Δένδρα επικάλ επικ υψης ελάχιστου στους



Σχετικά έγγραφα
Δένδρα επικάλυψης ελάχιστου κόστους και το πρόβλημα του πλανόδιου πωλητή (Traveling Salesman Problem: TSP)

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 8

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST)

Αλγόριθµοι και Πολυπλοκότητα

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 5

Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο

Εισαγωγή στους Αλγορίθμους Ενότητα 9η

Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Ουρές προτεραιότητας

Ελάχιστο Συνδετικό Δέντρο

Ελάχιστο Συνδετικό Δέντρο

Ελάχιστο Συνδετικό Δέντρο

Ελάχιστο Συνδετικό έντρο

Αλγόριθμοι Eλάχιστα μονοπάτια

Αλγόριθμοι Γραφημάτων

ΕΡΓΑΣΙΑ ΣΤΟ ΜΑΘΗΜΑ Λ03Β ΑΛΓΟΡΙΘΜΟΙ ΔΙΚΤΥΩΝ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ ΦΛΕΒΑΡΗΣ 2004

Εισαγωγή στην Επιστήμη των Υπολογιστών

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Εισαγωγή στην Επιστήμη των Υπολογιστών

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Ελάχιστο Συνδετικό έντρο

Εισαγωγή στους Αλγορίθμους

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Γράφοι: κατευθυνόμενοι και μη

Διδάσκων: Παναγιώτης Ανδρέου

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αλγόριθµοι και Πολυπλοκότητα

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

12/1/2006 Διακριτά Μαθηματικά. Ορισμός. Υπό γράφημα Τ γραφήματος Γ καλείται συνδετικό (ή επικαλύπτον)

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 4

Σχεδίαση Αλγορίθμων -Τμήμα Πληροφορικής ΑΠΘ - Εξάμηνο 4ο

Εισαγωγή στους Αλγορίθμους Ενότητα 9η

Μέγιστη Ροή Ελάχιστη Τομή

Ελάχιστα Γεννητορικά ένδρα

Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο

ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 2 ΠΡΟΒΛΗΜΑΤΑ ΔΙΚΤΥΩΝ ΚΑΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 9: Άπληστοι Αλγόριθμοι. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Λυσεις προβλημάτων τελικής φάσης Παγκύπριου Μαθητικού Διαγωνισμού Πληροφορικής 2007

Δομές Δεδομένων & Αλγόριθμοι

Άσκηση 1. Ψευδοκώδικας Kruskal. Παρακάτω βλέπουμε την εφαρμογή του στο παρακάτω συνδεδεμένο γράφημα.

ΦΥΛΛΑΔΙΟ ΚΑΤΑΝΟΗΣΗΣ 6 ΕΠΙΔΟΣΗ ΑΛΓΟΡΙΘΜΩΝ. 3. Να υπολογιστεί για τον παρακάτω αλγόριθμο η επίδοση του με βάση τον αριθμό των πράξεων που θα

Δρομολόγηση μιας οντότητας ανάμεσα σε δύο σημεία ενός δικτύου έτσι ώστε να ελαχιστοποιήσουμε ένα κόστος, μια διάρκεια, κτλ.

Θεωρία και Αλγόριθμοι Γράφων

Δρομολόγηση μιας οντότητας ανάμεσα σε δύο σημεία ενός δικτύου έτσι ώστε να ελαχιστοποιήσουμε ένα κόστος, μια διάρκεια, κτλ.

Δομές Δεδομένων & Αλγόριθμοι

Σχεδίαση & Ανάλυση Αλγορίθμων

Αλγόριθμοι και Πολυπλοκότητα

Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση

ΕΝΟΤΗΤΑ 7 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ ΣΩΡΟΙ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

u v 4 w G 2 G 1 u v w x y z 4

Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17)

ΕΝΟΤΗΤΑ 6 ΛΙΣΤΕΣ ΠΑΡΑΛΕΙΨΗΣ (SKIP LISTS)

Γράφοι. Αλγόριθμοι και πολυπλοκότητα. Στάθης Ζάχος, Δημήτρης Φωτάκης

Σειρά Προβλημάτων 3 Λύσεις

Θεωρία Γραφημάτων 6η Διάλεξη

Αλγόριθµοι και Πολυπλοκότητα

Εισαγωγή στους Αλγορίθμους Ενότητα 7η

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Άπληστοι Αλγόριθμοι. Επιμέλεια διαφανειών: Δ. Φωτάκης Τροποποιήσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ορισµός. Εστω συναρτήσεις: f : N R και g : N R. η f(n) είναι fi( g(n) ) αν υπάρχουν σταθερές C 1, C 2 και n 0, τέτοιες ώστε:

ΕΠΛ 211: Θεωρία Υπολογισμού και Πολυπλοκότητας. Διάλεξη 2: Μαθηματικό Υπόβαθρο

Αλγόριθμοι Γραφημάτων

Θεωρία Υπολογισμού και Πολυπλοκότητα Ασυμφραστικές Γλώσσες (3)

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος)

Αν ένα πρόβλημα λύνεται από δύο ή περισσότερους αλγόριθμους, ποιος θα είναι ο καλύτερος; Με ποια κριτήρια θα τους συγκρίνουμε;

Insert(K,I,S) Delete(K,S)

Στοιχεία Αλγορίθµων και Πολυπλοκότητας

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 3: Εφαρμογές Δικτυωτής Ανάλυσης (2 ο Μέρος)

viii 20 Δένδρα van Emde Boas 543

Επιχειρησιακή Έρευνα I

Graph Algorithms. Παρουσίαση στα πλαίσια του μαθήματος «Παράλληλοι Αλγόριθμοι» Καούρη Γεωργία Μήτσου Βασιλική

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

Αλγόριθµοι και Πολυπλοκότητα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης

Πλήθος ισομερών του C k H 2k+2

ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1

Θεωρία και Αλγόριθμοι Γράφων

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα

Διαίρει και Βασίλευε. πρόβλημα μεγέθους Ν. διάσπαση. πρόβλημα μεγέθους k. πρόβλημα μεγέθους Ν-k

ΠΡΟΛΟΓΟΣ. Θεσσαλονίκη, Μάρτιος Οι συγγραφείς. Κ. Παπαρρίζος, Ν. Σαμαράς, Α. Σιφαλέρας.

Αλγόριθµοι και Πολυπλοκότητα

Κεφάλαιο 5 Ανάλυση Αλγορίθμων

Αποθήκες Δεδομένων και Εξόρυξη Δεδομένων:

13/5/2015 ΟΥΡΕΣ ΠΡΟΤΕΡΑΙΟΤΗΤΑΣ. Δομές Δεδομένων. Ουρές Προτεραιότητας

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Διδάσκων: Παναγιώτης Ανδρέου

Fast broadcasting and gossiping in radio networks. Chrobak, Gasieniec, Rytter 2002.

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Δομές Δεδομένων & Αλγόριθμοι

Transcript:

Δένδρα επικάλυψης ελάχιστου κόστους Αλγόριθμος Kruskal

Αλγόριθμος Kruskal Ξεκινάμε από ένα δάσος από n δένδρα, κάθε ένα δένδρο εκφυλισμένο σε ένα μεμονωμένο κόμβο. Σε κάθε επανάληψη, προσθέτουμε τη πλευρά με το μικρότερο κόστος και η οποία δεν δημιουργεί κύκλο με τις ήδη επιλεγμένες πλευρές. Σταματάμε όταν έχουμε ένα δένδροδ επικάλυψης (γράφος συνεκτικός) ή όταν δεν ευρίσκουμε πλέον πλευρά να προσθέσουμε (ο γράφος δεν είναι συνεκτικός)

Αλγόριθμος Kruskal - Παράδειγμα Δ ια& τ αξη π λευρω& ν κατα& α & υ ξουσα τ & α ξη 3, : κοστος &, : κ & ο σ τος 3, : κοστος & 3 3, : κοστος & 3, : κοστος & 3, : κοστος & 3, : κ & ο σ τος, : κοστος & 3, : κ & ο σ τος, : κοστος &

Αριθμός συνιστωσών n = αριθμός μεμονομένων κόμβων Δ ι & α τ αξη π λευρω& ν κατα& αυξουσα & ταξη &, 3 : κ & ο σ τος, : κοστος &, : κ & ο στος 3 3 3, : κοστος &, : κοστος & 3, : κ & ο σ τος, 3, : κοστος & : κ & ο στος 3, : κοστος &, : κοστος &

Αλγόριθμος Kruskal: βήμα Διαταξη & πλευρων & κατα& αυξουσα & ταξη & 3, : κοστος &, : κοστος &, : κοστος & 3 3, : κοστος & 3, : κοστος & 3, : κοστος & 3, : κοστος &, : κοστος & 3, : κοστος &, : κοστος &

Αλγόριθμος Kruskal: βήμα Διαταξη & πλευρων & κατα& αυξουσα & ταξη & 3, : κοστος &, : κοστος &, : κοστος & 3 3 3, : κοστος &, : κοστος & 3, : κοστος & 3, : κοστος &, : κοστος & 3, : κοστος &, : κοστος &

Αλγόριθμος Kruskal: βήμα 3 Διαταξη & πλευρων & κατα & αυξουσα & ταξη & 3, : κοστος &, : κοστος &, : κοστος & 3 3, : κοστος &, : κοστος & 3, : κοστος & 3, : κοστος &, : κοστος & 3, : κοστος &, : κοστος & 3

Αλγόριθμος Kruskal: βήμα Διαταξη & πλευρων & κατα & αυξουσα & ταξη & 3, : κοστος &, : κοστος &, : κοστος & 3 3, : κοστος &, : κοστος & 3, : κοστος & 3, : κοστος &, : κοστος & 3, : κοστος &, : κοστος & 3

Αλγόριθμος Kruskal: βήμα Διαταξη & πλευρων & κατα & αυξουσα & ταξη & 3, : κοστος &, : κοστος &, : κοστος & 3 3, : κοστος &, : κοστος & 3, : κοστος & 3, : κοστος &, : κοστος & 3, : κοστος &, : κοστος & 3

Αλγόριθμος Kruskal: βήμα Διαταξη & πλευρων & κατα & αυξουσα & ταξη & 3, : κοστος &, : κοστος &, : κοστος & 3 3, : κοστος &, : κοστος & 3, : κοστος & 3, : κοστος &, : κοστος & 3, : κοστος &, : κοστος & 3

Αλγόριθμος Kruskal: βήμα 7 Διαταξη & πλευρων & κατα & αυξουσα & ταξη & 3, : κοστος &, : κοστος &, : κοστος & 3 3, : κοστος &, : κοστος & 3, : κοστος & 3, : κοστος &, : κοστος & 3, : κοστος &, : κοστος & 3 δέντρο επικάλυψης: τέλος

Αλγόριθμος Kruskal: βήμα 8 Διαταξη & πλευρων & κατα & αυξουσα & ταξη & 3, : κοστος &, : κοστος &, : κοστος & 3 3, : κοστος &, : κοστος & 3, : κοστος & 3, : κοστος &, : κοστος & 3, : κοστος &, : κοστος & 3

Αλγόριθμος Kruskal: βήμα 9 Διαταξη & πλευρων & κατα & αυξουσα & ταξη & 3, : κοστος &, : κοστος &, : κοστος & 3 3, : κοστος &, : κοστος & 3, : κοστος & 3, : κοστος &, : κοστος & 3, : κοστος &, : κοστος & 3

Αλγόριθμος Kruskal: βήμα 0 Διαταξη & πλευρων & κατα & αυξουσα & ταξη & 3, : κοστος &, : κοστος &, : κοστος & 3 3, : κοστος &, : κοστος & 3, : κοστος & 3, : κοστος &, : κοστος & 3, : κοστος &, : κοστος & 3

Αλγόριθμος Kruskal: βήμα 0 Διαταξη & πλευρων & κατα & αυξουσα & ταξη & 3, : κοστος &, : κοστος &, : κοστος & 3 3, : κοστος &, : κοστος & 3, : κοστος & 3, : κοστος &, : κοστος & 3, : κοστος &, : κοστος & 3

Αλγόριθμος Kruskal T while ( T < n-) and (E ) do e smallest edge in E; E E - {e}; if (T {e} has no cycle) then T T {e} if ( T < n-) then write network disconnected ; (****) Πολυπλκότητα: O(mlogn) Πολυπλκότητα: O(mlogn) Εξακρίβωση σχηματισμού κύκλου σε O(logn)

Αλγόριθμος Kruskal - Δάσος Επικάλυψης Αν ο γράφος είναι μη συνεκτικός, γιαναβρούμε ένα δάσος επικάλυψης με τον αλγόριθμο λό Pi Prim θα πρέπει να επαναλάβουμε τον αλγόριθμο σε κάθε συνεκτική συνιστώσα Ο λό θ K k l ί θί έ Ο αλγόριθμος Kruskal ευρίσκει απ ευθείας ένα δάσος επικάλυψης ελάχιστου κόστους.

Αλγόριθμος Kruskal - Πολυπλοκότητα Ταξινόμηση πλευρών: Ο(m logn) (m αριθμός πλευρών) Εξακρίβωση σχηματισμού κύκλου: Ο(logn) Επαναλήψεις: m Ο(mlogn) + Ο(mlogn) =Ο(mlogn) δεδομένου ότι m < n

Σύγκριση των αλγορίθμων ( ) Prim : O n Kruskal = O( mlogn) πυκνοι& m = O ( n ) ( ) ( ) Prim O n < O n logn Αραιοι& m = O ( n) O ( ) O ( ) n > nlogn Kruskal

Θεώρημα βέλτιστου για το ΔΕΕΚ G = ( V, E) ) G συνεκτικός Έστω F= F,F,...F με F = V,E ένα δάσος του γράφου και u, v [ ] ένα άκρο στο V ( ) ( ) k i i i η πλευρά με το ελάχιστο κόστος έχουσα Τότε, ανάμεσα σε όλα τα δένδρα επικάλυψης που περιέχουν αυτό το δάσος, υπάρχει ένα, το καλύτερο το οποίο περιέχει αυτή την πλευρά.

Θεώρημα βέλτιστου για το ΔΕΕΚ - Απόδειξη k U U i= ` Ε στω T = E οι πλευρε& ς του δ & α σους F. i y F 3 x u v F F

Θεώρημα βέλτιστου για το ΔΕΕΚ - Απόδειξη k U U i= ` Ε στω T = E οι πλευρε& ς του δ & α σους F. i y F 3 x u v F F

Θεώρημα βέλτιστου για το ΔΕΕΚ - Απόδειξη y F 3 x u v F F Ai δέντρο επικάλυψης που περιέχει το Τ Α δέντρο επικάλυψης περιέχον το Τ αλλά όχι τη πλευρά [u,v], με Κ(Α) < Κ(Ai )

Θεώρημα βέλτιστου για το ΔΕΕΚ - Απόδειξη y F 3 x u v F F Πρόσθεση της πλευράς [u, v] δημιουργεί κύκλο και υπάρχει [x, y] με x V και y V\V. W > W [ uv, ] T. x y u v

Θεώρημα βέλτιστου για το ΔΕΕΚ - Απόδειξη y F 3 x u v F F ( [ uv ] [ xy ] ) A= V,E U, \, W > W xy uv Κ & οστος <Κ ' ( ) ( ) ( ) K A K A K A i ( A ) & οστος ( A ) αδύνατο