U D C : : : : 2009 4 : 2009 5 : : :
ii
Study of Water Cerenkov and Prototype Detector of Daya Bay Experiment Lu Haoqi In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Graduate School of Chinese Academy of Sciences Beijing, China 2009 ( Submitted in May 2009 )
iv c 2009 Lu Haoqi All Rights Reserved
vi
θ 13 θ 13 θ 13 sin 2 (2θ 13 ) 0.01 µ > 99.5%, 99.9%, PMT >30 tyvek > 80% µ tyvek 99% 140 ; µ ; :,,, tyvek,,,,
ii
Abstract Neutrino physics is the frontier of particle physics, astrophysics and cosmology. The neutrino mixing angle θ 13 is one of the fundamental parameters of the neutrino physics. The magnitude of θ 13 will decide the future direction of the neutrino physics. The Daya Bay neutrino experiment is proposed to measure the parameter θ 13 precisely using the reactor power plant group at Daya Bay, which is located in Shenzhen, Guangdong Province. To reach the sensitivity of 0.01 for sin 2 (2θ 13 ) measurement, one has to study the backgrounds of the experiment in details, to optimize the design of the detector, to manufacture the prototype of the detector, and to test its performance. This thesis is mainly work on the water Cerenkov detector and tank prototype experiment. The Daya Bay experiment is a low background experiment.the veto systems with effective efficiency > 99.5%, play very important role. This thesis is worked on the design and optimization the water Cerenkov veto detector. The final design is a octagonal water Cerenkov detector with double layer structure which effective efficiency can reach 99.9%. The criterion for the detector is the water absorption length should >30 meters and the tyvek reflectivity should > 80% from the simulation results. To do the detector study, we design and construct prototype tank based on the Daya Bay pool. Based on the detector study, we construct a practical model try to estimate the water resistivity of the pool in final, which can be used for large water Cerenkov detector. The prototype measurement shows that the tyvek reflectivity can reach 99% and water absorption length can achieve 140m from the cosmic muon waveform study. It verifies that the Daya Bay experiment s criterion is practical. From the consistence between the cosmic muon data and MC results, the reliability and effectiveness of the water Cerenkov detector simulation software is verified. The construction and test of the tank prototype can provide the technique and experience for the construction of Daya Bay water Cerenkov detector. Key words: neutrino, Daya Bay reactor neutrino experiment, water Cerenkov detector, tyvek, efficiency, absorption length, reflectiviy,resistivity.
iv
1 1 1.1.......................................... 1 1.2...................................... 2 1.3................................... 6 1.3.1................................... 6 1.3.2............................... 6 1.3.3............................... 7 1.3.4............................. 8 1.3.5............................. 9 1.4 sin 2 2θ 13................................. 9 2 13 2.1.......................................... 13 2.2....................................... 14 2.3.................................. 15 2.3.1............................... 16 2.3.2.................................. 17 2.3.2.1........................... 17 2.3.2.2.......................... 19 2.4............................. 20 2.5........................... 20 2.5.1............................... 20 2.5.2.................................. 22 v
vi 3 25 3.1.................................. 25 3.2.................................. 26 3.2.1.................................. 26 3.2.2 Geant4.............................. 26 3.2.2.1........................... 27 3.2.2.2........................... 27 3.2.2.3....................... 29 3.2.2.4 PMT.......................... 29 3.2.3................................... 31 3.2.3.1 Tyvek.......................... 31 3.2.3.2........................... 32 3.2.3.3......................... 33 3.2.4............................. 35 3.3...................... 36 3.3.1............................. 37 3.3.2............................... 39 3.3.3 +........................ 40 3.3.3.1.............................. 40 3.3.3.2............................. 42 3.3.4 +........................ 44 3.3.4.1......................... 44 3.3.4.2.......................... 50 3.3.5................................. 50 3.3.5.1............................. 50 3.3.5.2 µ......................... 51 3.3.6.................................. 55 3.3.6.1......................... 55 3.3.6.2.................. 55 3.3.6.3 µ.................... 58
vii 3.3.6.4.............. 61 3.3.6.5......................... 62 4 63 4.1................................. 63 4.1.1 Tyvek............................. 65 4.1.2.......................... 66 4.1.3.............................. 66 4.1.4 PMT............................... 68 4.1.5...................................... 68 4.2.......................... 69 4.2.1 µ....................... 70 4.2.2 µ....................... 71 4.2.3 µ..................... 72 4.2.4 RPC................... 74 4.2.4.1............................. 74 4.2.4.2............................. 74 4.2.4.3.............................. 76 4.2.5...................................... 78 5 79 5.1....................................... 79 5.2................................... 79 5.3.................................. 84 5.3.1............................... 84 5.3.2.................................. 86 5.3.3...................... 87 5.3.4...................................... 89 5.4................................... 89 5.4.1 ( )......................... 90 5.4.2.............................. 91
viii 5.4.3.................................. 92 5.4.4........................... 94 5.4.4.1 Tyvek................. 94 5.4.4.2................... 95 5.5............................... 96 5.5.1................................... 97 5.5.2......................... 98 5.5.2.1.............................. 99 5.5.2.2.............................. 101 5.6 µ.................... 101 5.6.1............................... 102 5.6.1.1 µ......................... 102 5.6.1.2 µ....................... 111 5.6.2............................. 113 5.6.2.1................................. 113 5.6.2.2 µ........................ 118 5.6.2.3 µ....................... 122 5.6.3...................................... 123 6 125 127
1 1.1 β 1914 β β (W. Pauli) 1930 β [1] [2] [3] [4] 1956 (F. Reines) (C. Cowan) [5] [6] [7] V-A [8] [9] 1958 [10] Glashow-Weinberg-Salam [11] SU(2) L U(1) Y SU(2) L Higgs [12] Yukawa [13] [14] τ [15] b [16] t [17] [18] Pontecorvo 1957 ν e ν e [19] 1962 Maki Nakagawa Sakata [20] ν e ν µ 1
2 1 Pontecorvo [21] Super-Kamiokande(SK) [22] K2K [23] MINOS [24] Homestake [25] 2002 SNO [26] ν e ν µ Mikheev-Smirnov-Wolfenstein(MSW) [27] [28] Kamland [29] SNO [30] 1.2 ν 1, ν 2, ν 3 ν e, ν µ, ν τ Maki-Nakagawa-Sakata-Pontecorvo (MNSP) [31] [32] ν α > = i U αi ν i > ( 1.1) α = e, µ, τ i = 1, 2, 3 ν i > Shrödinger ν i τ i m i ν i (τ i ) > = e im iτ i ν i (0) > ( 1.2) t L Lorentz e im iτ i = e i(e it P i L) ( 1.3) E i P i t L ν α P E i = p 2 + m 2 i P + m2 i 2P ( 1.4)
1.2. 3 1.2 : ν i (τ i ) > e i m 2 i 2P L ν i (0) > ( 1.5) E P 1.6 ν α (L) > Uαi e im2 i L 2E U βi ν β > ( 1.6) β ı L < ν β ν α (L) > 2 L ν α ν β 1.7 [33] P(ν α ν β ) = δ αβ 4 i>j +2 i>j ( )] L Re(Uαi U βiu αj Uβj [1.27 )sin2 m 2 ij E ( )] L Im(Uαi U βiu αj Uβj [2.54 )sin m 2 ij E ( 1.7) m 2 ij m 2 i m2 j ev 2 L km E GeV 1.27 [34] CPT P( ν α ν β ) = P(ν β ν α ) ( 1.8) 1.7 P(ν β ν α, U) = P(ν α ν β, U ) ( 1.9) CPT 1.10 P( ν α ν β, U) = P(ν α ν β, U ) ( 1.10) U U 1.7 CPT CP [33] MNSP [35] [36] 1.11 1 0 0 c 13 0 s 13 e iδ c 12 s 12 0 U = 0 c 23 s 23 0 1 0 s 12 c 12 0 0 s 23 c 23 s 13 e iδ 0 c 13 0 0 1
4 1 e iφ 1 0 0 0 e iφ 2 0 0 0 1 ( 1.11) = c 12 c 13 s 12 c 13 s 13 e iδ s 12 c 23 c 12 s 23 s 13 e iδ c 12 c 23 s 12 s 23 s 13 e iδ s 23 c 13 s 12 s 23 c 12 c 23 s 13 e iδ c 12 s 23 s 12 c 23 s 13 e iδ c 23 c 13 e iφ 1 0 0 0 e iφ 2 0 0 0 1 ( 1.12) s ij = sin θ ij, c ij = cosθ ij, (i, j = 1, 2, 3) 1. 1.11 1.7 φ 1, φ 2 φ 1, φ 2 Majorana Majorana β (neutrinoless double beta decay) 2. CP Jarlskog [37] U Jarlskog Jarlskog J CP = s 12 c 12 s 23 c 23 s 13 c 2 13 sin δ ( 1.13) CP sin δ 1.11 δ CP CP/T CP CP δ 3. 1.11 1.11 1.7 m 2 21 = m 2 solar, m 2 32 = m 2 atom, θ 12 = θ solar, θ 23 = θ atom,
1.2. 5 θ 13 = θ reactor. ( 1.14) solar θ 12 m 2 21 (SNO ) (KamLAND) 5σ atom θ 23 m 2 32 (SuperK ) (MINOS) 5σ reactor θ 13 KamLand SNO [38] [39] m 2 21 = 8.0 +0.4 0.3 10 5 ev 2, sin 2 (2θ 12 ) = 0.86 +0.03 0.04 ( 1.15) K2K Super-K [38] [40] m 2 32 = (1.9 3.0) 10 3 ev 2, sin 2 (2θ 23 ) > 0.92 (90% Confidence Level) ( 1.16) CHOOZ Palo Verde [38] [41] sin 2 (2θ 13 ) < 0.13 (90% Confidence Level) ( 1.17) 1.18 m 2 21 + m2 32 + m2 13 = 0 ( 1.18) m 2 12, m2 32, sin2 (θ 12 ), sin 2 (θ 23 ), sin 2 (θ 13 ), δ ( 1.19) m 2 12, m2 32, sin2 (θ 12 ), sin 2 (θ 23 ) sign of m 2 32, sin 2 (θ 13 ), δ ( 1.20)
6 1 1.15 1.16 1.18 m 2 12 m 2 32 10 2 ( 1.21) m 2 32 m 2 31 ( 1.22) 1.7 L/E m 2 L E = o(1) ( 1.23) 1.11 MNSP 1.7 P(ν α ν β ) = sin 2 2θ sin 2 [1.27 m 2 L/E] ( 1.24) β α P(ν α ν α ) = 1 sin 2 2θ sin 2 [1.27 m 2 L/E] ( 1.25) 1.24 (appearance) 1.25 (disappearance) 1.3 1.3.1 MeV ν e 1.1 [42 45] ν e β 1.2 [46] 3 7MeV 1.3.2 [47, 48] Kamioka [49] IMB [50] SuperK [51]
1.3. 7 1.1: 1.2: ( ) ( ) β ( ) µ µ 50% (E) (L) Kamioka SuperK m 2 32 (K2K,MINIOS) L K2K [52] 2007 MINIOS [53,54] [55] m 2 32 = 2.39 10 3 ev 2, sin 2 θ 23 = 0.466. ( 1.26) 1.3.3 ν e, 1.1 Ray Davis Homestake ν e + Cl e + Ar [43] (SSM) Davis
8 1 1999 GALLEX [45] SAGE [44] ν e +Ga e+ge SuperK ν e + e ν e + e ν e [56] MeV µ τ ν e ν e ν µ ν τ 2000 SNO ν e +d p+p+e ν+d ν+n+p [57] SNO ν e (1.68 ± 0.06(stat) +0.08 0.09(sys)) 10 6 cm 2 s 1 [58 60] (4.94 ± 0.21(stat) +0.38 0.34 (sys)) 106 cm 2 s 1 [58 60] ν e ν µ ν τ KamLAND m 2 KamLAND 51 L/E 10 6 m/mev m 2 tan 2 θ 12 = 0.4 +0.01 0.07 m 2 21 = 7.9 +0.6 0.5 10 5 ev 2 MSW [55] m 2 21 = 7.67 10 5 ev 2, ( 1.27) sin 2 θ 12 = 0.312. ( 1.28) 1.3.4 K2K,MINOS, Kamland θ 13 CHOOZ [61] CHOOZ 1km β ν e + p e + + n ( 1.29) θ 13 1.3 CHOOZ sin 2 (2θ 13 ) θ 13 :sin 2 θ 13 < 0.036(2σ) [55]
1.4. sin 2 2θ 13 9 1.3: 90% m 2 sin 2 2θ CHOOZ Palo Verde Kamiokande [62] 1.1: 95% m 2 21 = 7.67 10 5 ev 2 (7.31 8.01) 10 5 ev 2 m 2 32 = 2.39 10 3 ev 2 (2.19 2.66) 10 3 ev 2 sin 2 θ 12=0.312 0.278 < sin 2 θ 12 < 0.352 sin 2 θ 23=0.466 0.366 < sin 2 θ 23 < 0.602 θ 13 sin 2 θ 13=0.016 sin 2 θ 13 < 0.036 1.3.5 1.1 [55] 1.4 sin 2 2θ 13 CHOOZ sin 2 2θ 13 θ 13 < θ C 13 θ C Cabibbo θ 12 θ 23 θ 13 θ 13 1.13 Jarlskog CP
10 1 sin 2 2θ 13 CP χ 2 10 5 χ 2 vs θ 13 All 2002 + [p-p] ν-e ± 1% 0 0 0.02 0.04 0.06 χ 2 20 15 10 sin 2 θ 13 10-2 5 0 3σ 90% CL Total Atm + K2K + Chooz sin 2 θ 13 Solar + KamLAND 10-1 KamLAND Solar 1.4: χ 2 sin 2 θ 13 BGP [64] MSTV [65] θ 13 [63] [64] [65] θ 13 1.4 m 2 12 m 2 23 CP θ 12, θ 23, θ 13, m 2 21, m2 32 χ 2 sin 2 θ 13 = 0.009 BGP sin 2 θ 13 = 0.006 MSTV 1.2 2σ 3σ BGP MSTV θ 13 3σ θ C BGP MSTV θ 13 4 5 sin 2 2θ 13 (2 3)% 1% θ 13 [35] 2006 99% θ 13 10 [66] sin 2 (2θ 13 ) = 0 ± 0.05 ( 1.30)
1.4. sin 2 2θ 13 11 Parameter (BGP [64]) Best fit 2σ interval 3σ interval m 2 21 (10 5 ev 2 ) 7.1 6.2 8.2 5.5 9.7 m 2 32 (10 3 ev 2 ) 2.6 1.8 3.3 1.4 3.7 tan 2 θ 12 0.42 0.34 0.54 0.30 0.63 tan 2 θ 23 1.0 0.61 1.7 0.45 2.3 sin 2 θ 13 (sin 2 2θ 13 ) 0.009 (0.036) 0.036 0.053 Parameter (MSTV [65]) Best fit 2σ interval 3σ interval m 2 21 (10 5 ev 2 ) 6.9 6.0 8.4 5.4 9.5 m 2 31 (10 3 ev 2 ) 2.6 1.8 3.3 1.4 3.7 sin 2 θ 12 0.30 0.25 0.36 0.23 0.39 sin 2 θ 23 0.52 0.36 0.67 0.31 0.72 sin 2 θ 13 (sin 2 2θ 13 ) 0.006 (0.024) 0.035 0.054 1.2: 2σ (95% C.L.) 3σ (99.7% C.L.) [35] θ 13 < 10 (99% Confidence Level) ( 1.31) 2008 1.1 95% θ 13 11 [55] θ 13 CHOOZ θ 13 ν µ ν e ν τ CP [38] P(ν µ ν τ ) = sin 2 2θ 23 cos 4 θ 13 sin 2 [1.27 m 2 32L/E] ( 1.32) P(ν µ ν e ) = sin 2 2θ 13 sin 2 θ 12 sin 2 [1.27 m 2 32L/E] ( 1.33) θ 13 ν µ ν τ ν µ ν e θ 13 CP P(ν µ ν e ) = sin 2 2θ 13 sin 2 θ 23 sin 2 [1.27 m 2 32L/E] + sin 2 2θ 13 cos 2 θ 23 sin 2 [1.27 m 2 21 L/E] (+)J sin(δ) sin[1.27 m 2 32 L/E] +J cos(δ) cos[1.27 m 2 32L/E] ( 1.34)
12 1 J Jarlskog [38] 1.34 θ 13 [67]: i δ, θ 13 ii m 2 32 iii θ 23, π θ 2 23 δ CP θ 13 [38] P( ν e ν e ) = 1 cos 4 θ 13 sin 2 2θ 12 sin 2 [1.27 m 2 21 L/E] sin 2 2θ 13 sin 2 [1.27 m 2 32L/E] ( 1.35) L < 5km 1.35 1.25 θ 13 CP 1.34 1.35 θ 13
2 2.1 θ 13 2.1 3 707 4 11.6GW 5.8GW 2010 2.1: sin 2 2θ 13 90% sin 2 2θ 13 0.01 0.01 [68] 13
14 2 2.2 sin 2 2θ 13 0.01 CHOOZ sin 2 2θ 13 < 0.17 CHOOZ 1. ( ) ( ) 2.2 2.2: 2. 3. µ µ 4. µ µ 99.5% µ
2.3. 15 5. 2.3: χ 2 m 2.2 χ 2 ( 2.3) 2.3 (AD) µ RPC
16 2 2.3.1 Gd β 5m 5m ( 3.47 3.48 ) I Gd0.1% 20 II (fiducial volume) III 192 ( PMT) 8 12% 2.4: 2.5:
2.3. 17 2.1( 2.6) ν e + p e + + n ( 2.1) 2.6: β β 2.2MeV 8MeV 0.1% 28 Gd 210us) Gd 3-4 8MeV γ 3.5MeV 2.3.2 2.3.2.1 µ γ µ 2.5m 1 2MeV γ 2.5m γ 6 ( 2.7 ) 2.8
18 2 2.7: γ 2.8: (RPC) µ 2.9 2.9: 2.10: ( ) 2.10 16 16 10 2.5 2.93m 16 10 10
2.3. 19 2.1: µ 99.5% µ ±0.25% 25% ±0.05% 0.5-1m RPC ±2ns 25ns 2m 2.93 1m 2.5m Tyvek tyvek 0.8% 1m RPC 2m 2m 18m 18m 18m 12m RPC 1m 4 RPC RPC RPC RPC 95% 98.6%( ) RPC x y RPC µ (<10cm) RPC µ µ RPC RPC µ 99.5% 0.25% µ µ 2.1 2.3.2.2 (>30 ) 2
20 2 2.2: 363m 481m 1985m -II 526m 1615m (m) 98 112 350 (Hz) < 50 < 50 < 50 µ (Hz) 36 22 1.2 ( / ) 930 760 90 (%) < 0.2 < 0.2 < 0.1 (%) 0.1 0.1 0.1 8 He 9 Li (%) 0.3 0.2 0.2 2.11 / 5 /10 5 / 10 / 8 /16 5 10 2.4 2.2 2.12 2.5 2.5.1 θ 13 θ 13 θ 13 θ 13 sin 2 (2θ 13 ) 0.01
2.5. 21 2.11:
22 2 2.12: 90% sin 2 2θ 13 ( ) CHOOZ 2.5.2
2.5. 23 µ
24 2
3 3.1 v = βc n (c/n) Cherenkov Radiation cosθ c (λ) = [c/n(λ)]/v, ( 3.1) θ c (λ) n(λ) λ v > c/n θ c Tamm Frank ze L L+dL λ λ+dλ dn d 2 N dλdl = 2παz2 sin 2 θ λ 2 c 1 λ2, ( 3.2) α (α 1/137) λ = c/v = hc/e 3.2 25
26 3 d 2 N dedl = 2παz2 sin 2 θ c = constant. ( 3.3) hc E E λ = 1240eV nm dn λ1 dl = 2παz2 sin 2 θ c (λ, L)( dλ λ1 λ 2 λ ) = 2 2παz2 (1 (1/β 2 n 2 ))( dλ ), ( 3.4) λ 2 λ2 λ 1 λ 2 3.4 dn 370(1 1/(n 2 β 2 ))dpdx. ( 3.5) β = 1 300nm 600nm 3.5 300photons/cm β 1 0.3KeV/cm 400KeV/cm 4KeV/cm 2300KeV/cm 3.2 3.2.1 GEANT4 [69,70] FORTRAN GEANT3 GEANT4 C++ 3.2.2 Geant4 Geant4 Geant4 λ 10nm E 100eV [71] G4dyb [200, 800]nm Geant4
3.2. 27 3.2.2.1 Geant4 θ c ( 3.1 ) 3.4 3.2.2.2 (BoundaryProcess) Geant4 (ABSLENGTH) Geant4 (RayleighAttenuationLength) Geant4 Einstein-Smoluchowski Geant4 Geant4 [72] (RINDEX) Geant4 (Fresnel formula) (surface) Geant4 GLISUR UNIFIED GLIUSR GEANT3 (POLISHED) (GROUND) UNIFIED [73] DETECT [74] UNIFIED 3.1 d i d r d t n 1 n 2 n θ i θ r θ t
28 3 φ r n α φ norm θ i θ r θ t UNIFIED (Type) (dielectric-dielectric) / (dielectric-metal) (Finish) (polished) (ground) (polishedbackpainted) (groundbackpainted) (polishedfrontpainted) (groundfrontpainted) 3.1: UNIFIED ( UNIFIED UNIFIED )
3.2. 29 UNIFIED 3.1 J U (θ i, θ r, φ r ) R(θ i, n 1, n 2 )[C sl g(α r ; 0, σ α ) + C ss δ(θ i θ r )δ(φ r ) + C bs δ(θ i + θ r )δ(φ r ) +C dl cos(θ r )] + T(θ t, n 1, n 2 )g(α t ; 0, σ α ) ( 3.6) g(α r ; 0, σ α ) 0 σ α α [0, 90 ] σ α 3.6 UNIFIED σ α R(REFLECTIVITY) R C sl (SPECULARLOBECONSTANT) C ss (SPECULARSPIKE- CONSTANT) C bs (BACKSCATTERCONSTANT) [75] C dl Lambertian (DIFFUSELOBECONSTANT) C sl + C ss + C bs + C dl = 1 ( 3.7) T = 1 R J U n 1 = n 2 T = 1 UNIFIED C sl = 1 σ α = 0 (polished) C sl = 1 σ α 3.2.2.3 PMT Geant4 (sensitive detector) (hit) 8 PMT G4dyb PMT 3.2.2.4 PMT GLG4sim PMT [76] G4dyb PMT PMT 8 PMT PMT PMT PMT
30 3 PMT ( 3.2 ) PMT 3.2: PMT ( G4dyb 8 EMI PMT PMT Luxlevel3 ) 26nm 2.9 + 1.6i PMT (sensitive detector) Luxlevel0 PMT PMT PMT (A(θ,λ)) (R(θ,λ)) (T(θ,λ)) A(θ, λ) + R(θ, λ) + T(θ, λ) = 1 ( 3.8) PMT PMT PMT PMT PMT Luxlevel3 Luxlevel3 luxlevel0 50/50 PMT Luxlevel3 luxlevel0 Luxlevel3 Luxlevel0 [76]
3.2. 31 3.1: (g/cm 3 ) (g/cm 3 ) 1.0 H,O 2.7 O, Si, Al,Fe, Mg, K, Ca Gd 0.855 C, H,N, O, Gd 2.7 98%Al, Si, Mn 0.855 C, H,N, O ESR 1.0 C, H 0.838 C, H Tyvek 0.94 C, H 1.18 C, H,O PMT 2.23 Si, O, B, Na 8.1 70%Fe, C, Mn PMT 5 K 3.2: (m) 30 1.34 Tyvek 10 0 PMT 10 7 2 1.458 PMT 2.9 + 1.6i 10 6 0 3.2.3 3.2.2 3.1 G4dyb Parlo Verde Geant3 KamLAND GLG4sim 3.2 3.3 G4dyb 3.2 Tyvek Tyvek 3.3 0 3.2.3.1 Tyvek Tyvek, tyvek Super K Kamland Auger
32 3 3.3: -tyvek UNIFIED -tyvek UNIFIED - UNIFIED tyvek, 3.3 1070D tyvek 320nm 90% tyvek PMT [300nm-600nm]( 3.2 ) Tvyek Auger 3.3 90% Kamland tyvek 80% tyvek 0.1 tyvek 80% 90% 80% ( ) Diffuse reflectivity(%) 95 90 85 80 75 70 300 400 500 600 700 800 wave length(nm) 3.3: Tyvek 3.2.3.2 Geant4 ( ( ) 1 (n 2 1)(n 2 2 ( ) ) 4 1 + 2) 2πp L Rayleigh = ktk T, ( 3.9) 6π 3 hc
3.2. 33 h c p n k T K T Geant4 T = 283.15K K T = 7.658 10 23 m 3 /MeV ( 3.4) SuperK 3.4: 3.2.3.3 Gean4 [77] 3.5 [78 87] 350nm 600nm Pope Fry Quickenden Irvin Quickenden Irvin 4 3.5 1 2 4 3 4 3
34 3 Absorption coefficient (1/cm) 10-2 10-3 10-4 Sogandares and Fry, 1997 Pope and Fry, 1997 Querry et al, 1991 Quickenden and Irvin, 1980 Tam and Patel, 1979 Querry, Cary and Waring, 1978 Kopelevich, 1976 Palmer and Williams, 1974 Sullivan, 1963 Quickenden and Irvin, Purity 1 Quickenden and Irvin, Purity 2 10-5 200 300 400 500 600 700 800 Wavelength (nm) 3.5: [78 87] 200nm 800nm a min (200nm-320nm) Quickenden Irvin1980, (380nm-727.5nm) Pope Fry (728-790nm) Sullivan Sullivan 800nm (10% ) [82] 25 [80] 22 a i = a i(200nm) (λ/200nm) 4 a i (200nm) 200nm 1/λ 4 Rayleigh 3.6 a = a min + a i a i (200nm) = 0 ( ) 226m 417nm 3.7 a i (200nm) Rayleigh
3.2. 35 Absorption coefficient (1/cm) 10-2 10-3 10-4 Sogandares and Fry, 1997 Pope and Fry, 1997 Querry et al, 1991 Quickenden and Irvin, 1980 Tam and Patel, 1979 Querry, Cary and Waring, 1978 Kopelevich, 1976 Palmer and Williams, 1974 Sullivan, 1963 Quickenden and Irvin, Purity 1 Quickenden and Irvin, Purity 2 Fake (30.0m, 473nm) Fake (53.4m, 435nm) Fake (226m, 417nm) 10-5 200 300 400 500 600 700 800 Wavelength (nm) 3.6: 3.7: 3.2.4 G4dyb [88, 89] 1 PVC tyvek WinstonCone [90] EMI 8 PMT tyvek Winston Cone µ, 3.8 3.8: [88]
36 3 3.9 tyvek (90%) Al ( 90%) PMT PMT µ PMT e x/λ x µ PMT λ tyvek µ PMT 5.7±0.3 3.10 3.9: tyvek,al PMT [88] 3.10: µ 5.7 ± 0.3m [88] G4dyb 3.11 G4dyb 3.3 >95% µ >99.5% <0.25%
3.3. 37 number of detected photons 10 Exp.data MC 2 3 4 5 6 7 8 9 10 11 distance/m 3.11: G4dyb 4 4 3.3.1 µ [91] µ µ (Gaisser s formula) MUSIC( µ ) µ µ 3.4 µ µ (m) µ (Hz/m 2 ) (GeV) 98 1.2 55.3 112 0.70 61.4 356 0.041 140.3 3.4: µ
38 3 /GeV ) 2 muon flux ( Hz/m 10 10-2 -3 10-4 10-5 -6 10 @ far site @ midle site @ DaYa near site @ LingAo near site 1 10 10 2 underground muon energy ( GeV ) 10 3 10 4 counts 3000 2500 2000 1500 1000 500 @ far site @ midle site @ DaYa near site @ LingAo near site 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1+cos(θ) of underground muon 3.12: µ - 3.13: µ 3.12 ( ) µ µ 3.13 µ 75 µ MUSIC µ θ > 75 µ θ > 75 µ µ µ 3.14 x z counts 1600 1400 1200 1000 800 600 400 200 @ far site @ midle site @ DaYa near site @ LingAo near site 0 0 50 100 150 200 250 300 350 azimuthal angle of underground muon 3.14: µ 250 µ
3.3. 39 3.3.2 µ µ 200 1% PMT 50Hz PMT PMT PMT PMT N n ( PMT ) f τ R = 1 τ N icn(fτ) i i (1 fτ) N i ; ( 3.10) i=n 3.15: PMT ( PMT 200 PMT 50kHz 100ns) PMT PMT PMT 3.15 PMT PMT PMT MACRO PMT( 400 ) PMT PMT <5kHz MACRO PMT PMT
40 3 20kHz PMT <5kHz PMT 50kHz 50kHz 3.16 ( tyvek 80% max. 20m) 5 10 4 10 3 10 2 10 10 Hittimedis Entries 1591497 Mean 35.58 RMS 30 collect p.e. ratio (%) 1.0 0.8 0.6 0.4 0.2 1 0 100 200 300 400 500 600 700 800 900 1000 photon hit time(ns) 3.16: 0.0 0 50 100 150 200 250 300 350 400 time window (ns) 3.17: 3.17 200ns 99.8% 200ns E effi = n detect N Inwater ( 3.11) n detect µ N Inwater µ µ µ PMT tyvek PMT µ 3.3.3 + 3.3.3.1
3.3. 41 14m*14m*9m 1.5m 3.18: (4 ( ) PMT) 3.18 14 14 9 PMT 1.52 PMT PMT 321 tyvek 0.8( tyvek ) 20 ( ) 0.4 3.19 µ 5.5m 4m 9m 400 htracklengthinner Entries 20119 Mean 5.541 350 RMS 2.966 300 250 200 150 100 50 0 0 2 4 6 8 10 12 14 16 18 Tracklength in water(m) 3.19: µ 3.20 PMT 25ns 200ns (99% ) 3.21 µ
42 3 PMTs µ 3.22 PMT µ PMT 1.66 3.23 PMT 100 µ 100 PMT 6 10 5 10 4 10 3 10 2 10 10 Hittimedis Entries 9696171 Mean 25.31 RMS 27.47 1 0 100 200 300 400 500 600 p.e. hit time(ns) 3.20: PMT Hittimedis Entries 20119 220 Mean 481.8 200 RMS 273.7 180 160 140 120 100 80 60 40 20 0 0 500 1000 1500 2000 2500 3000 Output p.e. number 3.21: PMT 7 10 6 10 5 10 4 10 3 10 2 10 10 Hittimedis Entries 8346000 Mean 1.662 RMS 7.226 1 0 100 200 300 400 500 600 700 800 900 p.e number per PMT for all muons 3.22: PMT 300 250 Hittimedis Entries 20119 Mean 100 RMS 35.93 200 150 100 50 0 0 50 100 150 200 250 Fired PMT number 3.23: PMT 3.3.3.2 3.24 3.25
3.3. 43 3.24: 3.25: PVC PVC 3.26 PVC PVC 1m 3.27 11 15 12 20 40% 70%
44 3 9 1m 70% µ 3.26: PVC 3.27: 3.3.4 + 3.3.4.1 [88] 3.28 1.5 1 1m 1m 14 14 9 16 16 10 PVC tyvek 1m 16m*1m*1m PVC 16 9 PMT µ 3.29 Winstone Cone Winstone
3.3. 45 3.28: 1m 1m µ µ Windstone 3.29 (b) PMT ( 3.29(b) ) (b) ( ) (c) 45 PMT ( 16m 16m 10m ) 3.30 16 3.30(a) 16m 1m 1m 4 3.30(b)(c) 45 PMT 3.31 16 3.10 µ PMT10.5 PMT 7 16 µ PMT 7.0 e 16.0 10.5 5.7 2.7 ( tyvek 90%, 30 ) PMT PMT PMT µ PMT PMTs PMT 8 PMT PMT 416
46 3 3.29: 3.30: 3.32 µ 100 ( 3.21)
3.3. 47 3.31: 100 3.33 PMT 4 30 15 µ µ 2 3 PMT 3.34 PMT 0.96 50 h1 Entries 1000 Mean 406.7 40 RMS 659.9 30 20 10 0 1 10 10 Output p.e. number 2 3 10 4 10 3.32: 70 60 50 40 30 20 10 h1 Entries 1000 Mean 15.03 RMS 10.3 0 0 10 20 30 40 50 60 70 80 Fired PMT number 3.33: PMT 3.35 µ ( ) µ ( ) tyvek PMT A B 3.36 3.37 µ X 7
48 3 5 10 h1 Entries 416000 Mean 0.9626 RMS 12.45 4 10 3 10 2 10 10 1 0 100 200 300 400 500 600 700 800 900 1000 p.e number per PMT for all muons 3.34: PMT ( µ ) A 0.88 89 B 491 4 B 1 A 15 A B A PMTs µ 3.35: µ 3.38 µ A PMTs -7 +7 491 0.9 µ µ
3.3. 49 450 400 350 300 250 200 150 100 50 h1 Entries 1000 Mean 0.877 RMS 0.9828 40 35 30 25 20 15 10 5 h2 Entries 1000 Mean 491 RMS 113.6 50 40 30 20 10 h1 Entries 568 Mean 89.24 RMS 18.64 350 300 250 200 150 100 50 h2 Entries 1000 Mean 3.867 RMS 0.467 0 0 2 4 6 8 10 12 14 16 18 20 PMTs output p.e. number at A 0 400 600 800 1000120014001600 PMTs output p.e. number at at B 0 50 100 150 200 250 300 PMTs hit time at A (ns) 0 0 1 2 3 4 5 6 7 8 9 10 PMTs hit time at B (ns) 3.36: µ (x=7 m) PMTs 3.37: µ (x=7 m) PMT p.e. number observed 2 10 10 1-8 -6-4 -2 0 2 4 6 8 Distance (m) Hit time (ns) 90 χ 2 / ndf 47.35 / 13 80 p0 45.67 ± 0.2582 p1 6.398 ± 0.05976 70 60 50 40 30 20 10 0-8 -6-4 -2 0 2 4 6 8 Distance (m) 3.38: µ (x ) A PMTs ( 3.36 ) 3.39: µ (x ) A PMT ( 3.36 )
50 3 3.3.4.2 1 µ 2 3 µ PVC 16 PVC 16 µ µ tyvek PVC PVC PVC tyvek PMT µ PMT µ PMT 3.3.5 3.3.5.1 PMT( ) µ (<1m) PMT 3.40 PMT 3.31 3.40 ( 3.31) PMT 416 ( 3.40) PMT 1.5 PMT 429 13 PMT PMT tyvek 0.9 30 3.41 711 3.42
3.3. 51 3.40: PMT 1.5 1752 2.46 PMT 1 PMT 200PMT µ PMT µ PMT 3.43 µ PMT 19 PMT 3.44 PMT PMT 213 11.2 PMT 3.3.5.2 µ µ µ µ µ <1m 3.45 µ 2 3 µ 3.36 µ (>5p.e.)
52 3 70 60 50 40 30 20 10 h1 Entries 1000 Mean 710.9 RMS 1008 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 p.e number 22 20 18 16 14 12 10 8 6 4 2 h1 Entries 1000 Mean 1752 RMS 1453 0 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 p.e number 3.41: 3.42: PMT 100 80 h1 Entries 1000 Mean 19.08 RMS 12.96 14 12 h1 Entries 1000 Mean 212.9 RMS 72.41 10 60 8 40 6 20 4 2 0 0 10 20 30 40 50 60 70 80 90 fired PMT Number 0 0 50 100 150 200 250 300 350 400 fired PMT Number 3.43: PMT 3.44: PMT PMT 3.45: µ 3.46: µ PMT
3.3. 53 n = N exp( x/λ) n PMT λ 3.37 PMT µ X error = X re x 0 ; Y error = Y re y 0 ; Z error = Z re z 0 ; Re error = Xerror 2 + Y error 2 + Z2 error ; X Y re re, Z re x y z x y 0 z 0 0 µ Re error PMT 3.47 1.2 3.46 µ PMT PMT µ PMT 4 6 PMT PMT X j re = n i=1 Npe i x j n i=1 Npe i ( 3.12) Xre j j=1 2 3 X Y Z x PMT Npe i PMT n PMT 3.48 0.5 120 100 htemp Entries 827 Mean 1.187 RMS 1.885 200 180 160 htemp Entries 943 Mean 0.5239 RMS 0.5603 80 140 120 60 100 80 40 60 20 40 20 0 0 2 4 6 8 10 reconstruction_error 3.47:, 0 0 1 2 3 4 5 6 7 8 reconstruction_error 3.48: PMT, 3.49 1.3 3.50 PMT
54 3 5.5 3.46 PMT µ, 45 40 35 htemp Entries 328 Mean 1.286 RMS 2.127 30 25 htemp Entries 368 Mean 5.453 RMS 4.394 30 20 25 20 15 15 10 10 5 5 0 0 2 4 6 8 10 reconstruction_error 0 0 2 4 6 8 10 12 14 16 18 20 reconstruction_error 3.49:, 3.50: PMT, µ µ PMT 3.51 <1 3.52 ( PMT) 3.51: PMT 3.52: ( PMT)
3.3. 55 3.3.6 3.3.6.1 3.52 2.5 2.5 3.53 3.53: 3.3.6.2 PMT PMT 341 PMT PMT 381 PMT PMT 381 3.54 3.54 PMT (PMT 341) ( 381 PMT ) 341PMT 381 381 PMT 3.56
56 3 3.54: PMT 3.55: 3.54 3.56: µ 3.57: µ,
3.3. 57 µ 3.57 3.56 µ µ (<1.0 )µ (381 PMT) 96.1% 95.3% 97.1% 98.5% (341 PMT) 96.3% 97.0% 97.7% 98.9% (381 PMT) 96.5% 96.9% 97.9% 99.0% 3.5: 3.5 ( PMT 50kHz 200ns) 381 PMT, PMT p.e loss ICut Ieffi. OCut Oeffi. I or O effi. Total effi 50kHz 200 ns 0.1% 12 96.5% 13 96.9% 97.9% 99.0% 50kHz 150 ns 0.6% 11 96.8% 12 97.6% 98.2% 99.1% 50kHz 100 ns 3.2% 9 97.6% 10 98.1% 98.5% 98.2% 15kHz 200 ns 0.1% 7 98.2% 8 98.8% 98.9% 99.5% 15kHz 150 ns 0.6% 7 98.2% 7 99.0% 99.1% 99.6% 15kHz 100 ns 3.2% 6 98.5% 7 99.0% 99.1% 99.6% 3.6: (381PMT) PMT 3.6 381PMT PMT ( < ±0.2%) p.e. loss ICut PMT Ieffi. µ Oeffi. µ I or O effi. Total effi. RPC ( RPC 90%) 200ns 100ns 97.9% 98.5%( PMT 50kHz ) PMT 15kHz 98.9% 99.1%
58 3 200ns 0.1% 100ns 3.2% µ 200ns 100ns 0.2% 200ns 3.3.6.3 µ µ >99.5% µ µ E effective = 1 N undectnutron N gennutron ( 3.13) E effective N undectnutron µ µ N gennutron µ 3.57 µ 3.58 µ 0.2 3.59 1 µ µ 2 3 µ ( ) 2.5 1 µ ( ) µ [93] 3.60 µ ( ) λ=80.7; x N neutron = 582.2 exp( x 200.0 ) ( 3.14) λ 3.14, 3.61 [93] 45.2(
3.3. 59 3.58: µ 3.59: µ µ 3.60: µ 12.5cm bin) 3.62 µ 3.61 3.62 bin 3.63 µ µ 3.64 µ µ 6 N neutron = 6.5 exp( x 200.0 ) ( 3.15) λ
60 3 3.61: 3.14 3.62: µ ( ) 3.63: µ 3.64: µ ( µ ) ( cm)
3.3. 61 µ 29400 3.72 µ 0.35 10 3 99.9% µ 99.0% µ 99.9% 99.5% 3.3.6.4 <0.1% 3.7 [94] 99.5% 2 2.5 2 99.5% (cm) 200 250 80 80 Rate B/S Rate B/S 1.88 2.35% 1.07 1.3% 0.078 0.098% 0.04 0.043% 3.7: 4 3.8 5529 6757 15% µ 5239 5816 12% 3.8: [94] 15% 2.5m 1 15%
62 3 3.3.6.5 [95] 3.65 3.66 3.67 3.68 3.65: 3.66: 3.67: 3.68:
4 PMT 4.1 PMT 2.3 1 PMT 4.6 1 PMT 4.1 4.2 µ 5.5 2.5 14 14 9 5 µ µ 4 4.2 µ 4 µ 4.1 1 µ 9 µ 9 9 ( 4.1 2 3 µ ) 1 3 1 1 2 3 µ 1 3 4 µ 2 1 3 µ µ 63
64 4 4.1: ( 1 2 3 4 µ ) 400 innertracklength Entries 20119 350 Mean 5.541 300 RMS 2.966 250 200 150 100 50 0 0 2 4 6 8 10 12 14 16 18 muon tracklength in IWD/m outertracklength Entries 25684 Mean 2.53 RMS 1.812 500 0 0 2 4 6 8 10 12 14 16 18 muon tracklength in OWD/m 4.2: µ ( ) µ ( ) PMT PMT tyvek tyvek 80% 20 40% PMT µ 5.5 ( ) 190 000 ( 300nm 600nm PMT ) 2.5 90 000 PMT 1.4% 0.8% 260
4.1. 65 70 4.3 >400, 4.4 >300 4.3 PMT 482.5 100 4.4 PMT 361.7 65.7 IWDPE 400 Entries 20119 350 Mean 482.5 300 RMS 274.2 250 200 150 100 50 0 0 1000 2000 3000 total number of p.e. for IWD IWDHitN 300 Entries 20119 Mean 100 250 RMS 35.93 200 150 100 50 0 0 50 100 150 200 250 number of phototubes hit 700 IWDPE Entries 25684 600 Mean 361.7 500 RMS 302.6 400 300 200 100 0 0 1000 2000 3000 total number of p.e. for OWD IWDHitN Entries 25684 Mean 65.66 RMS 28.52 50 0 0 50 100 150 number of phototubes hit 4.3: PMT 4.4: PMT 4.1.1 Tyvek tyvek 4.5 tyvek 0.0 0.8 90% 190% number of p.e. observed 600 inner water detector 500 400 300 outer water detector 200 100 0 0 20 40 60 80 100 Tyvek reflectivity/% number of phototubes hit 120 inner water detector 100 80 60 40 20 outer water detector 0 0 20 40 60 80 100 Tyvek reflectivity/% 4.5: tyvek 4.6 tyvek 0.8 tyvek 0.8 96% tyvek >0.8
66 4 muon efficiency/% 100 90 80 70 60 50 40 30 20 inner water detector outer water detector 0 20 40 60 80 100 Tyvek reflectivity/% 4.6: tyvek 4.1.2 4.7 0.0 0.8 42% PMT 64% 1.7% ( 4.8) ( ) PMT (>400) ( 95%) µ number of p.e. observed 600 550 500 450 400 0 10 20 30 40 50 60 70 80 surface reflectivity/% number of phototubes hit 130 120 110 100 90 80 0 10 20 30 40 50 60 70 80 surface reflectivity/% 4.7: 4.1.3 Tyvek 0.8 0.4 µ tyvek PMT
4.1. 67 muon efficiency/% 97.4 97.2 97.0 96.8 96.6 96.4 96.2 96.0 95.8 95.6 0 10 20 30 40 50 60 70 80 surface reflectivity/% 4.8: 4.9 10 65 100% PMT number of p.e. observed 700 600 500 400 300 200 inner water detector 100 outer water detector 0 10 20 30 40 50 60 70 water absorption length/m number of phototubes hit 160 140 120 100 80 60 40 20 inner water detector outer water detector 0 10 20 30 40 50 60 70 water absorption length/m 4.9: 4.10 µ 2 10 >20 96.6% 2 10 > 20 98.6% >20 (>95%) >30m
68 4 muon efficiency/% 100 80 60 40 20 inner water detector outer water detector 0 10 20 30 40 50 60 70 water absorbtion length/m 4.10: 4.1.4 PMT PMT (<5%) 5% PMT PMT 4.11 4.12 5% PMT PMT 97.1% 97.0% 0.3% 0.6% 80 70 60 50 40 30 20 10 0 96.6 96.7 96.8 96.9 97.0 97.1 97.2 97.3 97.4 inner detector efficiency/% 4.11: ) 60 50 40 30 20 10 0 97.1 97.2 97.3 97.4 97.5 97.6 97.7 97.8 97.9 98.0 outer detector efficiency/% 4.12: 4.1.5 > 20m > 30m tyvek > 80%;
4.2. 69 5% PMT 0.6% 4.2 RPC µ µ µ µ µ RPC tyvek Super K Auger Kamland tyvek tyvek 4.1 4.2 30 15 1.5% 7% 0.6% 30 10 3.8% 15% 1.2% ( RPC) (30m) (97.94±0.17)% (98.07±0.15)% (98.61±0.13)% (99.30±0.09)% (15m) (96.41±0.22)% (91.13±0.3)% (97.47±0.16)% (98.66±0.12)% (10m) (94.18±0.27)% (83.11±0.38)% (96.11±0.20)% (98.13±0.14)% 4.1:
70 4 (30m)-(15m) (1.53±0.28)% (6.95±0.34)% (1.14±0.21)% (0.64±0.15)% (30m)-(10m) (3.76±0.32)% (14.96±0.41)% (2.5±0.24)% (1.17±0.17)% 4.2: 4.2.1 µ µ µ µ PMT 15 <0.009Hz µ 12.8Hz > 10 3 <0.1% 4.13 1 2 3 µ 1 µ 2 µ 3 µ 3 µ 4.14 µ ( 4.2 ) µ µ <1 < 1 µ <1 0 (1 2% 3 ) 900 800 htracklength Entries 8598 Mean 2.518 RMS 1.793 700 600 500 400 300 200 100 0 0 2 4 6 8 10 12 14 16 18 TrackLength(m) 4.13: µ 4.14: µ ( ) µ
4.2. 71 4.3 1 2%, 3 µ ( µ ) 1 2% 3 µ 3 µ ( ) ( - ) 30m 6655 1.43% (97.78±0.18)% (98.07±0.15)% (0.29±0.24)% 15m 6868 1.37% (90.07±0.36)% (91.13±0.3)% (1.06±0.47)% 10m 6836 1.26% (80.65±0.48)% (83.11±0.38)% (2.45±0.62)% 4.3: 4.2.2 µ µ µ PMT 19 <0.04Hz > 10 3 <0.1% 4.15 1 2 3 µ 1 µ 2 µ 3 µ 3 µ 4.15: µ 4.16 µ µ Y 0 3 0 4.17 0 4.4 20%, 3 µ 21%(
72 4 3 10 htracklength Entries 8032 Mean 4.319 RMS 3.377 180 160 140 htracklength Entries 6367 Mean 5.448 RMS 2.87 2 10 120 100 80 10 60 40 1 20 0 2 4 6 8 10 12 14 16 18 TrackLength(m) 0 2 4 6 8 10 12 14 16 18 TrackLength(m) 4.16: ( ) 4.17: ( 0 ) ( ) ) V O = 2388.3m 3 V i = 1850m 3 R = V i V O = 77.5% 22.5%, 21% 22.5%( ) 3 µ ( ) ( - ) 30m 8302 20.71% (77.43±0.46)% (97.94±0.17)% (20.51±0.49)% 15m 7462 22.53% 75.06±0.50)% (96.41±0.22)% (22.53±0.55) 10m 6536 21.59% (73.74±0.54)% (94.18±0.27)% (20.44±0.60) 4.4: 4.2.3 µ 4.20 µ µ >4.0 µ 100% µ ( 4.21) 4.5 30 10 27.3%
4.2. 73 4.18: AD µ 4.19: AD µ 160 140 120 htracklength Entries 6855 Mean 5.472 RMS 2.842 900 800 700 htracklength Entries 8598 Mean 2.518 RMS 1.792 100 600 80 500 60 40 400 300 200 20 100 0 0 2 4 6 8 10 12 14 16 18 TrackLength(m) 0 0 2 4 6 8 10 12 14 TrackLength(m) 4.20: AD µ ( ) 4.21: AD µ ( ) ( ) ( ) 30m 2078 100% (97.35±0.35)% 15m 2227 100% (83.88±0.78)% 10m 2292 100% (70.07±0.96)% 4.5:
74 4 4.2.4 RPC RPC RPC RPC RPC RPC 4.2.4.1 4.22 4.23 9 µ 1 µ ( RPC ) 2 3 µ RPC 50 µ RPC RPC 4 µ 5 µ 6 µ ( RPC ) 7 µ ( RPC ) 8 µ 9 µ 4.2.4.2 RPC 1 µ µ RPC 1 µ 1 µ µ µ 1 µ 2 >0 <2 > 0 4.23 5 6 7 8 9 µ 1 2 3 4 µ 4 1 µ 4.24 1 2 3 4 µ RPC 2 3 4 µ 0, RPC, 1 µ 4 RPC, 4 1 µ 1%
4.2. 75 4.22: 1 2 3 µ 4.23: 4 5 6 7 8 µ RPC 99% µ PMT 4.24: 1 2 3 4 µ RPC 4.25 µ PMT µ PMT 2 2 ( ) PMT 50PMT <2 PMT < 50 PMT >11 PMT >13 PMT <50 4.26 PMT mu >0 RPC 98.9% (2,3,4
76 4 4.25: µ PMT ( ) µ PMT µ )1.1% 4.27 µ, XY XZ 1 µ 1 µ RPC 2 µ ( ) RPC 3 4 µ ( ) 3 10 nhitrpc Entries 3125 Mean 4.229 RMS 1.286 2 10 10 1 0 2 4 6 8 10 12 14 16 18 20 nhit_rpc 4.26: PMT ( PMT >11 PMT >13 PMT <50) 4.2.4.3 RPC 4 3 µ 4 RPC RPC
4.2. 77 4.27: 1 2 3 4 µ XY 1 2 3 4 µ XZ 4.28, RPC 4.29 RPC 1% 99% 1% RPC sys. efficiency(%)(3/4) 98 96 94 92 90 88 True effi. - Check effi.(%) 2.0 1.5 1.0 86 84 82 80 Check effi. True effi. 0.5 0.0 78 80 85 90 95 100 RPC efficiency(one layer)(%) -0.5 80 85 90 95 100 RPC efficiency(one layer)(%) 4.28: RPC 4.29: 4 5 6 7 8 µ
78 4 4.2.5 1% 20% RPC 99% 1%
5 5.1 (>30m) tyvek (>80%) Super-Kamiokande ( >100m) tyvek 1 PMT ( 0.6%) tyvek tyvek µ PMT 5.2 5.1 2.8m 1.2m 1.3m( ) Tyvek 2.6 1.0 1.0 tyvek tyvek tyvek 79
80 5 2 8 MACRO PMT 0.62% 5.2 7 13 tyvek 1 1 PMT (0,0,0) Y X Z PMT (-30cm,0,- 50cm) PMT (-110cm,-50cm,-10cm) 5.3 µ PMT PMT PMT X tyvek PMT tyvek PMT µ PMT X -110 PMT PMT Y X 30 h 1 µ d d = h tan(θ) θ ( 1.33 θ =41.2 ) d=87.5 PMT d PMT L=160 X 57.5 PMT 5.1: 5.2: 5.4 [96] PVC
5.2. 81 5.4: 1.0 5.3: PMT µ 1.0 0.07 0.076 (PP) 0.138 (PE) 0.287 (PVC) 4.25 (PVC) 4.46 10.66 16.44 5.5 tyvek 5.5: 5.6 PMT ( 1cm) 5.7 PMT PMT
82 5 5.7: PMT 5.6: PMT PMT 2 PMT PMT 5.8 tyvek 304 2 2 tyvek 2.6 1.0 1.0 1 5.9 tyvek 5 5.8: tyvek 5.9: tyvek
5.2. 83 5.10: 5.6 5.10, h 1.5 2.0 1.2 10 1.5 2.0 5.11 5.12 1 0.22 2 5.11 1 1 1 15 15 16.7 0.22 0.22
84 5 5.11: 2 ( ) 2l/min 18l/min / <1l/min / 2% 5.12 1 0.22 3 3 4 5 3 4 5 4 5 3 1 1 2 / 5.3 5.3.1 (EC) (R) (σ=1/r), (TDS) TDS TDS (mg/l)=
5.3. 85 5.12: 0.5 EC (µs/cm) [97] 5.13 V tank u(1/h) (position 1) (position 2) σ tank 1 σ p 2 25 C 0.055uS/cm σ p 5.13: k( mg/(l*h)) ( t dt) d(0.5σ tank ) = 0.5(σ p σ tank )udt (V tank ) + kdt ( 5.1)
86 5 (EC)σ tank ( 5.1) σ tank = (σ p + 2kτ) + (σ 0 (σ p + 2kτ))exp( t τ ) ( 5.2) τ= V tank u ; σ 0 R tank R tank = 1 σ tank = ( 5.3) t, R tank 1 (σ p + 2kτ) + (σ 0 (σ p + 2kτ))exp( t τ ) ( 5.3) R tank = 1 (σ p + 2kτ) ( 5.4) 5.4 σ p k τ k ( mg/(l h)) ( 5.1) ( 5.5) ( 5.6) d(0.5σ tank ) = k dt ( 5.5) σ tank = σ 0 + 2k t ( 5.6) σ 0 ( 5.7): R tank = 1 σ tank = 1 σ 0 + 2k t ( 5.7) 5.3.2 4 >18MΩ cm 4 PVC 150 PVC 2 PMT tyvek
5.3. 87 2 1.2 340l 1500 4 5 1.5cm 2.0cm 150 <1MΩ cm 16.7MΩ cm( 5.13 2 σ p =0.06µS/cm 16.7MΩ cm) 5.3.3 ( ) 2 ( ) 3MΩ cm u 1 12 l/min 5.3 k τ σ 0 5.14 k 0.8 10 3 mg/(l h) τ=5.2 12.8l/min 14.8 5.4 2.5 14.8 25 30 5 6 3 l/min( u 2 ) 5.15 k 0.8 10 3 mg/(l h) 12 l/min(u 1 ) τ=24.2 2.8 l/min 10.2MΩ cm 3.5MΩ cm 10.2MΩ cm 120 5 6 5.16 5.17 k, σ 0
88 5 water resistivity/mω*cm 16 14 12 10 8 6 4 χ 2 / ndf 25.4/23 k 0.000762 ± 3.4e-05 τ σ 0 5.18 ± 0.12 0.345 ± 0.014 2 0 10 20 30 40 50 60 70 80 90 time/hour 5.14: ( u 1 12 l/min) water resistivity/mω*cm 11 10 9 8 7 6 5 4 3 χ 2 / ndf 52.49/47 k 0.000798 ± 3.2e-05 τ σ 0 24.15 ± 0.73 0.2242 ± 0.0062 0 20 40 60 80 100 120140 160 180 time/hour 5.15: ( u 2 3 l/min) k 1.3 10 3 mg/(l h) k k k PVC (PP) ( 0.5 m 2 ) ( 5.4) k τ 5 6 τ
5.4. 89 water resistivity/mω*cm 14 χ 2 / ndf 19.83/29 12 10 8 6 k σ 0 0.001383 ± 3.1e-05 0.07423 ± 0.00053 4 0 10 20 30 40 50 time/hour 5.16: ( u 2 12 l/min) water resistivity/mω*cm 10 9 8 7 6 5 4 χ 2 / ndf 20.94/21 k σ 0 0.001196 ± 4.8e-05 0.1135 ± 0.0016 0 10 20 30 40 50 60 time/hour 5.17: ( u 2 3 l/min) 5.3.4 5.4 tyvek 2
90 5 tyvek PMT 5.18 5.18: 5.4.1 ( ) 5.18 tyvek V 1 V 2 u 1i u 2i u 1o u 2o u c u u 1i +u 2i =u ; u 1o +u 2o =u; u c =u 1i -u 1o τ 1 = V 1 u 1o ; σ 1 V 1 k 1 V 1 V 1 ( t dt) V 1 : ( 5.8), ( 5.9) d(0.5σ 1 ) = 0.5(σ mb σ 1 )u 1i dt V 1 + k 1 dt ( 5.8) σ 1 = (σ mb + 2k 1 τ) + c 01 exp( t τ 1 ) ( 5.9)
5.4. 91 σ mb =0.06 µs/cm ;τ 1 = V 1 u 1i V 1 ;c 01 V 2, σ 02 V 2 k 2 ( t dt) d(0.5σ 2 ) = 0.5(σ mbu 2i + σ 1 u c u 20 σ 2 ) V 2 dt + k 2 dt ( 5.10) dσ 2 dt = (σ mbu 2i + σ 1 u c u 20 σ 2 ) V 2 + 2k 2 ( 5.11) dσ 2 dt = σ mbu 2i + ((σ mb + 2k 1 τ) + c 01exp( t τ 1 ))u c u 20 σ 2 + 2k 2 ( 5.12) V 2 A = σ mb + 2k 1 τ 1 ; a = u cc 01 V 2 ; b = σ mbu 2i + 2k 2 V 2 + u c A V 2 ; τ 2 = V 2 u 2o ; ( 5.13) dσ 2 dt = b σ 2τ 2 + a exp( t τ 1 ); ( 5.14) ( 5.24) σ 2 σ 2 = bτ 2(τ 1 τ 2 ) + aτ 1 τ 2 exp( t τ 1 ) + c 02 exp( t ) ( 5.15) τ 1 τ 2 τ 2 σ ( u l/h): σ = u 1oσ 1 + u 2o σ 2 u 1o + u 2o ; ( 5.16) : R = 1 σ = u u 1o σ 1 + u 2o σ 2 ; ( 5.17) 5.4.2 V 1, σ mb = σ 1 ; 5.18 d(0.5σ 1 ) = 0.5(σ mb σ 1 )u 1i dt V 1 + k 1 dt ( 5.18) d(0.5σ 1 ) = k 1 dt; ( 5.19) 5.19 5.20 σ 1 = 2k 1 t + c 01 ; ( 5.20)
92 5 V 2 σ 2 = σ mb ; d(0.5σ 2 ) = 0.5u c(σ 1 σ 2 ) V 2 dt + k 2 dt ( 5.21) dσ 2 dt = u cc 01 + 2k 2 V 2 V 2 a 1 = u cc 01 + 2k 2 V 2 V 2 + 2k 1u c t u c σ 2 ; ( 5.22) V 2 V 2 ; a 2 = 2k 1u c ; a 3 = u c ; ( 5.23) V 2 V 2 dσ 2 dt = a 1 + a 2 t a 3 σ 2 ; ( 5.24) ( 5.24) σ 2 σ 2 = a 1a 3 a 2 a 2 3 + a 2 a 3 t + c 02 exp( a 3 t); ( 5.25) : σ = u 1oσ 1 + u 2o σ 2 u 1o + u 2o ; ( 5.26) R = 1 σ = u u 1o σ 1 + u 2o σ 2 ; ( 5.27) 5.4.3 tyvek ( 5.8) 5.19 tyvek 23 PMT (PMT 20cm) ( 5.20 ) 23 PMT 5.20 (a) (b) PMT tyvek tyvek tyvek 1 tyvek PE tyvek ( 5.21 )
5.4. 93 5.19: tyvek 5.20: (a) ;(b) 23 5.22 tyvek 2 3 5.21: tyvek 5.22: tyvek 10 PMT tyvek (??) 10 18 l/min
94 5 12 tyvek 1 MΩ cm 11 l/min 5.23: 5.24: 5.4.4 5.4.4.1 Tyvek tyvek V 1 =2600 l V 2 =1400 l u= 11.5 l/min 5.25 u 1i u 1o k 1 k 2 c 01 c 02 6 11.5 l/min; u 1i =10.3 l/min u 2i =1.2 l/min;u 1o =9.8 l/mi u 2o = 1.7 l/min u c =0.5 l/min u c 0 k 1 k 2 k 1 =1.38 10 3 mg/(l h) k 2 =2.05 10 3 mg/(l h) 12MΩ cm
5.4. 95 5.25: 5.4.4.2 0.8 ( ) 5.26: 0.8 u=11.5 l/min 1MΩ cm 8MΩ cm ( 5.27) 4MΩ cm
96 5 5.28 12MΩ cm tyvek 5.27: 5.28: 5.5 k k
5.5. 97 PP P v mg/(m 2 h) k 5.5.1 k = P v S V ( 5.28) (a) tyvek (b) (c) k a = k PP + k PMTbulb + k cirsys ; ( 5.29) k b = k a + (k steel + k tyvek ); ( 5.30) k c = k b + k FCC ; ( 5.31) k a k PP k PMTbulb PMT k cirsys ( ) k b (a) tyvek k steel k tyvek tyvek ; k c k b (k FCC ) 5.1: S/V m 2 m 3 Substance S(m 2 ) S/V PP( ) 12.96 3.24 PE(tyvek ) 24.8 4.2 SS( ) 3.82 0.955 PMT 0.24 0.06 FCC( ) 1.6 0.4 5.1 5.4 x PP PE PMT 0.138x 0.287x 0.076x P FCC k a = S PP 0.138x V tank + S PMTbulb 0.076x V tank + k cirsys ; ( 5.32)
98 5 k b = k a + ( S steel x V tank + S tyvek 0.287x V tank ); ( 5.33) ( 5.33)-( 5.32) k c = k b + S FCC P FCC V tank ; ( 5.34) k b k a = ( S steel x V tank + S tyvek 0.287x V tank ); ( 5.35) k c k b = S FCC C FCC V tank ; ( 5.36) : k a = 0.8 10 3 mg/(l h); k b1 = 1.38 10 3 mg/(l h); k b2 = 2.05 10 3 mg/(l h); k b = k b1 V 1 +k b2 V 2 V 1 +V 2 = = 1.61 10 3 mg/(l h); k c1 = 5.0 10 3 mg/(l h); k c2 = 6.0 10 3 mg/(l h); k c = k c1 V 1 +k c2 V 2 V 1 +V 2 = 5.35 10 3 mg/(l h); x = P SS = 30ng/(cm 2 h); ( 5.37) P PP = 4.1ng/(cm 2 h); ( 5.38) P FCC = 935ng/(cm 2 h) = 31 P SS ; ( 5.39) 5.2 5.5.2 5.3 PE
5.5. 99 5.2: Material pollution value 1.0 (PVC) 4.25 (PVC) 4.46 10.66 16.44 ( ) 31 4 2 PMT PMT PE PMT 5.3: m 1 [98] S/V ( ) S/V ( ) 0.116 0.12 0.482 0.406 0.191 0.236 PMT 0.532 0.422 PMT 0.0119 0.0098 PMT 0.03 0.025 5.5.2.1 5.3 PMT PMT (config.a config.b) 5.4 k 6.43 10 3 mg/(l h), 0.373 10 3 mg/(l h) 5.29 (
100 5 5.4: S/V m 1 S/V ( ) (config.a) (config.b) 0.116 (PE) 0.482 0.191 PMT 0.532 PMT 0.0119 PMT 0.03 k(10 3 mg/(l h)) 6.43 0.373 5.29: 5.40) R tank = 1 σ tank = 1 (σ p + 2kτ) + (σ 0 (σ p + 2kτ))exp( t τ ) ( 5.40) k τ k τ 5 1232 τ=1232./5.=246.4 ( 10 ) 5MΩ cm 1MΩ cm 5.30 0.3MΩ cm 4.1MΩ cm
5.6. µ 101 5 water resistivity/mω*cm 4 3 2 1 config.a config.a config.b config.b σ 0 =1 MΩ*cm σ 0 =5 MΩ*cm σ 0 =1 MΩ*cm σ 0 =5 MΩ*cm 0 0 20 40 60 80 time/day 100 120 140 5.30: 5.5: S/V m 1 S/V ( ) (config.a) (config.b) 0.12 (PE) 0.406 0.236 PMT 0.422 PMT 0.0098 PMT 0.025 k(10 3 mg/(l h)) 6.11 0.33 5.5.2.2 k 5.5 8 1995.6 τ=1995.6/8.=249.4 ( 10 ) 5.31 0.3MΩ cm 4.5MΩ cm 5.6 µ µ µ tyvek
102 5 5 water resistivity/mω*cm 4 3 2 1 config.a config.a config.b config.b σ 0 =1 MΩ*cm σ 0 =5 MΩ*cm σ 0 =1 MΩ*cm σ 0 =5 MΩ*cm 0 0 20 40 60 80 time/day 100 120 140 5.31: 5.6.1 5.6.1.1 µ µ µ 5.32 µ µ tyvek PMT PMT 13 14 MOhms*cm 5.32: µ 1 µ 5.33 µ PMT
5.6. µ 103 1GHz 1ns 2us 5.34 µ 400ns tyvek tyvek tyvek PMT i(t) ; i(t) = 1 τ 0 e t τ 0 ( 5.41) PMT g(t): g(t) = 1 2πσ e (t t 0 )2 2σ 2 ( 5.42) t 0 PMT RC e t/rc PMT I(t) = i(t) g(t) 1 RC e t/rc ( 5.43) PMT 5.33: µ I(t) PMT 10000 µ µ 5.35 5.36 PMT PMT I(t) τ 0 PMT
104 5 5.34: µ τ 0 =142ns τ 0 =138ns 140ns 5ns τ 0 =(140±5)ns L= n water tau 0 =0.3/1.33*140 m= 31.6 m [88] 5.7 ( tyvek 92%, 30 ) c 5.35: PMT 5.36: PMT 2) µ µ tyvek PMT µ µ PMT µ PMT 5.37 PMT
5.6. µ 105 ADC 400ns ADC 2249W, 2048, 5.38 µ PMT µ 1 tyvek 1 1 ADC 0.25 ADC PMT PMT PMT 5.37: µ 25 20 histo0 Entries 26928 Mean 1250 RMS 362.1 15 10 5 0 200 400 600 800 1000 1200 1400 1600 1800 2000 ADC channel 5.38: µ ADC a) PMT
106 5 1994 NIM [99] ( ) n P(n, µ) = µn e µ n! ( 5.44) µ = mq m q µ 10 10 7 n G n (x, Q 1, σ 1 ) = 1 e (x nq 1 ) 2 2nσ 1 2 ( 5.45) σ 1 2πn Q 1 σ 1 x n 0 δ S ideal (x, µ, Q 1, σ 1 ) = P(n, µ) G n (x, Q 1, σ 1 ) ( 5.46) 5.47 B(x, w, σ 0, α) = 1 w e x 2 2σ 0 2 + wθ(x)α e αx ( 5.47) σ 0 2π θ(x) θ(x) = { 0 x<0 1 x 0 ( 5.48)
5.6. µ 107 w σ 0 α S real (x) = S ideal (x, µ, Q 1, σ 1 ) B(x, w, σ 0, α) ( 5.49) Nr. of events 25000 20000 15000 10000 5000 0 χ 2 / ndf 83.25 / 40 mu 0.7165 ± 0.0361 ped 12.1 ± 0.0 pdelta 0.5494 ± 0.0137 ph.e. 2.605 ± 0.048 pedelta 1.498 ± 0.035 w 0.1506 ± 0.0281 A 0.4949 ± 0.0224 10 15 20 25 30 ADC channel 5.39: LED ph.e. Counts 70 60 50 40 30 20 10 0 penumber Entries 1929 Mean 475.2 RMS 99.22 100 200 300 400 500 600 700 Number of photoelectron 5.40: PMT PMT PMT ( ) LED PMT LED PMT 5.49 5.39 1p.e.= 2.6channels 5.38 5.40 b) µ 5.41 1(Pos1(110cm,0cm)) 3 ( Pos2(70cm,0cm),Pos3(40cm,0cm),Pos4(-80cm,0cm)) X µ PMT PMT PMT PMT
108 5 ( ) f(x) = A 0 2πσ e (x Q 0 )2 2σ 2 + C 0 ( 5.50) x PMT 5.42 x=110cm PMT 476 PMT 393 µ PMT 5.43 5.44 5.45 f(x) 5.41: µ µ 2MeV/cm 70 60 50 χ 2 / ndf 977 / 600 Q 0 476 ± 0.8 σ 47.76 ± 0.76 A0 5054 ± 78.4 C0 2.019 ± 0.080 100 80 χ 2 / ndf 912.8 / 503 Q 0 393 ± 0.6 σ 45.51 ± 0.60 A0 7561 ± 96.4 C0 2.961 ± 0.112 40 60 30 20 40 10 20 0 100 200 300 400 500 600 700 p.e. number 0 100 200 300 400 500 600 p.e. number 5.42: x=110cm PMT ( ); PMT ( )
5.6. µ 109 100 80 χ 2 / ndf 1388 / 584 Q 0 487 ± 0.7 σ 53.89 ± 0.62 A0 9302 ± 104.0 C0 2.061 ± 0.089 140 120 100 χ 2 / ndf 1150 / 499 Q 0 400.3 ± 0.6 σ 45.84 ± 0.51 A0 9776 ± 106.0 C0 2.477 ± 0.104 60 80 40 60 40 20 20 0 100 200 300 400 500 600 700 p.e. number 0 100 200 300 400 500 600 p.e. number 5.43: x=70cm PMT ( ); PMT ( ) 100 80 χ 2 / ndf 1102 / 574 Q 0 529.2 ± 0.7 σ 52.88 ± 0.63 A0 8564 ± 99.3 C0 1.87 ± 0.08 140 120 100 χ 2 / ndf 1176 / 504 Q 0 406.9 ± 0.6 σ 47.17 ± 0.52 A0 1.03e+04 ± 109 C0 2.48 ± 0.11 60 80 40 60 40 20 20 0 100 200 300 400 500 600 700 p.e. number 0 100 200 300 400 500 600 p.e. number 5.44: x=40cm PMT ( ); PMT ( ) 80 70 60 χ 2 / ndf 737.7 / 519 Q 0 499.5 ± 0.9 σ 57.11 ± 0.80 A0 6717 ± 90.0 C0 1.529 ± 0.092 80 70 60 χ 2 / ndf 737.7 / 519 Q 0 499.5 ± 0.9 σ 57.11 ± 0.80 A0 6717 ± 90.0 C0 1.529 ± 0.092 50 50 40 40 30 30 20 20 10 10 0 100 200 300 400 500 600 p.e. number 0 100 200 300 400 500 600 p.e. number 5.45: x=-80cm PMT ( ); PMT ( )
110 5 Counts 70 60 50 40 30 20 10 0 χ 2 / ndf 568.6 / 545 Q 0 466.8 ± 1.5 σ 39.87 ± 1.09 A 0 5418 ± 143.3 Q L 551.9 ± 6.5 σ L 20.5 ± 1.6 A L 1141 ± 136.2 C 1.763 ± 0.092 0 Gaus Peak Landau Background 100 200 300 400 500 600 700 Number of photoelectron Counts 100 80 60 40 20 χ 2 / ndf 514.6 / 535 Q 0 385.6 ± 0.9 σ 38.3 ± 0.8 A 0 6668 ± 120.0 Q L 468.7 ± 3.9 σ L 17.27 ± 1.20 A L 1157 ± 104.4 C 2.38 ± 0.11 0 Gaus Peak Landau Background 0 100 200 300 400 500 600 Number of photoelectron 5.46: x=110cm PMT ( ); PMT ( ) Counts 100 80 60 40 20 χ 2 / ndf 526.3 / 541 Q 0 476.9 ± 1.0 σ 46.74 ± 0.77 A 0 9829 ± 153.6 Q L 581.3 ± 4.5 σ L 23.23 ± 1.45 A L 1840 ± 138.5 C 1.824 ± 0.097 0 Gaus Peak Landau Background 0 100 200 300 400 500 600 700 Number of photoelectron Counts 100 80 60 40 20 χ 2 / ndf 548.7 / 532 Q 0 391.7 ± 1.7 σ 38.74 ± 1.20 A 0 8543 ± 264.5 Q L 477 ± 9.7 σ L 21.9 ± 1.3 A C L 1764 ± 278.5 0 1.821 ± 0.106 Gaus Peak Landau Background 0 100 200 300 400 500 600 Number of photoelectron 5.47: x=70cm PMT ( ); PMT ( ) µ µ µ f(x) = A 0 2πσ e (x Q 0 )2 2σ 2 + C 0 + A L Landau(x, Q L, σ L ) ( 5.51) Q L 5.46 110cm ( 5.42) 5.46 5.47 5.47 5.49 (x=70cm 40cm - 80cm) 5.7 PMT µ
5.6. µ 111 Counts 100 χ 2 / ndf 475.7 / 534 Q 0 533.8 ± 1.3 80 σ 45.07 ± 1.00 A 0 8907 ± 194.3 60 630.3 ± 6.7 L 27.77 ± 2.32 A L 2140 ± 180.8 C 1.707 ± 0.087 Q L σ 40 20 0 Gaus Peak Landau Background 0 100 200 300 400 500 600 700 Number of photoelectron Counts 140 χ 2 / ndf 422.1 / 408 Q 0 396.8 ± 1.2 σ 38.83 ± 0.86 120 A 0 1.172e+04 ± 257 Q 100 σ L 479.8 ± 5.6 L 22.1 ± 1.2 A L 2752 ± 254.5 C 0 2.531 ± 0.135 80 60 40 Gaus Peak Landau Background 20 0 100 200 300 400 500 600 Number of photoelectron 5.48: x=40cm PMT ( ); PMT ( ) Counts 160 140 120 100 80 60 40 20 0 χ 2 / ndf 636.1 / 567 Q 0 544 ± 1.0 σ 48.12 ± 0.79 A 0 1.669e+04 ± 267 Q L 657.9 ± 5.8 σ L 32.47 ± 2.40 A L 4234 ± 334.8 C 2.761 ± 0.101 0 Gaus Peak Landau Background 100 200 300 400 500 600 700 Number of photoelectron Counts 90 80 70 60 50 40 30 20 10 0 χ 2 / ndf 322.1 / 391 Q 0 487.9 ± 1.5 σ 49.07 ± 1.10 A 0 8787 ± 184.6 Q L 598.1 ± 6.4 σ L 26.38 ± 2.53 A L 1820 ± 211.7 C 1.574 ± 0.103 0 Gaus Peak Landau Background 100 200 300 400 500 600 Number of photoelectron 5.49: x=-80cm PMT ( ); PMT ( ) PMT, 5.50 µ X PMT PMT PMT 100cm PMT PMT PMT tyvek 5.7 15% 20% Auger [100] 5.51 µ δ δ 15% 5.6.1.2 µ µ µ µ µ
112 5 PMT( x=-30cm ) PMT( x=-110cm ) x Q 0 Q L Landau Q 0 Q L Landau 110cm 466.8 551.9 17.4% 385.6 468.7 14.8% 70cm 476.9 581.3 15.8% 391.7 477.0 17.5% 40cm 533.8 630.3 19.4% 396.8 479.8 19.0% -80cm 544.0 657.9 20.2% 487.9 598 20.3% 5.6: 600 p.e. number 500 400 300 200 100 data(bottom PMT) data(side PMT) 40 60 80 100120140160180200220 Distance(cm) 5.50: PMT 5.51: µ PMT (Auger [100])
5.6. µ 113 5.52 PMT PMT PMT PMT PMT ( 400ns) PMT ADC PMT PMT µ 5.52: µ PMT PMT PMT ADC 5.53 µ PMT PMT PMT µ 5.52 B(x) = c 1 e x τ ( 5.52) 5.53 S(x) = (k x + b) + A 0 Gaus(x, Q 0, σ) ( 5.53) f(x) f(x) = B(x) + S(x) ( 5.54) 5.53 f(x) 5.6.2 5.6.2.1
114 5 Counts 600 500 400 300 200 100 0 χ 2 / ndf 645.2 / 625 Q 0 551.2 ± 1.9 σ 86.66 ± 2.58 A 0 2.833e+04 ± 1358 k -0.2043 ± 0.0104 b 247.6 ± 3.1 c 1 781.2 ± 32.3 τ 45.84 ± 1.37 Gaus Peak Line function Background 100 200 300 400 500 600 700 Number of photoelectron Counts 700 600 500 400 300 200 100 0 χ 2 / ndf 737.5 / 615 Q 0 473.8 ± 1.0 σ 80.68 ± 1.21 A 0 4.498e+04 ± 840 k -0.411 ± 0.006 b 410.3 ± 3.2 c 1 1380 ± 104.1 τ 36.18 ± 1.57 Gaus Peak Line function Background 100 200 300 400 500 600 700 Number of photoelectron 5.53: µ PMT ( PMT PMT ) 5.54: G4dyb G4dyb 1 5.54 tyvek tyvek PMT tyvek 2.6 1 1 PMT 30 7.5 µ tyvek PMT 2 µ µ (Gaisser s formula) µ
5.6. µ 115 5.55 µ theta 37 <10GeV 5.55: µ theta( ) ( ) 3 tyvek tyvek tyvek 5.56, tyvek 1082D 275um tyvek 1082D tyvek PE ( ) tyvek( 600 ) tyvek tyvek tyvek tyvek 1082D(275 um) tyvek tyvek tyvek 5.57 tyvek tyvek tyvek 160 ( ) 400nm 85% 86% 1070D tyvek( ) (190 tyvek ) 380nm 92% tyvek (1082D+PE+1082D) 300nm 95% 97% tyvek
116 5 5.56: tyvek ( tyvek tyvek tyvek ) 5.57: tyvek
5.6. µ 117 5.58: tyvek ( tyvek ) 5.58 tyvek G4dyb 80% tyvek tyvek 96.5% (tyvek ) 97.5% ( tyvek 1%) 98.5% ( tyvek 2%) 99% ( tyvek 2.5%) 4 a = a min + a i a i a i a i 0.007 0.0025 0.0016 0.001 0.00074 0.00052 0.00035 0.0001 30 m 60 m 80 m 100 m 120 m 140 m 160 m 200 m 5.7: a i ( ) 5 PMT
118 5 PMT PMT PMT 60% PMT PMT 20% PMT 6 PMT PMT PMT n PMT n 5.6.2.2 µ µ 22cm 34cm 1.4 µ 5.59 µ 4GeV theta 6 5.59: µ
5.6. µ 119 1 τ tyvek 99% 30 5.61 PMT PMT : f(t) = C τ e t t 0 τ ; ( 5.55) τ=68 ns 99% 30 τ 140ns tyvek 5.61 τ tyvek tyvek 99% 140±20m tyvek >80% > 30m 4 10 3 10 χ 2 / ndf 3380 / 938 t 0 62.47 ± 1.72 τ 67.96 ± 0.13 A 2741 ± 69.3 4 10 3 10 χ 2 / ndf 3072 / 927 t 0 61.7 ± 1.7 τ 68.04 ± 0.13 A 2710 ± 69.2 2 10 2 10 10 10 1 1 0 100 200 300 400 500 600 700 800 900 1000 Hit time(ns) 0 100 200 300 400 500 600 700 800 900 1000 Hit time(ns) 5.60: PMT ( PMT PMT) τ=68 ns 2, : tyvek 99% 140 ± 20 m µ µ x=110cm 5.62 µ 1 1 µ ( <200MeV) µ 0.2 GeV
120 5 5.61: τ tyvek 1 µ 2MeV µ 1 1 µ 5.62 µ 5.63 µ 5.64 PMT µ 15% 20% 5.63 2.45Mev/cm 15% 5.65 <2.45MeV/cm >2.45MeV/cm 5.66 µ x=110cm
5.6. µ 121 1200 1000 800 600 400 200 TrackLengthIn Water Entries 2000 Mean 0.9427 RMS 0.2095 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 TrackLength in water (m) 250 ELossInWater Entries 2000 Mean 0.2149 RMS 0.0677 200 150 100 50 0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Energy loss in water (GeV) 5.62: µ ( ) ( ) 100 80 60 40 20 0 ELossPercmInWater Entries 3548 Mean 2.247 RMS 0.5339 χ 2 / ndf 314 / 184 Constant 475.9 ± 12.3 MPV 2.019 ± 0.003 Sigma 0.07279 ± 0.00151 2 3 4 5 6 7 8 Energy loss per cm(mev) 70 60 50 40 30 20 10 ID00p.e. Entries 1774 Mean 487.3 RMS 88.32 0 200 400 600 800 1000120014001600 p.e. number 5.63: µ 5.64: PMT 70 60 50 40 30 20 10 ID00p.e. Entries 1505 Mean 463.8 RMS 45.68 χ 2 / ndf 110.4 / 75 Constant 57.68 ± 2.07 Mean 467.7 ± 1.0 Sigma 38.6 ± 0.9 0 100 200 300 400 500 600 700 800 900 p.e. number 22 ID00p.e. Entries 269 Mean 612.4 RMS 122.6 χ 2 / ndf 49.55 / 53 Constant 66.93 ± 8.00 MPV 566 ± 3.9 Sigma 28.31 ± 3.31 20 16 18 14 12 10 4 68 2 0 400 600 800 1000 1200 1400 p.e. number 5.65: µ ( <2.45MeV/cm ) ; : µ ( >=2.45MeV/cm )
122 5 Counts 300 250 200 150 100 50 data MC h_15mmwater Entries 1742 Mean 475.6 RMS 99.57 100 200 300 400 500 600 700 800 Number of photoelectron Counts 400 350 300 250 200 150 100 50 data h_15mmwater Entries 1692 Mean 393.3 RMS 81.29 MC 100 200 300 400 500 600 700 Number of photoelectron 5.66: ( PMT PMT ) PMT PMT PMT 0.69 PMT 0.60 4 5.66 p.e. number 600 500 400 300 200 100 data(bottom PMT) MC(bottom PMT) data(side PMT) MC(side PMT) 40 60 80 100120140160180200220 Distance(cm) 5.67: 5.6.2.3 µ PMT µ 5.68 µ 1 1 µ µ 1 5.53 <1 ( <0) 5.53 5.54
h_15mmwater Entries 1897 Mean 377.3 RMS 195.7 5.6. µ 123 250 200 TrackLength Entries 9307 Mean 76.73 RMS 42.92 150 100 50 0 0 50 100 150 200 250 TrackLength in water/cm 5.68: µ Counts 1400 1200 1000 800 600 400 200 0 data MC 0 100 200 300 400 500 600 700800 900 Number of photoelectron Counts 2000 1500 1000 data MC h_15mmwater Entries 1892 Mean 356.8 RMS 187.9 500 0 0 100 200 300 400 500 600 700 800 900 Number of photoelectron 5.69: ( PMT PMT) 5.69 5.6.3 µ tyvek 99% 140±20m µ
124 5
6 µ PMT PMT PMT tyvek >80% >30 µ tyvek 99% 140 (tyvek >80% > 30 ) µ µ µ µ µ Cerenkov tyvek µ 125
126 6
[1] W. Pauli, Letter to Tübingen conference, December 4, 1930. [2] E, Fermi, Ricerca Scientifica 2, 12(1933). [3] E, Fermi, Z. Phys. 88, 161 (1934); Nuovo Cim. 11, 1 (1934). [4] E.J. Konopinski, Rev. Mod. Phys. 27, 254 (1955). [5] F. Reines, C.L. Cowan, F.B. Harrison, A.D. McGuire and H.W. Kruse, Phys. Rev. 117, 159 (1960). [6] T.D. Lee and C.N. Yang, Phys. Lett. 104, 254 (1956). [7] C.S. Wu, E. Ambler,R.W. Hayward, D.D. Hoppes and R.P. Hudson, Phys. Lett. 105, 1413 (1957). [8] R.P. Feynman and M. Gell-Mann, Phys. Rev. 109,193 (1958); E.C.G. Sudarshan and R.E. Marshak, Phys. Rev. 109, 1860 (1958). [9] L. Landau, Nucl. Phys. 3, 127 (1957); T.D. Lee and C.N. Yang, Phys. Rev. 105 1671 (1957). [10] M. Goldhaber, L.Grodzins and A.W. Sunyar, Phys. Rev. 109, 1015 (1958). [11], Nucl. Phys. 22, 579 (1961); S Weinbery, Phys. Rev. Lett. 19, 1264 (1967). [12] P.W. Higgs, Phys. Lett. 12, 132 (1964); Phys. Rev. Lett. 13, 508 (1964); Phys. Rev. 145, 1156 (1966). [13] G. t Hooft, Nucl. Phys. B 33, 173 (1971); Nucl. Phys. B 35, 167 (1971); G. t Hooft and M.J.G. Veltman, Nucl. Phys. B 44, 189 (1972). [14] F.J. Hasert et al., Phys. Lett. B 46, 121 (1973); A.C. Benvenuti et al., Phys. Rev. Lett. 32, 800 (1974); G. Arnison et al., Phys. Lett B 122, 103 (1983). [15] M.L. Perl et al., Phys. Rev. Lett. 35, 1489 (1975). [16] S.W. Herb et al., Phys. Rev. Lett. 39, 252 (1977). [17] F. Abe et al., Phys. Rev. Lett. 74, 2626 (1995); S. Abachi et al., Phys. Rev. Lett. 74, 2632 (1995). 127