Echo path identification for stereophonic acoustic echo cancellation without pre-processing

Σχετικά έγγραφα
BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

Feasible Regions Defined by Stability Constraints Based on the Argument Principle

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Detection and Recognition of Traffic Signal Using Machine Learning

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Simplex Crossover for Real-coded Genetic Algolithms

JOURNAL OF APPLIED SCIENCES Electronics and Information Engineering. Cyclic MUSIC DOA TN (2012)

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Second Order RLC Filters

Διερεύνηση ακουστικών ιδιοτήτων Νεκρομαντείου Αχέροντα

Design and Fabrication of Water Heater with Electromagnetic Induction Heating

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

New Adaptive Projection Technique for Krylov Subspace Method

Ψηφιακή Επεξεργασία Φωνής

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

Buried Markov Model Pairwise

Σύστημα ψηφιακής επεξεργασίας ακουστικών σημάτων με χρήση προγραμματιζόμενων διατάξεων πυλών. Πτυχιακή Εργασία. Φοιτητής: ΤΣΟΥΛΑΣ ΧΡΗΣΤΟΣ

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Elements of Information Theory

Technical Research Report, Earthquake Research Institute, the University of Tokyo, No. +-, pp. 0 +3,,**1. No ,**1

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

C F E E E F FF E F B F F A EA C AEC

EE101: Resonance in RLC circuits

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

A Determination Method of Diffusion-Parameter Values in the Ion-Exchange Optical Waveguides in Soda-Lime glass Made by Diluted AgNO 3 with NaNO 3

Approximation of distance between locations on earth given by latitude and longitude

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

Problem Set 3: Solutions


Inverse trigonometric functions & General Solution of Trigonometric Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Math221: HW# 1 solutions

IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

SNR F0 [2], [3], [4] F0 F0 F0 F0 F0 TUSK F0 TUSK F0 6 TUSK 6 F0 2. F0 F0 [5] [6] [7] p[8] Cepstrum [9], [10] [11] [12] [13] F0 [14] F0 [15] DIO[16] [1

ITU-R BT ITU-R BT ( ) ITU-T J.61 (

Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Fundamentals of Signal Processing for Communications Systems

The Simply Typed Lambda Calculus

Spectrum Representation (5A) Young Won Lim 11/3/16

X g 1990 g PSRB

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

[4] 1.2 [5] Bayesian Approach min-max min-max [6] UCB(Upper Confidence Bound ) UCT [7] [1] ( ) Amazons[8] Lines of Action(LOA)[4] Winands [4] 1

CORDIC Background (4A)

Probabilistic Approach to Robust Optimization

{takasu, Conditional Random Field

Re-Pair n. Re-Pair. Re-Pair. Re-Pair. Re-Pair. (Re-Merge) Re-Merge. Sekine [4, 5, 8] (highly repetitive text) [2] Re-Pair. Blocked-Repair-VF [7]

Supplementary Appendix

GUI

Adaptive grouping difference variation wolf pack algorithm

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Math 6 SL Probability Distributions Practice Test Mark Scheme

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Παρουσίαση ιπλωµατικής

[1] DNA ATM [2] c 2013 Information Processing Society of Japan. Gait motion descriptors. Osaka University 2. Drexel University a)

CORDIC Background (2A)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Έχει ληφθεί την 27 DEC 2009 ένα σεισµικό ηλεκτρικό σήµα (SES) από τον σταθµό LAM του δικτύου ΒΑΝ [ 1 ]


HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

n 1 n 3 choice node (shelf) choice node (rough group) choice node (representative candidate)

Matrices and Determinants

Other Test Constructions: Likelihood Ratio & Bayes Tests

Siemens AG Rated current 1FK7 Compact synchronous motor Natural cooling. I rated 7.0 (15.4) 11.5 (25.4) (2.9) 3.3 (4.4)

Archive of SID. (Tg)

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

Optimization, PSO) DE [1, 2, 3, 4] PSO [5, 6, 7, 8, 9, 10, 11] (P)

Πτυχιακή Εργασι α «Εκτι μήσή τής ποιο τήτας εικο νων με τήν χρή σή τεχνήτων νευρωνικων δικτυ ων»

High Frequency Chip Inductor / CF TYPE

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Chapter 6 BLM Answers

Technical Specifications

Study of urban housing development projects: The general planning of Alexandria City

SEN TRONIC AG A AB 93 :, C,! D 0 7 % : 3 A 5 93 :

4.6 Autoregressive Moving Average Model ARMA(1,1)

Calculating the propagation delay of coaxial cable

LS series ALUMINUM ELECTROLYTIC CAPACITORS CAT.8100D. Specifications. Drawing. Type numbering system ( Example : 200V 390µF)

Studio Transmitter Link

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :

MATHACHij = γ00 + u0j + rij

RMT Tick RMT. Application of the RMT-test on Real Data: Hash Function and Tick Data of Stock Prices

Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters

1, +,*+* + +-,, -*, * : Key words: global warming, snowfall, snowmelt, snow water equivalent. Ohmura,,**0,**

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

2 Composition. Invertible Mappings

w o = R 1 p. (1) R = p =. = 1

Transcript:

Echo path identification for stereophonic acoustic echo cancellation without pre-processing Yuusuke MIZUNO Takuya NUNOME Akihiro HIRANO Kenji NAKAYAMA Division of Electronics and Computer Science Graduate School of Natural Science and Technology, Kanazawa Univ. E-mail: y mizuno@leo.ec.t.kanazawa-u.ac.jp hirano@t.kanazawa-u.ac.jp nakayama@t.kanazawa-u.ac.jp 1 2 2 2 2 () Abstract This paper proposes a novel technique in the stereo echo canceller for identifying the echo paths without using the preprocessing. It is assumed that two speakers (SEC) [1 SEC SEC or more alternately utter. The optimal value is estimated from the distribution of irregular solutions in the frequency domain for two speakers. The optimal value is estimated by specifying the distribution of irregular solutions by using two adaptive filters with different initial value, and solving the simultaneous equations for two speakers. Because the estimation accuracy depends on the selection of an initial value, a technique for setting an initial value again according to the convergence situation is shown. TV [2[3[4[5 ( )

[2 2.2 rooma 2 [6 X(z) rooma G L (z) G R (z) H LL (z) [7 H RL (z) LL (z) RL (z) LL (z) H LL (z) RL (z) 2 H RL (z) X L(z) = G L(z)X(z) (1) X 2 R(z) = G R(z)X(z) (2) 2.1 1 SEC [1 D L(z) = H LL(z)X L(z) + H RL(z)X R(z) (3) 1 (room B) 2 (room A) rooma N A roomb N B SEC 4 1 1 4 1 (room B) H LL (z) H LR (z) = {[H LL(z) LL(z)G L(z) + [H RL(z) RL(z)G R(z)}X(z) (5) H RL (z), H RR (z) 4 L,R {[H LL (z) LL (z)g L (z)+[h RL (z) RL (z)g R (z)}x(z) = (6) Left Right (6) E L (z)= LL (z) RL (z) room A room B H N A XL(z) Echo Canceller N LL (z) = LL (z) B H RL (z) = RL (z) G X(z) G L(z) R(z) X R(z) + LR E L(z) + RR + LL RL + D L(z) YL(z) H H LL(z) RL(z) 1: Y L(z) = LL(z)X L(z) + RL(z)X R(z) (4) E L(z) = D L(z) Y L(z) = [H LL(z) LL(z)X L(z) + [H RL(z) RL(z)X R(z) LL (z) RL (z) ( ) SEC [2[3[4[5 3 3.1 2 α β (6)

[H LL(z) LL(z)G L(z)+[H RL(z) RL(z)G R(z) = (7) G αr (z) = a G αi (z) = b H LLr (z) + G Lα (z) (7) G Lα (z) G αr (z)h RLr (z) G αi (z)h RLi (z) = c H LLi (z) + (8) G αr (z)h RLi (z) + G αi (z)h RLr (z) = d (16) (17) H LL(z) LL(z) + [H RL(z) GRα(z) RL(z) G = (8) Lα(z) LLr(z) + a RLr(z) b RLi(z) = c (16) GRα(z) G Lα(z) = G α(z) = G αr (z) + jg αi (z) (9) r i = [H LLr(z) + jh LLi(z) LLr(z) j LLi(z) +[H RLr(z) + jh RLi(z) RLr(z) j RLi(z) [G αr(z) + jg αi(z) (9) (1) = H LLr(z) + jh LLi(z) LLr(z) j LLi(z) +G αr(z)h RLr(z) + jg αr(z)h RLi(z) G αr(z) RLr(z) jg αr(z) RLi(z) +jg αi(z)h RLr(z) G αi(z)h RLi(z) jg αi(z) RLr(z) + G αi(z) RLi(z) (1) LLr, LLi, RLr, RLi (11) 4 = H LLr(z) LLr(z) + G αr(z)h RLr(z) G αr(z) RLr(z) G αi(z)h RLi(z) + G αi(z) RLi(z) +j(h LLi(z) LLi(z) + G αr(z)h RLi(z) G αr(z) RLi(z) + G αi(z)h RLr(z) G αi(z) RLr(z)) (11) LLi(z) + a RLi(z) + b RLr(z) = d (17) (16) (17) 2 2 a,b,c,d 4 (18) 1 2 [ a b c d [ RLr1(z) RLi1(z) 1 RLi1(z) RLr1(z) 1 RLr2(z) RLi2(z) 1 RLi2(z) RLr2(z) 1 [ a b c d = [ LLr1(z) LLi1(z) LLr2(z) LLi2(z) (18) a,b,c,d (19) [ RLr1(z) RLi1(z) 1 RLi1(z) RLr1(z) 1 RLr2(z) RLi2(z) 1 RLi2(z) RLr2(z) 1 (18) 1 [ LLr1(z) = LLi1(z) LLr2(z) (19) LLi2(z) (19) a,b,c,d (16) (17) 2 (2) 1 a α b α 1 b α a α 1 a β b β 1 b β a β LLr(z) LLi(z) RLr(z) RLi(z) c α d α c β d β (2) (11) (12) (13) = H LLr (z) LLr (z) + G αr(z)h RLr (z) G αr(z) RLr (z) G αi (z)h RLi (z) + G αi (z) RLi (z) (12) = H LLi (z) LLi (z) + G αr(z)h RLi (z) G αr(z) RLi (z) +G αi (z)h RLr (z) G αi (z) RLr (z) (13) (12) (13) (14) (15) LLr(z) + G αr(z) RLr(z) G αi(z) RLi(z) = H LLr(z) + G αr(z)h RLr(z) G αi(z)h RLi(z) (14) LLi(z) + G αr(z) RLi(z) + G αi(z) RLr(z) = H LLi(z) + G αr(z)h RLi(z) + G αi(z)h RLr(z) (15) (19) (21) LLr(z) LLi(z) RLr(z) RLi(z) 1 a α b α 1 b α a α 1 a β b β 1 b β a β 1 c α d α c β d β (21) (21) LLr (z), LLi (z), RLr (z), RLi (z) (22) (23) w LL(n) = F 1 [ LLr(z) + j LLi(z) (22) w RL(n) = F 1 [ RLr(z) + j LRi(z) (23) j!

3.2 (16) (17) (19) 1 2 LL(Z) 2 1 1 2 2: RL(Z) 2 A 2 2 2 V 1 = V 2 = LLr1(z) RLr1(z) LLi1(z) RLi1(z) LLr2(z) RLr2(z) LLi2(z) RLi2(z) v 1 v 2 v 3 v 4 (24) (25) 3 2 V 1 3 V = V = + + (27) (28) 2 1 V 2 V 1, V 2 2 V 3 V 2 3.3 A α β x L x R m r m(n) = 1 N1 x L(n k m)x R(n k) (29) N k= m m max α β E[r m(n) = γ r m(n 1) + (1 γ) r m(n) (3) V = + (26) α β m max 3 1

α β m max α β 2 1.8 LL optimum value initial value fixed 15 m max 1.6 1.4 1 5 amplitude LL 1.2 1.8 m max.6.4 5.2 1 5 1 15 2 25 3 35 4 frequency (Hz) 15.2.4.6.8 1 1.2 1.4 1.6 1.8 2 iteration x 1 5 4: 3: m max 4 2 1.8 1.6 LL optimum value proposed 4.1 1 1 α β 1 2 amplitude LL 1.4 1.2 1.8.6.4.2 5 1 15 2 25 3 35 4 frequency (Hz) 5: 1: F IR N A, N B 128, 256 N 256 1 µ.1 s(n) NLMS 4.2 4 1 ( ) 5 4 17 2Hz 6 NCEV(Normalized Coefficient Error Vector) NCEV h w(n) 2 NCEV (n) = 1 log 1 (31) h 2 6 NCEV 4 2dB (19) 7 (Echo Return Loss Enhancement) ERLE e L d L M = 256 ERLE M1 dl(n i)2 i= ERLE(n) = 1 log 1 M1 el(n (32) i= i)2

5 initial value fixed proposed [1 26.Mar.1985. NCEV[dB 1 15 2 [2 A. Hirano and A. Sugiyama, Convergence characteristics of a multi-channel echo canceller with strongly cross-correlated input signals Analytical Results, Proc. of 6th DSP Symposium, pp. 144 149, November 1991. 25.5 1 1.5 2 2.5 3 3.5 4 iteration x 1 5 6: [3 A. Hirano and A. Sugiyama, A compact multichannel echo canceller with a single adaptive filter per channel, Proc. of ISCAS 92, pp. 1922 1925, 1992. 6 5 [4 M. M. Sondhi and D. R. Morgan, Acoustic echo cancellation for stereophonic teleconferencing, presented at the 1991 IEEE ASSP orkshop Appls. Singal Processing Audio Acoustics, News Paltz, NY, Oct. 4 8, 1991. ERLE [db 4 3 2 1 initial value fixed proposed.5 1 1.5 2 2.5 3 3.5 4 iteration x 1 5 [5, 15 pp.1-8, 21.Nov.1996. [6 A. Sugiyama, Y. Joncour, and A. Hirano, A stereo echo canceller with correct echo-path identification based on an input sliding technique, IEEE Trans. Signal Process., vol. 49, no. 11, pp. 2577-2587, Nov 21. 5 7: [7 A. Hirano, K. Nakayama, D. Someda, M. Tanaka, Alternative Learning Algorithm for Stereophonic Acoustic Echo Canceller without Pre-Processing, IEICE Trans. Fundamentals, Vol. E87-A, No.8, pp. 1958-1964, Aug. 24 2 2