,, Dscrete-me Kalma Buc X FX GU Y X + V Q Cov( U, R Cov( V +, + t t t t X E [ X ], t Σ Σ Cov( X Σ Cov tt ( Xt Y Kalma ga matrx K t Σ t tt tσ tt t + R t t X E X ( tt t Y X + K tt t Yt X t tt Σ Σ K tt tt t tσ t X E X tt t t t+ Y FX + t Σ F tt tσ F t t tt t + GQG + t t t Kalma Flterg t Notato: {,, } t t the past samples Σ ( ( tt t tt t tt s the SE predcto of S from t t E S tt t t E S s S s t s E S tt t (the SE flter t Σ ( ( tt E St stt St stt u, { } Λ U Euu Λ W Eww [ ] s ~ N( s, Λ depedet of { u }, { w } Italzato: ŝ ES, Σ VARS Σ, s SS Gaussa odel: { } w are zero mea, depedet, Gaussa [ ] easuremet Update: flterg: K Σ Σ +Σ W s s + K ( Σ Σ K Σ

me Update: predcto: s As + Σ A Σ A + +Σ U s + + + Same formula for lear SE of o Gaussa Example Normal d: µ ; σ ( µ based Expoetal d: p( ; e I( > e I > ( d X ~ P ( λ ( λ s UVU ( based x λ x λ e λ ; λ ; λ p x e x h x ( xj! ( xj! j j p x; I max x < I m x > d X ~ U (, ( { } g ( max { x }, + max complete ad suffcet ( { } Bar d: p( x; UVU p ; g ( Bomal: Estmator ( { } t( x max{ x } s UVU he estmator of parameter from Y ~ ( ; argmax p( ; argmaxl p( ; Θ Θ s complete ad suffcet ; s complete No ubased estmator for p he best lear ubased estmator (BUE s BUE ABUE E AY subject to [ AY ] Θ s ( ABUE where argm E + wth zero mea ose, For lear model X W BUE s

For the K-parameter expoetal faml, let C be the teror of the rage of {( c,, c, } K Λ If E t( Y t(,,, K have a soluto ( for whch c (,, c ( K C, the s the uque estmator of oto Ivarace: et g ( : Θ Φ, g ( φ : Φ { A: A } mage Defe ( ; φ sup p( ; g ( φ Θ be the verse l If s the estmate of, the φ argsup l ; φ ( φ Φ ( g ( py ( ; p( ; D E l ( ; p l d p( Y; p( ; p( ; p( ; ae If s detfable, the s the global mmum of D wth equalt ff D D, ad m ( max l py ( ; Θ E For d Y, argmax l p( ; argmax l py ( ; o solve for : Θ N N E s ; l p ; ( + ( Newto-Raphso: J ; s ; J ; l p ; Scorg ethod: et the complete data ( + s( ; + I S Z Y ~ p ( z ; Ol Y ~ ( ; ( ( ; E ( l ( ;, + Q, > Q, l p ; l p ; p s observed E: Q pz Y argmax Q ; If dstrbuto of S does ot deped o, ( Q( ; E ( l pys ( ; Y + costat lme Y Asmptotcall ubased Cosstec: (d dstrbuto lm p ( p (, (p wea lmpr( Y >, (wp strog ( Y Pr lm, (ms mea square lme ( Y (wp (p (d (ms p p ad bouded Θ (ms ~ N, Σ Asmptotcall Normal:

Var ( Y Asmptotcall effcet (BAN: best asmptotcall ormal lm CRB ( ~ (, N I ; I lm I Y d Uder regulart codtos, (wea ( s asmptotcall Gaussa ad asmptotcall effcet Sequetal Detecto Fxed sample sze (FSS detector Example: Cosder the -sample smple bar d hpotheses vs : Y ~ ( µ, σ µ µ µ µ l Y ( Y σ σ ( µ µ ( µ µ N,, σ σ l Y ( ~ ( µ µ ( µ µ N,, σ σ N,,,,,, µ > µ he he mmum such that the σ µ µ optmal detector has sze < α, ad power > β s Q ( α Q ( β d ~ ; Smple bar hpotheses vs Y p(,,, A sequetal detector ( φ, s defed b stoppg rule sequece [ ] φ ( R { } φ : stop data collecto & mae decso :, termal decso cotue data collecto : ( Pr D Y Stop N φ m : φ Y rule sequece [ ] { } tme: ( he sequetal probablt rato test: p( ; SPR(A,B: (, p( ; ( B, stop, φ( or ( A,, ( ( AB,, ( B (, ( A ( B B A A Choose Choose

β SPR s optmal the Baesa problem SPR satsfes A ad B β α α he Wald-Wolfowtz heorem: he SPR(A,B detector ( φ, has the mmum stop tme amog all detectors (cludg FSS detector wth sze o larger ad power PF ( PF ( o less tha those of ( φ, E N N(,, φ φ PD( PD( E py ( ; p ( ; Z l z l l ( z py; p ; Wald s Approxmatos : Gve α ad β, the optmal SPR(A,B ca be β β approxmated b SPR ( A, B wth A ad B α α β β? β β A A < B B α < β α α α α AB, A, B the approxmato requres more samples P ( + P ( α + ( β α + ( β P ( + P ( F F he Wald s Equato: et Z be depedet ad d wth EZ et N be a E Z + + Z E Z E N stoppg tme, the, [ ] [ ] [ ] E [ N ] [ Z] N β β αlb+ α l A αl + ( α l α α E E [ Z] β βlb + ( β l A βl + ( β l E [ N ] α α E [ Z] E [ Z] E p( ; [ Z] ( ; p l d p( ; [ ] p( ; E Z ; p l d p( ; Revew b( x ( + ( + ( +,, f ( x g( x, d, f ( x g b ( x g( xb, ( x a ( x g( xax, + ( xd,, x! N, N + a λx xe dx + λx e λ 6 ax e dx a λx β bx a x a x x e ax b 4ac ( ax + bx+ c 4a e dx e α ( Γ + dx + a, for

( f x ( df ( x f f x df ( (,, ( d x x x x d( Ax + b A ( d a x a d ( f ( x g ( x f ( x dg ( x + g ( x df ( x d( f ( x Qf ( x f ( x Qdf ( x ( d f x f ( x df ( x x x x, x ( Ax + b A, x ( a x a, x ( f ( x g( x g x ( x f x + x ( f ( x g( x x ( f ( x Qf ( x x ( f ( x Qf ( x ( x Qx Qx x f x f x f x x ( x f XY, Y f x, pxy xdx E f XY, Y E f ( X g( Y g ( Y f ( X Y g (, f(x x, the have E [ X] XY X X µ X Λ Λ XX XY Z s jotl Gaussa ~ N, Y Y he, µ Λ Λ Y YX YY p( x ~ ( EX Λ, X ( EX µ µ +Λ Λ, X XY YY Y Λ Λ Λ Λ Λ X XX XY YY YX Defe K Λ Λ he E XY YY X µ + K X ( µ Y, Λ Λ K X XX ΛYX ( XYW,, jotl Gaussa W ( XY, BX + W he V ~ N( E V, Λ V where EV BEX + E W, E a costat ad Λ BΛ B +Λ ( V X WW aa + ci I aa c c a a c ( + Schur complemet of A A AA A I A A I A A A A A I A A ; I A AA A A ( A A ad ( A A A A A A ( + ( + A BCD A A B C DA B DA ( + ( + A BCD A A B I CDA B CDA

N(m,σ : X ( det( Λ ( σ ( x m σ f x e σ e, Λ ( x m ( x m E e jvx e jmv v σ x µ σ ; d exp σ µ µ exp x + x σ σ σ det ( Λ e ( x m ( x m Λ ; CN ( µ, Σ N ( µ, Σ Q (, Q( z Q( z xm Q ( Q( z z P[ X > x] Q σ xm xm P[ X < x] Q Q σ σ λ λ ux Posso P(λ, e ; Ω N, λ, EX λ, VAR(X λ, Φ X ( u Ee ( e e λ u! Bomal p ( p ; p, p(-p, (pe u +-p a+ b Uform U(a,b,, b a b+ a s u ( b a u, e Expoetal E(α,, b a u α α, α aplaca α u αx α x (α, e x < e α ;α >,,, αx e x α, α α + u q x Gamma fucto: Γ ( q x e dx ; q > Γ ( (! for N ( N! Γ λ x Γ q, λ p( x Γ f { } dstrbuto: E ( λ s (,λ Γ Beta dstrbuto: p( z β q, q ( x x ( x q q λx ( q Γ + Γ Gamma e Γ +! q > x Expoetal dstrbuto ( q q ( q Γ( q Γ + q ( q z z z Γ ; z (,

et X ~ p( x λ x Γ e q q λ x ( q X X, depedet he Z X + X are depedet Z β ( z Z X X ~ ( q q, λ ~ Γ q, λ X ~ q, q X + X Cetral ch-square dstrbuto: X ~ (, σ σ e, ( u p X d σ ( σ ~ N, Y ( Φ + Γ + N Y juσ X he ad Z X + X ch-square (or gamma: X he σ p e, σ ( σ Φ u j uσ E [ Y] σ, Var[ Y] Decorrelato If A s the covarace matrx ( E[ xx ] Γ, Γ 4 σ x of a zero mea radom vector x x he vector x x ca be decorrelated va trasform x x AA x wth A covarace Cov( E[ ] A A A A Cov ( x A A x wth equalt ff Pr x A A x