Wilson ratio: universal nature of quantum fluids

Σχετικά έγγραφα
Martti M. Salomaa (Helsinki Univ. of Tech.)

Computer No.53 (1992) IBM 650. Bacon TSS JRR-2.[1] free inductin decay IBM 7044 FACOM

APPENDIX A. Summary of the English Engineering (EE) System of Units

Higher spin gauge theories and their CFT duals

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

: Rydberg,, PACS: Ee, q. . Gallgher [14,15] Rb Rydberg van. . Raithel [16,17] Rb Rydberg. condenstate(bec) [3 5], Rydberg

Approximation Expressions for the Temperature Integral

Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence

Thermodynamics of the motility-induced phase separation

[11].,, , 316 6, ,., 15.5%, 9.8%, 2006., IDF,, ,500, 2,830.,, ,200.,,, β, [12]. 90% 2,,,,, [13-15].,, [13,

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

J. of Math. (PRC) 6 n (nt ) + n V = 0, (1.1) n t + div. div(n T ) = n τ (T L(x) T ), (1.2) n)xx (nt ) x + nv x = J 0, (1.4) n. 6 n

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

The effect of curcumin on the stability of Aβ. dimers

Butadiene as a Ligand in Open Sandwich Compounds

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

High order interpolation function for surface contact problem

AdS black disk model for small-x DIS

Statistical Inference I Locally most powerful tests

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

A System Dynamics Model on Multiple2Echelon Control

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Quantum Statistical Mechanics (equilibrium) solid state, magnetism black body radiation neutron stars molecules lasers, superuids, superconductors

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Hartree-Fock Theory. Solving electronic structure problem on computers

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Supporting Information

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Ó³ Ÿ , º 3(201).. 461Ä ƒ. ÒÏ ±,.. μ 1. ˆ É ÉÊÉ Ö ÒÌ μ ² ³ ²μ Ê ±μ μ μ Ê É μ μ Ê É É, Œ ±

IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2

High Performance Voltage Controlled Amplifiers Typical and Guaranteed Specifications 50 Ω System

Trace gas emissions from soil ecosystems and their implications in the atmospheric environment

Na/K (mole) A/CNK

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

Cable Systems - Postive/Negative Seq Impedance

DuPont Suva 95 Refrigerant

100x W=0.1 W=

MATSEC Intermediate Past Papers Index L. Bonello, A. Vella

of the methanol-dimethylamine complex

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

PACS: Pj, Gg

Supporting Information

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Supplementary Information for

,,. ,,, . 2 PACC: 4265S,4265J. I s, I b. I s e Tsinghua Tongfang Optical Disc Co., Ltd. All rights reserved.

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Table of Contents 1 Supplementary Data MCD

DuPont Suva 95 Refrigerant

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Conductivity Logging for Thermal Spring Well

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

STEAM TABLES. Mollier Diagram

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Research on explaining porosity in carbonate reservoir by capture cross section method

Geodesic paths for quantum many-body systems

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Journal of the Institute of Science and Engineering. Chuo University

Fundamental Physical Constants Complete Listing Relative std. Quantity Symbol Value Unit uncert. u r

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Other Test Constructions: Likelihood Ratio & Bayes Tests

N 2 O + , Fermi, . N 2 O + . Larzilliere (FIBLAS), O + ( 4 S) + N 2 ( X 1 + ) NO + ( X 1 +, v) ], N 2 O + ( A 2 + )

Supporting Information


Supporting Information. Enhanced energy storage density and high efficiency of lead-free

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

EE512: Error Control Coding

Soil Temperature Change and Heat of Wetting during Infiltration into Dry soils

PETROSKILLS COPYRIGHT

UV fixed-point structure of the 3d Thirring model

Supporting Information

ELECTRONIC SUPPORTING INFORMATION

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Free Energy and Phase equilibria

27 7 Vol. 27 No CHINESE JOURNAL OF APPLIED CHEMISTRY July CV SEM EIS DTD. MCMB / 0. 01% DTD MCMB /Li. 300 ma h /g 350 ma h /g

Supporting Information

April MD simulation of interaction between radiation damages and microstructure: voids, helium bubbles and grain boundaries

Transcript:

Wilson ratio: universal nature of quantum fluids Xi-Wen Guan key collaborators: Yi-Cong Yu, Yang-Yang Chen, Hai-Qing Lin Washington University, April 205

Giamarchi, Quantum Physics in one dimension, 2004 A. J. Schofield, Contemporary Physics, 200

3D c v = 3 D c v = πk 2 B T 3 polarization of Fermi surface m k F k 2 B T, χ = m k F µ 2 F g2 π 2 +F0 a, R W = +F0 a ( + ), χ =, R W = 2vc v s v c πv s v c + v s 3 R W = 4 3 ( ) 2 πkb χ µ B g c v/t

Wilson ratios The Wilson ratios, defined as the ratios of the magnetic susceptibility/compressibility to specific heat divided by temperature are dimensionless constants at the renormalization fixed point of these systems. The values of the ratio indicate interaction effects and quantifies spin/particle number fluctuations. G = E Nµ MH TS δm 2 = D k B Tχ, δn 2 = D k B Tκ R s W = 4 3 ( ) 2 πkb χ µ B g c, v/t Rc W = π2 kb 2 κ 3 c v/t

Wilson ratio: essence of Fermi and Luttinger liquids κ = κ +κ 2 + +κ w, /κ r = πv r Nc /r 2 = + + +, /χ rl = πvns rl χ l χ l χ l χ /r 2 wl c v = c v + c 2 v + c w v, cv r = πkb 2 T/( 3 vs r )

{ R s,c quantum fluctuation const. for FL, SL, TLL, W = thermal fluctuation = QC for, Non FL. RW sl = ( ) v Ns wl v2l ( +... w 2 Ns 4 + v Ns l vs w ( ) w 2 4 RW c = v Nc w +... v Nc 2 + v Nc ( ), R c,s vs w +... + W vs 2 vs +... v 2 s ) + vs ( ) ( µ µc) = Fc,s t νz ( ) ( µ µc) +λ 0 t β G c,s t νz

I. Two-component Fermi gas II. III. Wilson ratios of SU(N) Fermi gases Conclusion

Group of Quantum Integralable System 2004-204, Lieb-Liniger Bose gas 2008, Yang-Yang thermodynamics of Bose gas 2009, super Tonks-Girardeau gas 200, Yang-Gaudin spin-/2 Fermi gas 200, quantum criticality of the D quantum Ising model 202, quantum phonon fluctuations in the D Bose gas 202, Wilson ratio in a spin-/2 Heisenberg ladder 202-203, testing D interacting fermions: from few to many 203, quantum impurity and magnons in D Hubbard model of cold atoms 204, D liquid of multi-component fermions with tunable spins 204, measuring excitations energies in D Bose gas 204, Experimental Observation of a Generalized Gibbs Ensemble

I. Experimental test I. Two-component Fermi gas Yang-Gaudin model H = L j=, 0 φ j (x) ( 2 2m d 2 ) dx 2 φ j (x)dx L +g D φ (x)φ (x)φ (x)φ (x)dx 0 H L ) (φ 2 (x)φ (x) φ (x)φ (x) dx 0 many-body problem H: effective magnetic field H = 2 2m N i= 2 x 2 i g D = 2 c m, c = 2/a D, a D = a2 a3d + Aa + g D i<j N C. N. Yang,967; M. Gaudin, 967 Olshanii M., Phys. Rev. Lett., 8, 938 (998) Guan, Batchelor, Lee, Rev. Mod. Phys., Rev. Mod. Phys. 85, 633 (203) many others... δ(x i x j ) Hm z

I. Experimental test a Partially polarized (FFLO) Chemical potential Low P P c Vacuum High P Fully polarized Effective magnetic field Experimental measurement of phase diagram of two-component ultracold 6 Li atoms trapped in an array of D tubes through the finite temperature density profiles. Liao et al, Nature 467, 567 (200) Orso, PRL 07; Hu, Liu & Drummond, PRL 07 Guan, Batchelor, Lee & Bortz, PRB 07 Zhao, Guan, Liu, Batchelor & Oshikawa, PRL 09

I. Experimental test χ = R s W = 4 3 +, c v = π2 kb 2T ( χ u χ b 3 πvs u ( πkb µ B g + ) πvs b ) 2 χ c = 4 ( v/t v b N + 4vN) ( ) u vs b + vs u H = 2(µ µ 2 )+ 2 c2, n = 2n 2 + n χ = ( ) H = µ µ 2 = µ + µ 2 2 m n n n 2 n 2 ( ) ( ) n n2 χ u =, χ b = 2 µ n µ 2 n Guan, Yin, Foerster, Batchelor, Lee, Lin, PRL, 3040(203)

I. Experimental test.0 b c 0.8 0.6 0.4 t=0.0000 t=0.000 t=0.0004 t=0.0008 t=0.002 t=0.002 0.2 0.0 0.95.00.05.0.5.20.25.30.35 H/ b F(T) = E 0 πct 2 ( + ) 6 v b v u

I. Experimental test c V b /(T c ) 24 22 20 8 6 4 2 0 8 6 4 2 analytical t=0.0000 t=0.000 t=0.0004 t=0.0008 t=0.002 t=0.002 0 0.0 0.2 0.4 0.6 0.8.0 P c v = πk 2 B T 3 ( v b + v u ),

I. Experimental test 0.005 0.0003 2.000 0.004 0.0002 t 0.003 0.002 0.00 PP CR TLL 0.000 0.0000 0.96 0.97 0.98 0.99 CR F R W 0.000 0 0.9.0..2.3.4 H/ b RW s = 4 ( v b N + 4vN) ( ) u + vs b vs u

I. Experimental test κ = κ b +κ u, κ b = πv Nc b 2 ( ) vnc b µb = π n b,, κ u δn 2 = D k B Tκ, vnc u = H,c π = πvnc u ( ) µu n u H,c κ b π2 n 2 4 { { κ u 2π 2 n + 2n 2 c v u v b s + 6n c + 4n 2 c + n2 2 + 24n2 2cn c 2 + 24n n 2 c 2 + 7n2 2 c 2 2n3 2 c 2 + n4 2 n 4c 2 n 2 } 2m 2πn (+2A / c +3A 2 /c2) 2m πn 2 (+2A 2 / c +3A 2 2 /c2) + 6n2 cn 2 + 96n2 2 c 2 + 384n2 c 2 8n n 2 c 2 96n3 c 2 n 2 + 256n4 c 2 n 2 }

I. Experimental test RW c = π2 kb 2 3 ( R c 2 W = v b Nc κ c v/t + v u Nc ) ( / vs b + v u s ) Yu, Chen, Lin, Guan, 204 in preparation

I. Experimental test The second Wilson ratio at t 0.00ǫ b R c W = π2 k 2 B 3 κ c v/t, Rc W = K, TTL F : R c W =

I. Experimental test R c,s W The second Wilson ratio at t 0.00ǫ b ( ) ( ) ( µ µc) ( µ µc) = F c,s +λ t νz 0 t β G c,s t νz

I. Experimental test R c w 0 8 6 4 2 t=0.00 t=0.002 t=0.003 π 2 (κ κ0)/(3cv/t) 0.8 0.6 0.4 0.2 t=0.00020 t=0.00025 t=0.00030 0 0.73 0.74 0.75 0.76 0.77 x/(n 2a) 0 0.26 0.28 0.3 x/(n 2a) R c,s W = F c,s ( ( µ µc) t νz ) ( ) ( µ µc) +λ 0 t β G c,s Na 2 d a 2 = 4 n(y)/cdy, Ma 2 D /a2 = 4 t νz m z(y)/cdy

I. Experimental test The second Wilson ratio in an harmonic trap with P = 0.47 ( ) RW c = 2 vnc b + ( vnc u / vs b + ) vs u

I. Experimental test Experimental tests C. Chin s group, Nature 460,995 (2009) Ketterle s group, PRL 79, 553 (997) R c W = π2 k 2 B 3 κ c v/t, κ = n/ µ = n (x)/(xmω 2 x)

II. Wilson ratios of SU(N) Fermi gases II. Wilson ratios of SU(N) Fermi gases / b -.30 -.32 -.34 V (A).2.4.6 H / b (C) H 2 =H -.30 -.32 -.34 V (B) 0.8 0.9.0 H / b (D) H 2 =2H Sutherland, PRL 20, 98 (968) Ho, Yi, PRL, 82, 247 (999) Wu, Hu, Zhang, PRL, 9 86402 (2003) Controzzi, Tsvelik, PRL 96, 097205 (2006) Guan, Batchelor, et al PRL 00, 20040 (2008) Guan, Lee, et al PRA 82, 02606(R) (200) Guan, Ma, Wilson, PRA 85, 033633 (202) Cazalilla, Rey, Rep. Prog. Phys. 77, 2440 (204)... Atom Species Mass (u) Nuclear Spin (I) Symmetry Group Scattering Length (nm) 7 Yb 70.93 2 SU(2) 0.5(9) [ 7 Yb], 30.6(3.2) [ 73 Yb] [57] 73 5 Yb 72.94 2 SU(6) 0.55() [ 73 Yb], 30.6(3.2) [ 7 Yb] [57] 87 9 Sr 86.9 2 SU(0) 5.09(0) [ 87 Sr] [58] H = 2 2m N f i= 2 x 2 i + g D i<j N f δ(x i x j )

II. Wilson ratios of SU(N) Fermi gases pairs : k i = Λ i ± ic/2; trions : k i = λ i ± ic, λ i µ = (ǫ Z +ǫ 2 Z +ǫ 3 Z)/3, H = µ ǫ Z, H 2 = ǫ 3 Z +µ Guan, Batchelor, et al PRL 00, 20040 (2008) Guan, Ma, Wilson, PRA 85, 033633 (202) He, Lee, et al JPA 44, 405005 (20)

II. Wilson ratios of SU(N) Fermi gases (a) (b) (c) n n H r/r = G µ, n = G, n 2 = G H H 2 = n + 2n 2 + 3n 3, χ = M, χ 2 = M H H 2 = (µ r µ w)+ wr Experimental realization of three-component 6 Li Fermi gases: Ottenstein et al, PRL (2008); Huckans et al, PRL (2009)

II. Wilson ratios of SU(N) Fermi gases ε (k) = k 2 µ H + Ta ln(+e ε2/t )(k)+ta 2 ln(+e ε3/t )(k) T a n ln(+ξn ) n= ε 2 (k) = 2k 2 2µ H 2 2 c2 + Ta ln(+e ε /T )(k)+ta 2 ln(+e ε 2/T )(k) T(a + a 3 ) ln( + e ε 3/T )(k) T n= a n ln(+ςn )(k) ε 3 (k) = 3k 2 3µ 2c 2 + Ta 2 ln(+e ε /T )(k)+t(a + a 3 ) ln(+e ε 2/T )(k) +T(a 2 + a 4 ) ln( + e ε3/t )(k) lnξ n(k) = n(2h H 2 ) + a n ln(+e ε/t )(k)+ T mn ln(+ξm )(k) T m= S mn ln(+ςm )(k) m= lnς n(k) = n(2h 2 H ) + a n ln(+e ε2/t )(k)+ T mn ln(+ςm T )(k) m= S mn ln(+ξm )(k) m=

II. Wilson ratios of SU(N) Fermi gases ε (r) η (r) w = V r A rs ε (s), (r =, 2,, w). s= w = Ṽ(r) ˆB rs η (s), (r =, 2,, w ) s=

II. Wilson ratios of SU(N) Fermi gases Mapping out quantum liquids of the SU(3) Fermi gas from the W c R v Nc = v 3 Nc L π = 3L π ( ) µ, vnc 2 n = 2L ( ) µ2 H,H 2 π n 2 ( ) µ3 n 3 H,H 2 dµ dn = µ n + µ n 2 dµ 2 dn 2 = µ 2 n dµ 3 dn 3 = µ 3 n (H H 2 ) (n 3 n ) + µ (H H 2 ) n 3 (n 2 n 3 ) (H H 2 ) (n 2 n 3 ) + µ 2 + µ 2 (H H 2 ) n 2 n 3 (n 3 n ) (H H 2 ) (n 2 n 3 ) + µ 3 (H H 2 ) n 2 (n n 2 ) H,H 2 (H H 2 ) (n n 2 ) (H H 2 ) (n 2 n 3 ) (H H 2 ) (n n 2 ) (H H 2 ) (n 3 n ) (H H 2 ) (n 3 n ) + µ 3 (H H 2 ) n 3 (n n 2 )

II. Wilson ratios of SU(N) Fermi gases Mapping out quantum liquids of the SU(3) Fermi gas from the W c R R c W = π2 k 2 B 3 Yu, Chen, Zhou, Lin, Guan, in preparation κ c v/t, unpaired : Rc w = K u, pair : R c w = K b, trion : R c w = K t

II. Wilson ratios of SU(N) Fermi gases W c R = ( 9 v Nc ) + 4 vnc 2 + ( vnc 3 / vs + v 2 s + ) vs 3

II. Wilson ratios of SU(N) Fermi gases T T+B+U B+U T T+B+U B+U = π ( λ χ rl r 2 v Ns rl = Ô + ) Ô 2 Ô l E r, Ô r = r λ+ λ+ n r 3 χ = χ + χ 2 + χ 3, χ 2 = χ 2 + χ 22 + χ 32 n 3

II. Wilson ratios of SU(N) Fermi gases κ = κ t +κ b +κ u κ t = ( ) µ3, κ = ( ) ( ) µ2, κ µ b u = 3 n 3 H,H 2,c 2 n 2 H,H 2,c n H,H 2,c

II. Wilson ratios of SU(N) Fermi gases c v c r v = c v + c 2 v + c w v = πk 2 B T 3 vs r, r =, 2, 3

II. Wilson ratios of SU(N) Fermi gases The Lieb-Linger Bose gas H = ( ) πvsk dx 2 Π2 + vs 2πK ( xφ)2 Luttinger liquid vs Fermi liquid κ = πv N, c v = πk 2 BT 3 v s R c w = K

II. Wilson ratios of SU(N) Fermi gases 6 4 R W 2 0 0 0. 0.2 0.3 m Thielemann et al, PRL, 2008; Ruegg et al. PRL, 2008 Thielemann Ninios et al, PRL, 202

IV. Conclusion IV. Conclusion Wilson ratio presents the essence of the quantum liquids at the renormalization fixed point. This work has been supported by Wuhan Institute of Physics and Mathematics, Chinese Academy of Science and the Australian Research Council