Quantitative Finance and Investments Advanced Formula Sheet. Fall 2013/Spring 2014

Σχετικά έγγραφα
Quantitative Finance and Investments Advanced Formula Sheet. Fall 2014/Spring 2015

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2016/Spring 2017

Quantitative Finance and Investments Advanced Formula Sheet. Fall 2017/Spring 2018

Quantitative Finance and Investment Core Formula Sheet. Spring 2017

Quantitative Finance and Investments Core Formula Sheet. Spring 2016

9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

ITU-R P (2009/10)

Math221: HW# 1 solutions

Teor imov r. ta matem. statist. Vip. 94, 2016, stor

r r t r r t t r t P s r t r P s r s r r rs tr t r r t s ss r P s s t r t t tr r r t t r t r r t t s r t rr t Ü rs t 3 r r r 3 rträ 3 röÿ r t

Parts Manual. Trio Mobile Surgery Platform. Model 1033

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Geodesic Equations for the Wormhole Metric

P P Ó P. r r t r r r s 1. r r ó t t ó rr r rr r rí st s t s. Pr s t P r s rr. r t r s s s é 3 ñ

Jeux d inondation dans les graphes

Χρονοσειρές Μάθημα 3

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Homework 8 Model Solution Section

HONDA. Έτος κατασκευής

m 1, m 2 F 12, F 21 F12 = F 21

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Physique des réacteurs à eau lourde ou légère en cycle thorium : étude par simulation des performances de conversion et de sûreté

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Radio détection des rayons cosmiques d ultra-haute énergie : mise en oeuvre et analyse des données d un réseau de stations autonomes.

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Empirical best prediction under area-level Poisson mixed models

On the Galois Group of Linear Difference-Differential Equations


Robust Segmentation of Focal Lesions on Multi-Sequence MRI in Multiple Sclerosis

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

(... )..!, ".. (! ) # - $ % % $ & % 2007

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

ω = radians per sec, t = 3 sec

Homework for 1/27 Due 2/5

Lecture 12 Modulation and Sampling

m i N 1 F i = j i F ij + F x

Ax = b. 7x = 21. x = 21 7 = 3.

Solutions - Chapter 4

6.003: Signals and Systems. Modulation

SPECIAL FUNCTIONS and POLYNOMIALS

The ε-pseudospectrum of a Matrix

Answer sheet: Third Midterm for Math 2339

Matrices and Determinants

Second Order Partial Differential Equations

4.6 Autoregressive Moving Average Model ARMA(1,1)

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

TeSys contactors a.c. coils for 3-pole contactors LC1-D


Approximation of distance between locations on earth given by latitude and longitude

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

r t t r t t à ré ér t é r t st é é t r s s2stè s t rs ts t s

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,


6.003: Signals and Systems

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Every set of first-order formulas is equivalent to an independent set


Lifting Entry (continued)

Vol. 37 ( 2017 ) No. 3. J. of Math. (PRC) : A : (2017) k=1. ,, f. f + u = f φ, x 1. x n : ( ).

Το άτομο του Υδρογόνου

d dx x 2 = 2x d dx x 3 = 3x 2 d dx x n = nx n 1

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

C.S. 430 Assignment 6, Sample Solutions

A Probabilistic Numerical Method for Fully Non-linear Parabolic Partial Differential Equations

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

.. ntsets ofa.. d ffeom.. orp ism.. na s.. m ooth.. man iod period I n open square. n t s e t s ofa \quad d ffeom \quad orp ism \quad na s \quad m o

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Assessment of otoacoustic emission probe fit at the workfloor

Points de torsion des courbes elliptiques et équations diophantiennes

Cable Systems - Postive/Negative Seq Impedance

ITU-R P (2012/02)

6.4 Superposition of Linear Plane Progressive Waves

Mean-Variance Analysis

Vers un assistant à la preuve en langue naturelle

#%" )*& ##+," $ -,!./" %#/%0! %,!

Fourier Analysis of Waves

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Example Sheet 3 Solutions

Supplementary Appendix

6.1. Dirac Equation. Hamiltonian. Dirac Eq.


The Pohozaev identity for the fractional Laplacian

Areas and Lengths in Polar Coordinates

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

= df. f (n) (x) = dn f dx n

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

The mass and anisotropy profiles of nearby galaxy clusters from the projected phase-space density

Alterazioni del sistema cardiovascolare nel volo spaziale

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

m r = F m r = F ( r) m r = F ( v) F = F (x) m dv dt = F (x) vdv = F (x)dx d dt = dx dv dt dx = v dv dx

Arbitrage Analysis of Futures Market with Frictions

Durbin-Levinson recursive method

The Simply Typed Lambda Calculus

Transcript:

Quaniaive Finance and Invesmens Advanced Formula Shee Fall 013/Spring 014 ThisishesamesheeusedforFall013.Theonlychangeisonhiscoverpage. Morning and afernoon exam bookles will include a formula package idenical o he one aached o his sudy noe. The exam commiee believes ha by providing many key formulas, candidaes will be able o focus more of heir exam preparaion ime on he applicaion of he formulas and conceps o demonsrae heir undersanding of he syllabus maerial and less ime on he memorizaion of he formulas. The formula shee was developed sequenially by reviewing he syllabus maerial for each major syllabus opic. Candidaes should be able o follow he flow of he formula package easily. We recommend ha candidaes use he formula package concurrenly wih he syllabus maerial. No every formula in he syllabus is in he formula package. Candidaes are responsible for all formulas on he syllabus, including hose no on he formula shee. Candidaes should carefully observe he someimes suble differences in formulas and heir applicaion o slighly differen siuaions. Candidaes will be expeced o recognize he correc formula o apply in a specific siuaion of an exam quesion. Candidaes will noe ha he formula package does no generally provide names or definiions of he formula or symbols used in he formula. Wih he wide variey of references and auhors of he syllabus, candidaes should recognize ha he leer convenions and use of symbols may vary from one par of he syllabus o anoher and hus from one formula o anoher. Werushayouwillfindheinclusionofheformulapackageobeavaluablesudyaide ha will allow for more of your preparaion ime o be spen on masering he learning objecives and learning oucomes. 1

Ineres Rae Models - Theory and racice, Brigo and Mercurio Chaper 3 Table 3.1 Summary of insananeous shor rae models Model Dynamics r > 0 r AB AO V dr = k[θ r ]d + σdw N N Y Y CIR dr = k[θ r ]d + σ r dw Y NCχ Y Y D dr = ar d + σr dw Y LN Y N EV dr = r [η a ln r ]d + σr dw Y LN N N HW dr = k[θ r ]d + σdw N N Y Y BK dr = r [η ³ a ln r ]d + i σr dw Y LN N N MM dr = r hη λ ln r d + σr dw Y LN N N γ 1+γ CIR++ r = x + ϕ, dx = k[θ x ]d + σ x dw Y* SNCχ Y Y EEV r = x + ϕ, dx = x [η a ln x ]d + σx dw Y* SLN N N *raes are posiive under suiable condiions for he deerminisic funcion ϕ. (3.5) dr() =k[θ r()]d + σdw(), r(0) = r 0 (3.6) r() =r(s)e k( s) + θ 1 e k( s) + σ R s e k( u) dw (u) (3.7) E {r() F s } = r(s)e k( s) + θ 1 e k( s) Var{r() F s } = σ 1 e k( s) k (3.8) B(,T )r() (, T )=A(, T )e (3.9) dr() =[kθ B(, T )σ kr()]d + σdw T () (3.11) dr() =[kθ (k + λσ)r()]d + σdw 0 (), r(0) = r 0 (3.1) dr() =[b ar()]d + σdw 0 () (3.13) r() =r(s)e a( s) + b 1 e a( s) + σ R s a dw 0 (u) (3.14) ˆα = n n r ir i 1 n r n i r i 1 n n r i 1 ( n r i 1) n (3.15) ˆβ = [r i ˆαr i 1 ] n(1 ˆα) (3.16) V c = 1 h n r i ˆαr i 1 n ˆβ(1 i ˆα) (3.19) E {r() F s } = r(s)e a( s) and Var{r() F s } = r (s)e ³e a( s) σ ( s) 1 (3.0) (, T )= rp R sin( r sinh y) R f(z)sin(yz)dzdy + π 0 0 Γ(p) rp K p ( r) (3.1) dr() =k(θ r())d + σ p r()dw (), r(0) = r 0 (3.) dr() =[kθ (k + λσ)r()]d + σ p r()dw 0 (), r(0) = r 0

(3.3) E {r() F s } = r(s)e k( s) + θ 1 e k( s) Var{r() F s } = r(s) σ e k( s) e k( s) + θ σ 1 e k( s) k k (3.4) B(,T )r() (, T )=A(, T )e (3.5) kθ/σ h exp {(k + h)(t )/} A(, T )= h +(k + h)(exp {(T )h} 1) B(, T )= (exp{(t )h} 1) h +(k + h)(exp {(T )h} 1), h = k +σ (3.7) dr() =[kθ (k + B(, T )σ )r()]d + σ p r()dw T () (3.8) p T r() r(s) (x) =p χ (υ,δ(,s))/q(,s)(x) =q(, s)p χ (υ,δ(,s))(q(, s)x) q(, s) =[ρ( s)+ψ + B(, T )] and δ(, s) = 4ρ( s) r(s)e h( s) q(, s) age 68 R(, T )=α(, T )+β(, T )r(), B(,T )r() (, T )=A(, T )e (3.9) σ f (, T )= B(, T ) σ(, r()) T age 69 dr() = b(, r())d + σ(, r())dw () b(, x) =λ()x + η(), σ (, x) =γ()x + δ() B(, T )+λ()b(, T ) 1 γ()b(, T ) +1=0, B(T,T)=0 [ln A(, T )] η()b(, T )+1 δ()b(, T ) =0, A(T,T)=1 age 69/70 Vasicek λ() = k, η() =kθ, γ() =0, δ() =σ age 70 CIR λ() = k, η() =kθ, γ() =σ, δ() =0 b(x) =λx + η, σ (x) =γx + δ µ θ age 71 lim E{r() F s } =exp a + σ 4a µ µ θ (3.31) lim Var{r() F s } =exp a + σ σ exp 1 a a (3.3) dr() =[ϑ() a()r()]d + σ()dw () (3.33) dr() =[ϑ() ar()]d + σdw() (3.34) ϑ() = fm (0,) + af M (0,)+ σ T a (1 e a ) (3.35) r() =r(s)e a( s) + R s e a( u) ϑ(u)du + σ R s e a( u) dw (u) = r(s)e a( s) + α() α(s)e a( s) + σ R s e a( u) dw (u) (3.36) where α() =f M (0,)+ σ a (1 e a ) 3

(3.37) E{r() F s } = r(s)e a( s) + α() α(s)e a( s) Var{r() F s } = σ 1 e a( s) a (3.38) dx() = ax()d + σdw(), x(0) = 0 age 74 x() =x(s)e a( s) + σ R s e a( u) dw (u) (3.47) E{x( i+1 ) x( i )=x i,j } = x i,j e a i =: M i,j Var{x( i+1 ) x( i )=x i,j } = σ 1 e a i =: V a i r 3 (3.48) x i = V i 1 3=σ a [1 e a i 1 µ Mi,j (3.49) k =round x i+1 (3.50) p u = 1 6 + η j,k + η j,k 6Vi,p m = 3V i 3 η j,k,p 3Vi d = 1 6 + η j,k 6Vi 3V i (3.64) dx α = μ(x α ; α)d + σ(x α ; α)dw x (3.65) x (, T )=Π x (, T, x α ; α) (3.66) r = x + ϕ(; α), 0 h (3.67) (, T )=exp R i T ϕ(s; α)ds Π x (, T, r ϕ(; α); α) (3.68) ϕ(; α) =ϕ (; α) :=f M (o, ) f x (0,; α) (3.69) h exp R i T ϕ(s; α)ds = Φ (, T, x 0 ; α) := M (0,T) Π x (0,,x 0 ; α) Π x (0,T,x 0 ; α) M (0,) (3.70) Π(, T, r ; α) =Φ (, T, x 0 ; α)π (, T, r ϕ (; α); α) (3.71) V x (, T, τ, K) =Ψ x (, T, τ, K, x α ; α) dϕ(; α) (3.74) dr = kθ + kϕ(; α)+ kr d + σdw d age 100 ϕ VAS (; α) =f M (0,)+(e k 1) k θ σ / k η j,k σ k e k (1 e k ) x 0 e k age 101 (, T )= M (0,T)A(0,)exp{ B(0,)x 0 } M (0,)A(0,T)exp{ B(0,T)x 0 } A(, T )exp{ B(, T )[r ϕ VAS (; α)]} (3.76) dx() =k(θ x())d + σ p x()dw (), x(0) = x 0, r() =x()+ϕ() (3.77) ϕ CIR (; α) =f M (0,) f CIR (0,; α) f CIR kθ(exp{h} 1) (0,; α) = h +(k + h)(exp{h} 1) + x 4h exp{h} 0 [h +(k + h)(exp{h} 1)] h = k +σ 4

Chaper 4 (4.4) r = x()+y()+ϕ(), r(0) = r 0 (4.5) dx() = ax()d + σdw 1 (), x(0) = 0 dy() = by()d + ηdw (), y(0) = 0 (4.6) E{r() F s } = x(s)e a( s) + y(s)e b( s) + ϕ() Var{r() F s } = σ 1 e a( s) + η 1 e b( s) +ρ ση 1 e (a+b)( s) a b a + b (4.7) r() =σ R 0 e a( u) dw 1 (u)+η R 0 e b( u) dw (u)+ϕ() (4.8) dx() = ax()d + σdfw 1 () dy() = by()d + ηρdfw 1 ()+η p 1 ρ dfw () where dw 1 () =ddfw 1 () and dw () =ρdfw 1 ()+ p 1 ρ dfw () ) ) 1 e a(t 1 e b(t (4.9) M(, T )= x()+ y() a b (4.10) V (, T )= σ T + a a e a(t ) 1 a e a(t ) 3 a + η T + b b e b(t ) 1 b e b(t ) 3 b +ρ ση ab (4.11) (, T )=exp T + e a(t ) 1 a ½ R T + e b(t ) 1 b ϕ(u)du 1 e a(t ) x() a e (a+b)(t ) 1 a + b ) 1 e b(t y()+ 1 ¾ b V (, T ) (4.1) ϕ() =f M (0,T)+ σ 1 e at + η 1 e bt + ρ ση a b ab (1 e at )(1 e bt ) n (4.13) exp R o T ϕ(u)du = M (0,T) ½ M (0,) exp 1 ¾ [V (0,T) V (0,)] (4.14) (, T )= M (0,T) exp {A(, T )} M (0,) A(, T ):= 1 ) ) 1 e a(t 1 e b(t [V (, T ) V (0,T)+V(0,)] x() y() a b (4.15) (, T )=A(, T )exp{ B(a,, T )x() B(b,, T )y()} (4.16) σ f (, T )= p σ e a(t ) + η e b(t ) +ρσηe (a+b)(t ) 5

age 15 Cov(df (, T 1 ),df(, T )) d = σ B T (a,, T 1) B T (a,, T )+η B T (b,, T 1) B T (b,, T ) B +ρση T (a,, T 1) B T (b,, T )+ B T (a,, T ) B T (b,, T 1) = σ e a(t 1+T ) + η e b(t 1+T ) +ρση e at 1 bt +(a+b) + e at bt 1 +(a+b) Corr(df (, T 1 ),df(, T )) = σ e a(t 1+T ) + η e b(t 1+T ) σ f (, T 1 )σ f (, T ) + ρση e at 1 bt +(a+b) + e at bt 1 +(a+b) σ f (, T 1 )σ f (, T ) age 153 f(, T 1 T )= ln (, T 1) ln (, T ) T T 1 df (, T 1,T )=...d + B(a,, T ) B(a,, T 1 ) σdw 1 () T T 1 + B(b,, T ) B(b,, T 1 ) ηdw () T T 1 σ f (, T 1,T )= p σ β(a,, T 1,T ) + η β(b,, T 1,T ) +ρσηβ(a,, T 1,T )β(b,, T 1,T ) where β(z,, T 1,T )= B(z,, T ) B(z,,T 1 ) T T 1 Cov(df (, T 1,T ),df(, T 3,T 4 )) d σ B(a,, T ) B(a,, T 1 ) B(a,, T 4 ) B(a,, T 3 ) T T 1 T 4 T 3 +η B(b,, T ) B(b,, T 1 ) B(b,, T 4 ) B(b,, T 3 ) T T 1 T 4 T 3 B(a,, T ) B(a,, T 1 ) B(b,, T 4 ) B(b,, T 3 ) +ρση T T 1 T 4 T 3 + B(a,, T 4) B(a,, T 3 ) B(b,, T ) B(b,, T 1 ) T 4 T 3 T T 1 s age 160 σ 3 = dz 3 () = σ 1 + σ (ā b) + ρ σ 1σ b ā σ 1 dz 1 () σ ā b dz (), σ 4 = σ σ 3 ā b age 161 a =ā, b = b, σ = σ 3, η = σ 4, ρ = σ 1 ρ σ 4 σ 3 6

ϕ() =r 0 e ā + R 0 θ(v)e ā( v) dv ā = a, b = b, σ1 = p σ + η +ρση, σ = η(a b) ρ = σρ + η p σ + η +ρση, θ() =dϕ() + aϕ() d Managing Credi Risk: The Grea Challenge for Global Financial Markes, Caouee, e. al. Chaper 0 (0.) R p = N X i EAR (0.3) V p = N j=1 (0.5) UAL p = N age 403 N X i X j σ i σ j ρ ij j=1 N X i X j σ i σ j ρ ij 1 CV ar(cl)=ead LGD µ µ ρφ 1 (CL)+Φ 1 (D) Φ D 1 ρ 1+(M.5) b(d) 1 1.5b(D) Liquidiy Risk Measuremen and Managemen: Guide o Global Bes racices, Maz and Neu A racioner s Chaper age 33 age 33 log V () =α + β + σε log V q () =α + β σφ 1 (q) Bond-CDS Basis Handbook: Measuring, Trading and Analysing Basis Trades, Elizalde, Docor, and Saluk age 13, Equaion 1 S = D (1 R) age 15, Equaion FR = U AI RA + FC age 18, Equaion 3 V[c + p] B SS = RF A age 5, Equaion 4 BT1 =CN (100 R U C F C)+BN (R+CR B FC) age 5, Equaion 5 BT =BN (100 + CR B FC) CN (U + C + FC) age 43, Equaion 7 CN = B R 100 R U BN 7

A Survey of Behavioral Finance, Barberis and Thaler (1) (x, p : y,q) =π(p)v(x) +π(q)v(y) () i π i v(x i ) where v = xα if x 0 λ( x) α if x<0 and π i = w( i ) w(i ), w( )= γ ( γ +(1 ) γ ) 1/γ (3) D +1 D = e g D+σ D ε +1 (4) (5) C +1 = e g C+σ C η +1 C µ µµ µ ε 0 1 w N, η 0 w 1 (6) E 0 ρ C1 γ =0 1 γ " µc+1 γ (7) 1 = ρe R +1# C, i.i.d.over ime (8) R +1 = D +1 + +1 = 1+ +1/D +1 D +1 /D D (9) r +1 = d +1 +cons. d +1 d +cons. (10) E π v[(1 w)r f,+1 + wr +1 1] (11) E 0 ρ C1 γ 1 γ + b 0C γ ˆv(X +1 ) =0 (13) R +1 = +1 + D +1 (14) p d = E ρ d +1+j E (15) E 0 =0 j=0 j=0 ρ C1 γ 1 γ + b 0C γ ṽ(x +1,z ) ρ r +1+j + E lim ρ j (p +j d +j )+cons. j (16) r i r f = β i.1 (F 1 r f )+...+ β i,k (F K r f ) (17) r i, r f, = α i + β i,1 (F 1, r f, )+...+ β i,k (F K, r f, )+ε i, (18) R f = 1 ρ eγg C+0.5γ σ C (19) 1 = ρ 1+f e g D γg C +0.5(σD +γ σc γσ Cσ D w) f (0) R +1 = D +1 + +1 = 1+ +1/D +1 D +1 = 1+f /D D f e g D+σ D ε +1 8

CAIA Level II: Advanced Core Topics in Alernaive Invesmens, Black, Chambers, Kazemi Chaper 16 (16.1) repored (16.) repored (16.3) rue (16.4) rue = α + β 0 rue = α rue =(1/α) repored = repored 1 + β 1 rue 1 + β rue + + α(1 α) rue 1 + α(1 α) rue + [(1 α)/α] repored 1 +[(1/α) ( repored repored 1 )] (16.5) R,repored β 0 R,rue + β 1 R 1,rue + β R,rue + (16.6) repored (16.7) repored =(1 ρ) rue =(1 ρ) rue + ρ repored 1 + ρ repored 1 (16.8) R,repored (1 ρ)r,rue + ρr 1,repored (16.9) R,rue =(R,repored ρr 1,repored )/(1 ρ) (16.10) ˆρ = corr(r,repored R 1,repored ) (16.11) ρ i,j = σ ij /(σ i σ j ) (16.1) R repored Chaper 1 age 6 = α + β 1 R repored 1 + β R repored + + β k R repored k + ε Y = S I E H where Y = yield, S = oal solar radiaion over he area per period, I = fracion of solar radiaion capured by he crop canopy, E = phoosynheic efficiency of he crop (oal plan dry maer per uni of solar radiaion), H = harves index (fracion of oal dry maer ha is harvesable) Managing Invesmen orfolio: A Dynamic rocess, Maginn, Tule, ino, McLeavey Chaper 8 age 53 TRCI = CR + RR + SR age 553 RR n, =(R + R 1 + R +...+ R n )/n age 554 r n DD = i r, 0)] n 1 age 555 ARR rf SR = SD age 556 ARR rf SR = DD 9

The Secular and Cyclic Deerminans of Capializaion Raes: The Role of ropery Fundamenals, Macroeconic Facors, and "Srucural Changes," Chervachidze, Cosello, Wheaon (1) Log(C j, )=a 0 + a 1 log(c j, 1 )+a log(c j, 4 )+a 3 log(rri j, )+a 4 RTB + a 7 Q (1.1) RRI j, s = RR j, /M RR j +a 8 Q3 + a 9 Q4 + a 10 D j () Log(C j, )=a 0 + a 1 log(c j, 1 )+a log(c j, 4 )+a 3 log(rri j, s )+a 4 RTB (.1) DEBTFLOW = TNBL /GD +a 5 SREAD + a 6 DEBTFLOW + a 7 Q + a 8 Q3 + a 9 Q4 + a 10 D j (3) Log(C j, )=a 0 + a 1 log(c j, 1 )+a log(c j, 4 )+a 3 log(rri j, s )+a 4 RTB +a 5 SREAD + a 6 DEBTFLOW + a 7 Q + a 8 Q3 + a 9 Q4 (4) Log(C j, )=a 0 + a 1 yearq + a log(c j, 1 )+a 3 log(c j, 4 )+a 4 log(rri j, s )+a 5 RT B +a 6 SREAD + a 7 DEBTFLOW + a 7 Q + a 8 Q3 + a 9 Q4 + a 10 D j Analysis of Financial Time Series, Tsay Chaper 3 µ (v+1)/ Γ[(v +1)/] (3.7) f( v) = Γ(v/) p 1+, v > (v )π v µ (3.8) (a m+1,...,a T α, A m )= T v +1 a ln 1+ =m+1 (v )σ ξ + 1 f[ξ( + ω) v] if < ω/ ξ (3.9) g( ξ,v) = ξ + 1 f[( + ω)/ξ v] if ω/ ξ (3.10) f(x) = v exp 1 x/λ v, <x<, 0 <v λ (1+1/v) Γ(1/v) (3.14) GARCH(m, s): a = σ, σ = α 0 + m α i a i + s β j σ j j=1 + 1 ln(σ ) (3.3) GARCH(1, 1)-M: r = μ + cσ + a, a = σ, σ = α 0 + α 1 a 1 + β 1 σ 1 (3.8) EGARCH(m, s): ln(σ )=α 0 + s a i + γ i a i α i + m β j ln(σ σ j) i Chaper 8 (8.1) μ = E(r ), Γ 0 = E[(r μ)(r μ) 0 ] (8.) Γ [Γ ij ( )] = E[(r μ)(r μ) 0 ] (8.3) ρ [ρ ij ( )] = D 1 Γ D 1 j=1 10

(8.4) Γ ij ( ) ρ ij ( ) = p Γii (0)Γ jj (0) = Cov(r i,r j, ) sd(r i )sd(r j ) (8.5) ˆΓ = 1 T (r r)(r r) 0, 0 T = +1 (8.6) ˆρ = ˆD 1ˆΓ ˆD 1, 0 (8.7) Q k (m) =T m 1 =1 T r(ˆγ 0 ˆΓ 1ˆΓ 0 ˆΓ 1 0 ) (8.11) r = a + Φa 1 + Φ a + Φ 3 a 3 + (8.13) r = φ 0 + Φr 1 + + Φ p r p + a, p > 0 (8.3) r = θ 0 + a Θ 1 a 1 Θ q a q or r = θ 0 + Θ(B)a (8.33) x = αβ 0 x 1 + p 1 (8.34) Φ j = p i=j+1 Φ i x i + a q Θ j a j j=1 Φ i, j =1,...,p 1, αβ 0 = Φ p + Φ p 1 + + Φ 1 I = Φ(1) (8.35) x = μ + Φ 1 x 1 + + Φ p x p + a (8.39) x = μd + αβ 0 x 1 + Φ 1 x 1 + + Φ p 1 x p+1 + a Chaper 9 (9.1) r i = α i + β i1 f 1 + + β im f m + i, =1,...,T,,...,k (9.) r = α + βf +, =1,...,T (9.3) R i = α i 1 T + Fβ 0 i + E i (9.4) R = Gξ 0 + E (9.5) r i = α i + β i r m + i, i =1,...,k =1,...,T (9.11) Var(y i )=wiσ 0 r w i, i =1,...,k (9.1) Cov(y i,y j )=wiσ 0 r w j, i, j =1,...,k (9.13) k Var(r i )=r(σ r )= k λ i = k Var(y i ) (9.14) ˆΣ r [ˆσ ij,r ]= 1 T 1 (9.15) ˆρ r = Ŝ 1 ˆΣ r Ŝ 1 T =1(r r)(r r) 0, r = 1 T T r =1 (9.16) r μ = βf + (9.17) Σr = Cov(r )=E[(r μ)(r μ) 0 ]=E[(βf + )(βf + ) 0 ]=ββ 0 + D (9.18) Cov(r, f )=E[(r μ)f]=βe(f 0 f)+e( 0 f)=β 0 (9.19) ˆβ [ ˆβ i ij ]= hpˆλ1 ê 1 pˆλ ê pˆλm ê m 11

(9.0) LR(m) = T 1 16 (k +5) 3 m ³ ln ˆΣ r ln ˆβ ˆβ 0 + ˆD Handbook of Fixed Income Securiies, Fabozzi Chaper 70 (70 1) Asse Allocaion w µ w s s w wb s (TR B w B s TR B ) (70 ) Secor Managemen ws (TRs TRs B ) s (70 3) Top-Level Exposure (w w B ) TR B (70 4) Asse Allocaion w µ w s s w wb s (ER B w B s ER B ) (70 5) Secor Managemen ws (ERs ERs B ) s (70 6) Top-Level Exposure (w w B ) ER B 1