Comparison of Discriminant Analysis in Ear Recognition

Σχετικά έγγραφα
[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

HOSVD. Higher Order Data Classification Method with Autocorrelation Matrix Correcting on HOSVD. Junichi MORIGAKI and Kaoru KATAYAMA

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

ΤΕΙ ΘΕΣΣΑΛΙΑΣ. Αναγνώριση προσώπου με επιλογή των κατάλληλων κυρίων συνιστωσών. ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ Τ.Ε ΚΑΒΒΑΔΙΑ ΑΛΕΞΑΝΔΡΟΥ.

Anomaly Detection with Neighborhood Preservation Principle

Area Location and Recognition of Video Text Based on Depth Learning Method

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Kernel Methods and their Application for Image Understanding

(Υπογραϕή) (Υπογραϕή) (Υπογραϕή)

Buried Markov Model Pairwise

Stabilization of stock price prediction by cross entropy optimization

ER-Tree (Extended R*-Tree)

ΓΙΑΝΝΟΥΛΑ Σ. ΦΛΩΡΟΥ Ι ΑΚΤΟΡΑΣ ΤΟΥ ΤΜΗΜΑΤΟΣ ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΜΑΚΕ ΟΝΙΑΣ ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Detection and Recognition of Traffic Signal Using Machine Learning

Research on model of early2warning of enterprise crisis based on entropy

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

Quick algorithm f or computing core attribute

A High Precision Iris Feature Extraction and Its Application in Iris Recognition


J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Gait Identification Using a View Transformation Model in the Frequency Domain

ΕΥΡΕΣΗ ΤΟΥ ΔΙΑΝΥΣΜΑΤΟΣ ΘΕΣΗΣ ΚΙΝΟΥΜΕΝΟΥ ΡΟΜΠΟΤ ΜΕ ΜΟΝΟΦΘΑΛΜΟ ΣΥΣΤΗΜΑ ΟΡΑΣΗΣ

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ

{takasu, Conditional Random Field

Ερευνητική+Ομάδα+Τεχνολογιών+ Διαδικτύου+

Speeding up the Detection of Scale-Space Extrema in SIFT Based on the Complex First Order System

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

Adaptive grouping difference variation wolf pack algorithm


Control Theory & Applications PID (, )

40 3 Journal of South China University of Technology Vol. 40 No Natural Science Edition March

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

Ανάλυση σχημάτων βασισμένη σε μεθόδους αναζήτησης ομοιότητας υποακολουθιών (C589)

Toward a SPARQL Query Execution Mechanism using Dynamic Mapping Adaptation -A Preliminary Report- Takuya Adachi 1 Naoki Fukuta 2.

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Indexing Methods for Encrypted Vector Databases

ELIXIR-GR / BiP! Finder

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

ΑΡΧΙΜΗ ΗΣ - ΕΝΙΣΧΥΣΗ ΕΡΕΥΝΗΤΙΚΩΝ ΟΜΑ ΩΝ ΣΤΑ ΤΕΙ. Υποέργο: «Ανάκτηση και προστασία πνευµατικών δικαιωµάτων σε δεδοµένα

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Probabilistic Approach to Robust Optimization

Security in the Cloud Era

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

From Secure e-computing to Trusted u-computing. Dimitris Gritzalis

Adaptive Acceptance Threshold Control using Matching Distances with Confidence Values for ROC Curve Optimization

Εφαρμογή Υπολογιστικών Τεχνικών στην Γεωργία

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

CorV CVAC. CorV TU317. 1

Estimation of stability region for a class of switched linear systems with multiple equilibrium points

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕΣ» OSWINDS RESEARCH GROUP

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΣΤΥΛΙΑΝΗΣ Κ. ΣΟΦΙΑΝΟΠΟΥΛΟΥ Αναπληρώτρια Καθηγήτρια. Τµήµα Τεχνολογίας & Συστηµάτων Παραγωγής.

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems


Scrub Nurse Robot: SNR. C++ SNR Uppaal TA SNR SNR. Vain SNR. Uppaal TA. TA state Uppaal TA location. Uppaal

y = f(x)+ffl x 2.2 x 2X f(x) x x p T (x) = 1 Z T exp( f(x)=t ) (2) x 1 exp Z T Z T = X x2x exp( f(x)=t ) (3) Z T T > 0 T 0 x p T (x) x f(x) (MAP = Max


Motion analysis and simulation of a stratospheric airship

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ Δρ. ΣΩΤΗΡΙΟΣ Α. ΔΑΛΙΑΝΗΣ

Gemini, FastMap, Applications. Εαρινό Εξάμηνο Τμήμα Μηχανικών Η/Υ και Πληροϕορικής Πολυτεχνική Σχολή, Πανεπιστήμιο Πατρών

Simplex Crossover for Real-coded Genetic Algolithms

HMY 795: Αναγνώριση Προτύπων

substructure similarity search using features in graph databases

CAP A CAP

Current Status and Future Prospects of Camera-Based Character Recognition and Document Image Analysis

ΔΙΠΛΩΜΑΤΙΚΕΣ ΕΡΓΑΣΙΕΣ ΠΜΣ «ΠΛΗΡΟΦΟΡΙΚΗ & ΕΠΙΚΟΙΝΩΝΙΕς» OSWINDS RESEARCH GROUP

Critical Infrastructure Protection: A Roadmap for Greece D. Gritzalis

Single-value extension property for anti-diagonal operator matrices and their square

BΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ.

Automatic extraction of bibliography with machine learning

Twitter 6. DEIM Forum 2014 A Twitter,,, Wikipedia, Explicit Semantic Analysis,

Comparison of characteristic by Transformer Winding Method of Contactless Power Transfer Systems for Electric Vehicle

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΗΜΕΡΟΜΗΝΙΑ ΓΕΝΝΗΣΗΣ : 1981 ΟΙΚΟΓΕΝΕΙΑΚΗ ΚΑΤΑΣΤΑΣΗ. : mkrinidi@gmail.com

Application of Wavelet Transform in Fundamental Study of Measurement of Blood Glucose Concentration with Near2Infrared Spectroscopy

Στοιχεία εισηγητή Ημερομηνία: 10/10/2017

PACS: Ox, Cw, a, TP

Εφαρμογή Υπολογιστικών Τεχνικών στη Γεωργία

Αυτόματη Ανακατασκευή Θραυσμένων Αντικειμένων

From Information Security to Cyber Defense. Dimitris Gritzalis

Ειδικές Επιστηµονικές Εργασίες

Applying Markov Decision Processes to Role-playing Game

Architecture for Visualization Using Teacher Information based on SOM

The State of the Art and Difficulties in Automatic Chinese Word Segmentation

th International Conference on Machine Learning and Applications. E d. h. U h h b w k. b b f d h b f. h w k by v y

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΔΙΠΛΩΜΑΤΙΚΩΝ ΕΡΓΑΣΙΩΝ ΓΙΑ ΤΟ ΕΑΡΙΝΟ ΕΞΑΜΗΝΟ Εισηγητής: Νίκος Πλόσκας Επίκουρος Καθηγητής ΤΜΠΤ

Κβαντική Επεξεργασία Πληροφορίας


Development of the Nursing Program for Rehabilitation of Woman Diagnosed with Breast Cancer

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

Spam over Internet Telephony (SPIT): An emerging threat. Dimitris Gritzalis

Transcript:

IPSJ SIG echnical Report PCA 288 XM2VS 97.8% Null space LDA Random LDA Comparison of Discriminant Analysis in Ear Recognition Yuki ajima oji Soma Sai Hideyasu Daishi Watae Discriminant analyses are popular algorithms for face recognition and various discriminant analysis are proposed in thus far. In this study various discriminant analysis algorithms are thoroughly examined for ear iometrics. Experiment performed on XM2VS dataase made 97.8% recognition rate using Null ernel discriminant analysis.. 2. Vol.2009-CVIM-67 No.2 2009/6/0 890 Bertillon Iannarelli [] 40 Moreno [2] Compression Netork [3] Hurley [4] Gaussian Chen [5] 3 3 Yu [6] Liu [7] Loag [8] Liu [9] [0] 288 Saitama Institute of echnology 2009 Information Processing Society of Japan

IPSJ SIG echnical Report 3. 3. x y = Ax Discriminant Criterion 2 3 4 S J = max c c c= = ( µ µ )( µ µ ) N c c = c c i µ c i µ c c= N i(c)= 2 N S S ( S = ( x )( x ) ) N µ = µ = N N N x c i c xi i= Nc i= 3 4 Nc c 3.2 SSS 3.2. PCA+LDA PCA LDA Belhumeur [] SSS PCA 3.2.2 Direct LDA DLDA [6][] Z Y S Y = D > 0 5 2 Z = YD 6 Z U U Z SZU = D 7 6 7 U, Z A A = U Z 8 8 A A D D Ax x 9 2 * 3.2.3 Null space LDA NLDA [7] Y Y S Y = 0 0 Y U U Y SYU = D 0 U Z A A= U Y 2 2 A Ax Vol.2009-CVIM-67 No.2 2009/6/0 * x 3 3.3 LDA 2 2009 Information Processing Society of Japan

IPSJ SIG echnical Report 2 3.3. Poer LDA PLDA [0] LDA 4 HAD 5 J( A, m) = max A PS c c A c= J( A, m) = max P A Sc c A c= J( A, m) = max m m A PS c c A c= 4 5 6 6 m> 0<m< m= LDA m=0 HDA 3.3.2 Fractional LDA FLDA Fractional LDA G.Dai [2] Lee [3] ( ij ) ( ij ) ( )( )( ) S = nn ω d µ µ µ µ i j ij i j i j i= j= i+ p ω d = d p 7 3.3.3 Weighted LDA WLDA [8] ( )( )( ) S = nn α µ µ µ µ 8 i j ij i j i j i= j= i+ ( µ µ ) S ( µ µ ) = ij i j W i j ij α ( ij ) = 2 erf 2 ij 2 2 erf 3.3.4 ( ) = min J A 9 3.3.5 /s /st t ( ) = max J A 20 3.3.6 (2) 22 ( ) = ( 2 2) S S A λ A 2 D U S U D V = λv A= U D V 2 Vol.2009-CVIM-67 No.2 2009/6/0 22 3.4 H 23 Φ 3 2009 Information Processing Society of Japan

IPSJ SIG echnical Report 24 ( ), ( ) (, ), (, ) (, ) Φ x Φ y = k x k y = k x y 23 H 2 k( x, y) = exp y x 2 24 σ [4][5][6] 3.4. ernel PCA 25 PCA PCA 26 27 x x 25 i φ ( ) n n S = φ x φ x ( φ x = φ x φ x ) ( ) ( ) ( ) ( ) ( ) i i i i m i= n m= i 26 ( λi S) V = 0 27 ( φ ( ) φ ( )) : = x, x 28 ij i j = x x x x x x + x x n n n (, ) (, ) (, ) 2 (, ) ij i j i a a j a 29 n a= n a= n a, = 29 V ( λi ) V = 0 30 g = λ 2 V 3 g ernel PCA 3.4.2 ernel LDA DA LDA ernel PCA LDA GDA [7] 4. 4. Vol.2009-CVIM-67 No.2 2009/6/0 288 2 576 4.2 XM2VS[6] M2VS XM2VS[8] 4 2 484 3 2 363 3 4 2009 Information Processing Society of Japan

IPSJ SIG echnical Report 2 2 2 2 2 4.3 288 2 4.3. G P 32 33 G P, G P (32) 5. Vol.2009-CVIM-67 No.2 2009/6/0 288 DA NLDA PCA LDA DLDA 5. PCA LDA DLDA NLDA 3 Rank one Recognition Rate Cumulative Match Characteristic CMC 3 Rank one Recognition Rate G, Σ G P Σ Σ G GG P GP G (33) 4.3.2 3 CMC 5 2009 Information Processing Society of Japan

IPSJ SIG echnical Report 5.2 2 Rank one Recognition Rate 2 CMC 4 2 S St Rank one Recognition Rate Vol.2009-CVIM-67 No.2 2009/6/0 3 LDA DLDA NLDA Rank one Recognition Rate 5 LDA DLDA NLDA CMC 6. 4 St S CMC 5.3 A PCA+LDA DLDA NLDA 3 Rank one Recognition Rate 3 CMC 5 PCA+LDA Null space LDA Null space LDA 6 2009 Information Processing Society of Japan

IPSJ SIG echnical Report Direct LDA Null space LDA Direct LDA LDA Null space LDA Null space LDA Random LDA Fuzzy LDA Gaor Jet ) A. Iannarelli, Ear Identification, Forensic Identification series. Paramont Pulishing Company, Fremont, California 989 2) B. Moreno and A. Sanchez, On the Use of Outer Ear Images for Personal Identification in Security Applications, IEEE 33rd Annual Intl. Conf. on Security echnology, pp. 469-476, 999 3). Yuizono, Y. Wang,. Satoh, and S. Nakayama, Study on Individual Recognition for Ear Images y Using Genetic Local search, Proceedings of the 2002 Congress on Evolutionary Computation (CEC2002), pp.237-242, 2002. 4) D. J. Hurley, M. S. Nixon, and J. N. Carter, Force Field Energy Functionals for Image Feature Extraction, Image and Vision Computing Journal, Vol. 20, pp. 3-37, 2002. 5) H. Chen and B. Bhanu, Human Ear Recognition in 3D, IEEE ransactions on Pattern Analysis and Machine Intelligence, Vol. 29, 4, pp. 78-737, 2007. 6) H. Yu, J. Yang, "A direct LDA algorithm for high dimensional data ith application to face recognition", Pattern Recognition 34 (0) 2067 2070, 200 7) Wei Liu, Yunhong Wang, Stan Z. Li, ieniu an, "Null Space Approach of Fisher Discriminant Analysis for Face Recognition", ECCV Workshop BioAW, 2004 8) M. Loog, R.P.W. Duin, R. Hae-Umach, "Multiclass linear dimension reduction y eighted pairise Fisher criteria", IEEE rans. Pattern Anal. Mach. Intell, 23 (7) (200) 762 766 9) Q.S.Liu, R.Huang, H.Q.Lu and S.D.Ma, Face Recognition Using ernel Based Fisher Discriminant Analysis, In the Proc. of. Int. Conf. Automatic Face and Gesture Recognition, pp. 97-20, Washington DC, USA, May, 2002. 0),,,,, " ", Signal Processing and Its Applications, 2007. ISSPA 2007. 9th International Symposium on Volume, Issue, 2-5 Fe. 2007 Page(s): 4 ) H. Yu, J. Yang, "A direct LDA algorithm for high dimensional data ith application to face recognition", Pattern Recognition 34 (0) 2067 2070, 200 2) G. Dai, Y.. Qian, and S.Jia, "A kernel fractional-step nonlinear discriminant analysis for pattern recognition", In Proceedings of the Eighteeever nth international Conference on Pattern Recognition, volume 2, pages 43-434, August 2004 3) Lee Hui ueh, Jon-ark Lee, "Face Recognition Using Linear Discriminant Analysis (LDA) of Principal Component Analysis (PCA)", ISIS 2007 Proceedings of the 8th Symposium on advanced intelligent systems, 2007. 9 4) Heiko Hoffmann, "ernel PCA for Novelty Detection", Pattern Recognition, Vol. 40,No. 3. (2006), pp. 863-874 5) Q.S.Liu, R.Huang, H.Q.Lu and S.D.Ma, Face Recognition Using ernel Based Fisher Discriminant Analysis, In the Proc. of. Int. Conf. Automatic Face and GestureRecognition, pp. 97-20, Washington DC, USA, May, 2002. 6) W.U. Xiao-Jun, J. ittler, Y. Jing-Yu,. Messer, W. Shi-ong, "A ne kernel direct discriminant analysis (DDA) algorithm for face recognition", in: Conference on British Machine Vision, ingston University, London, Septemer 7-9, 2004. 7) G.Baudat and F.Anouar, Generalized Discriminant Analysis Using a ernel Approach, Neural Computation, vol. 2, no. 0, pp. 2385-2404, 2000. 8).Messer, J.Matas, J.ittler, J.Luettin, G.Maitre, XM2VSDB:the extended M2VS Dataase, Proceedings 2nd Conference on Audio and Video-ase Biometric Personal Verification (AVBPA 99) Washington DC, (999) SVSSP URL:http://.ee.surrey.ac.uk/Research/VSSP/xm2vtsd/ Vol.2009-CVIM-67 No.2 2009/6/0 2009 2009 7 2009 Information Processing Society of Japan

IPSJ SIG echnical Report Vol.2009-CVIM-67 No.2 2009/6/0 2002 2007 2000 200 2008 8 2009 Information Processing Society of Japan