Cohesive Energies and Enthalpies: Complexities, Confusions, and Corrections

Σχετικά έγγραφα
Relationships between dipole moments of diatomic molecules. Department of Physics, Ocean University of China, Qingdao, Shandong , China 2

AQUEOUS SOLUBILITY OF INORGANIC COMPOUNDS AT VARIOUS TEMPERATURES

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

DuPont Suva 95 Refrigerant

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

DuPont Suva 95 Refrigerant

ΦΡΟΝΤΙΣΤΗΡΙΟ Μ.Ε. ΣΥΜΒΟΛΟ ΤΡΑΠΕΖΑ ΘΕΜΑΤΩΝ Α ΛΥΚΕΙΟΥ ΑΝΤΙ ΡΑΣΕΙΣ

Butadiene as a Ligand in Open Sandwich Compounds

Supplemental document

1. ΧΗΜΙΚΟΙ ΕΣΜΟΙ ΣΤΑ ΣΤΕΡΕΑ

ΗΛΙΑΣΚΟΣ ΦΡΟΝΤΙΣΤΗΡΙΑ. Γενικής Παιδείας Χημεία Α Λυκείου ΥΠΗΡΕΣΙΕΣ ΠΑΙΔΕΙΑΣ ΥΨΗΛΟΥ ΕΠΙΠΕΔΟΥ. Επιμέλεια: ΒΑΣΙΛΗΣ ΛΟΓΟΘΕΤΗΣ

Supporting Information: Design principles for α-tocopherol analogues

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Supporting Information for: electron ligands: Complex formation, oxidation and

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

of the methanol-dimethylamine complex

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

Enthalpy and Entropy

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

Table of Contents 1 Supplementary Data MCD

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Refractive index and extinction coefficient of materials

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Electronic Supplementary Information (ESI)

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ELECTRONIC SUPPORTING INFORMATION

Summary of Thermo-Physical Properties of: Sn and Compounds of Sn. Comparison of Properties of Sn, Sn-Li, Li, and Pb-Li

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

Electronic Supplementary Information:

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Electronic Supplementary Information (ESI)

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Comparison of experimental and estimated polarizabilities for organic compounds using ThermoML Archive data

Σχέση στεφανιαίας νόσου και άγχους - κατάθλιψης

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

The Role of Imidoselenium(II) Chlorides in the Formation of Cyclic Selenium

CONCENTRATIVE PROPERTIES OF AQUEOUS SOLUTIONS: DENSITY, REFRACTIVE INDEX, FREEZING POINT DEPRESSION, AND VISCOSITY

, are amongst the easiest enthalpy changes to determine directly.... [2]

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

'#( ) : /..,..,..!.; , ISBN *, +, /, , 2 1+,,, : 7.

CHEMISTRY WKST KEY: SEMESTER 1 REVIEW PROBLEMS p.1

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Na/K (mole) A/CNK


Theoretical prediction and synthesis of (Cr 2/3 Zr 1/3 ) 2 AlC i-max phase

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Supporting Information

Electronic Supplementary Information

Electronic Supplementary Information

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

Supplementary Information Chemical Partition of the Radiative Decay Rate of Luminescence of Europium Complexes

Electronic Supplementary Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Selective mono reduction of bisphosphine

Enthalpy data for the reacting species are given in the table below. The activation energy decreases when the temperature is increased.

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Supporting Information

3. ΧΗΜΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ

Supplementary Table 1. Construct List with key Biophysical Properties of the expression

Assalamu `alaikum wr. wb.

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Electronic Supplementary Information

Supplementary Information for

Sample BKC-10 Mn. Sample BKC-23 Mn. BKC-10 grt Path A Path B Path C. garnet resorption. garnet resorption. BKC-23 grt Path A Path B Path C

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Supporting Information

ΟΝΟΜΑΣΙΑ F - HF Υδροφθόριο S 2- H 2 S Υδρόθειο Cl - HCl Υδροχλώριο OH - H 2 O Οξείδιο του Υδρογόνου (Νερό) NO 3 HNO 3. Νιτρικό οξύ SO 3 H 2 SO 3

Electronic Supplementary Information

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Supplementary Information 1.

Cable Systems - Postive/Negative Seq Impedance

SPECIAL FUNCTIONS and POLYNOMIALS

Στοιχεία Φυσικής Ημιαγωγών (ΕΤΥ481)

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

2. Chemical Thermodynamics and Energetics - I

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Transcript:

Cohesive Energies and Enthalpies: Supplementary Information Complexities, Confusions, and Corrections Leslie Glasser a, * and Drew Sheppard b a Nanochemistry Research Institute, Department of Chemistry Curtin University, GPO Box U1987, Perth, WA 6845, Australia b Hydrogen Storage Research Group, Fuels and Energy Technology Institute, Department of Physics and Astronomy, Curtin University, GPO Box U1987, Perth, WA 6845, Australia 4 Figures 3 Tables * Corresponding author L. Glasser: Telephone: + 61 8 9848-3334 Fax: + 61 8 9266-4699 E-mail: l.glasser@curtin.edu.au S1

Table S1: Published experimental cohesive energies (column 2) in the energy units listed in column 1, followed by the formation enthalpy of the ionic solid and the enthalpies of the contributing atoms, finally summed in the column headed Sum. This result is to be compared with the cohesive energy converted a to kj mol -1 per formula unit in the penultimate column. 1 The integer factor n corrects from the particular formula unit used in column 2. The final column compares the thermodynamic summation with the published experimental cohesive energy. The data have been sorted into alphabetical order of the chemical formula (column 3). Energy unit ref Cohes. E. Material Δ f H Atom Contributions / kj mol -1 Enthalpy Sum Cohes. E. n n Cohes. E. /kj mol -1 M(g) Δ f H(M,g) X(g) Δ f H(X,g) /kj mol -1 Enthalpy Sum /n Cohes E. ev 2 10.65 Al 2 O 3-1675.7 Al(g) 660.0 O(g) 747.5 3083.2 1027.6 3 3082.8 1.00 kcal 3 178.9 AlAs -116.3 Al(g) 330.0 As(g) 278.4 724.7 748.5 1 748.5 0.97 kcal 3 198.0 AlP -111.7 Al(g) 330.0 P(g) 316.4 758.1 828.4 1 828.4 0.92 kcal 3 165.0 AlSb -50.4 Al(g) 330.0 Sb(g) 262.3 642.7 690.4 1 690.4 0.93 kj 4 3079 BaO -553.8 Ba(g) 180.1 O(g) 249.2 983.0 983.0 1 983.0 1.00 ev 2 10.18 BaO -553.8 Ba(g) 180.1 O(g) 249.2 983.0 982.2 1 982.2 1.00 kj 5 351.0 CaAl 2-73.2 Ca(g) 177.8 Al(g) 330.0 911.0 351.0 3 1053.0 0.87 kj 4 3475 CaO -634.9 Ca(g) 177.8 O(g) 249.2 1061.9 1061.9 1 1061.9 1.00 ev 2 11.01 CaO -634.9 Ca(g) 177.8 O(g) 249.2 1061.9 1062.3 1 1062.3 1.00 kcal 3 131.6 CdS -161.9 Cd(g) 111.8 S(g) 278.8 552.5 550.6 1 550.6 1.00 kcal 3 113.6 CdSe -144.8 Cd(g) 111.8 Se(g) 227.1 483.7 475.3 1 475.3 1.02 S2

kcal 3 95.8 CdTe -100.8 Cd(g) 111.8 Te(g) 209.5 422.1 400.8 1 400.8 1.05 kj 5 411.1 CeAl 2-54.4 Ce(g) 423.0 Al(g) 330.0 1137.4 411.1 3 1233.3 0.92 kj 5 660.3 CeIr 2-73.8 Ce(g) 423.0 Ir(g) 665.3 1827.3 660.3 3 1980.9 0.92 kj 4 3996 CoO -237.9 Co(g) 424.7 O(g) 249.2 911.8 911.8 1 911.8 1.00 ev 2 9.26 Cr 2 O 3-1137.3 Cr(g) 794.3 O(g) 747.5 2679.2 893.5 3 2680.4 1.00 ev 2 7.74 CrO 2-581.6 Cr(g) 397.1 O(g) 498.3 1477.1 746.8 2 1493.6 0.99 ev 2 8.28 Fe 2 O 3-824.8 Fe(g) 830.7 O(g) 747.5 2403.0 798.9 3 2396.7 1.00 ev 2 8.69 Fe 3 O 4-1115.5 Fe(g) 1246.0 O(g) 996.7 3358.2 838.5 4 3353.9 1.00 kj 4 3928 FeO -265.1 Fe(g) 415.3 O(g) 249.2 929.6 929.6 1 929.6 1.00 ev 2 9.68 FeO -265.1 Fe(g) 415.3 O(g) 249.2 929.6 934.0 1 934.0 1.00 ev 6 6.52 GaAs -71.0 Ga(g) 272.0 As(g) 278.4 621.4 629.1 1 629.1 0.99 kcal 3 154.7 GaAs -71.0 Ga(g) 272.0 As(g) 278.4 621.4 647.3 1 647.3 0.96 kcal 7 76 GaAs -71.0 Ga(g) 272.0 As(g) 278.4 621.4 318.0 2 636.0 0.98 ev 6 8.96 GaN -156.8 Ga(g) 272.0 N(g) 472.7 901.5 864.5 1 864.5 1.04 kcal 3 173.8 GaP -114.6 Ga(g) 272.0 P(g) 316.4 703.0 727.2 1 727.2 0.97 kcal 3 138.6 GaSb -41.8 Ga(g) 272.0 Sb(g) 262.3 576.1 579.9 1 579.9 0.99 kcal 7 69 GaSb -41.8 Ga(g) 272.0 Sb(g) 262.3 576.1 288.7 2 577.4 1.00 kcal 3 144.3 InAs -58.6 In(g) 243.3 As(g) 278.4 580.3 603.8 1 603.8 0.96 kcal 7 66 InAs -58.6 In(g) 243.3 As(g) 278.4 580.3 276.1 2 552.3 1.05 S3

kcal 3 158.6 InP -69.3 In(g) 243.3 P(g) 316.4 629.0 663.6 1 663.6 0.95 kcal 7 77 InP -69.3 In(g) 243.3 P(g) 316.4 629.0 322.2 2 644.3 0.98 kcal 3 128.5 InSb -30.5 In(g) 243.3 Sb(g) 262.3 536.1 537.6 1 537.6 1.00 kcal 7 64 InSb -30.5 In(g) 243.3 Sb(g) 262.3 536.1 267.8 2 535.6 1.00 ev 2 8.17 K 2 O -363.2 K(g) 178.0 O(g) 249.2 790.4 788.3 1 788.3 1.00 Hartree 8 0.248 KCl -436.7 K(g) 89.0 Cl(g) 121.3 647.0 651.1 1 651.1 0.99 Hartree 8 0.283 KF -567.4 K(g) 89.0 F(g) 79.4 735.7 743.0 1 743.0 0.99 kj 5 657.5 LaIr 2-6.9 La(g) 425.9 Ir(g) 665.3 1763.3 657.5 3 1972.5 0.89 Hartree 8 0.266 LiCl -408.3 Li(g) 159.3 Cl(g) 121.3 688.9 698.4 1 698.4 0.99 Hartree 8 0.331 LiF -616.9 Li(g) 159.3 F(g) 79.4 855.6 869.0 1 869.0 0.98 kj 5 284.7 MgCu 2-11.7 Mg(g) 147.1 Cu(g) 338.0 834.8 284.7 3 854.1 0.98 kj 5 353.4 MgNi 2-18.8 Mg(g) 147.1 Ni(g) 430.0 1025.9 353.4 3 1060.2 0.97 kj 4 3898 MgO -601.6 Mg(g) 147.1 O(g) 249.2 997.9 997.9 1 997.9 1.00 ev 2 10.34 MgO -601.6 Mg(g) 147.1 O(g) 249.2 997.9 997.7 1 997.7 1.00 kj 5 142.5 MgZn 2-10.9 Mg(g) 147.1 Zn(g) 130.4 418.8 142.5 3 427.5 0.98 kj 4 3813 MnO -385.2 Mn(g) 282.4 O(g) 249.2 916.8 916.8 1 916.8 1.00 ev 2 9.05 MoO 2-587.9 Mo(g) 659.0 O(g) 498.3 1745.2 873.2 2 1746.4 1.00 Rydberg 9 0.6442 Na 2 O -415.1 Na(g) 107.5 O(g) 249.2 771.8 845.7 1 845.7 0.91 ev 2 9.1 Na 2 O -415.1 Na(g) 107.5 O(g) 249.2 771.8 878.0 1 878.0 0.88 S4

Hartree 0.246 NaCl -411.1 Na(g) 107.5 Cl(g) 121.3 639.9 645.9 1 645.9 0.99 Hartree 0.294 NaF -576.6 Na(g) 107.5 F(g) 79.4 763.5 771.9 1 771.9 0.99 ev 2 9.51 Nb 2 O 5-1898.3 Nb(g) 1445.7 O(g) 1245.9 4589.8 917.6 5 4588.0 1.00 kj 5 517.5 NbCr 2-7 Nb(g) 722.8 Cr(g) 397.1 1524.1 517.5 3 1552.5 0.98 kj 5 543.6 NbFe 2-15.5 Nb(g) 722.8 Fe(g) 415.3 1569.0 543.6 3 1630.8 0.96 ev 10 8.26 NiO -239.7 Ni(g) 430.0 O(g) 249.2 918.9 797.0 1 797.0 1.15 kj 4 4083 NiO -239.7 Ni(g) 430.0 O(g) 249.2 918.9 918.9 1 918.9 1.00 ev 11 15.07 RuO 2-305.0 Ru(g) 642.7 O(g) 498.3 1446.1 1454.1 1 1454.1 0.99 kj 5 434.9 ScCo 2-26.7 Sc(g) 377.7 Co(g) 424.7 1253.8 434.9 3 1304.7 0.96 kj 5 412.0 ScFe 2-11.2 Sc(g) 377.7 Fe(g) 415.3 1219.6 412.0 3 1236.0 0.99 ev 11 14.4 SnO 2-577.4 Sn(g) 301.2 O(g) 498.3 1376.9 1389.4 1 1389.4 0.99 kj 4 3262 SrO -592.0 Sr(g) 164.0 O(g) 249.2 1005.2 1005.2 1 1005.2 1.00 ev 2 10.41 SrO -592.0 Sr(g) 164.0 O(g) 249.2 1005.2 1004.4 1 1004.4 1.00 kj 5 531.7 TaCr 2-9 Ta(g) 782.5 Cr(g) 397.1 1585.8 531.7 3 1595.1 0.99 ev 2 11.11 Ti 2 O 3-1520.9 Ti(g) 939.7 O(g) 747.5 3208.1 1072.0 3 3215.9 1.00 ev 2 12.88 TiO -542.7 Ti(g) 469.9 O(g) 249.2 1261.7 1242.8 1 1242.8 1.02 ev 11 19.9 TiO 2-944.7 Ti(g) 469.9 O(g) 498.3 1913.0 1920.1 1 1920.1 1.00 ev 2 9.93 TiO 2-944.7 Ti(g) 469.9 O(g) 498.3 1913.0 958.1 2 1916.2 1.00 kj 5 464.3 UFe 2-10.8 U(g) 533.0 Fe(g) 415.3 1374.5 464.3 3 1392.9 0.99 S5

ev 2 10.35 V 2 O 3-1218.8 V(g) 1028.4 O(g) 747.5 2994.7 998.6 3 2995.9 1.00 ev 11 18.17 VO 2-713.6 V(g) 514.2 O(g) 498.3 1726.1 1753.2 1 1753.2 0.98 kcal 3 146.6 ZnS -203.0 Zn(g) 130.4 S(g) 278.8 612.2 613.4 1 613.4 1.00 kcal 3 124.5 ZnSe -177.0 Zn(g) 130.4 Se(g) 227.1 534.5 520.9 1 520.9 1.03 kcal 3 106.3 ZnTe -117.0 Zn(g) 130.4 Te(g) 209.5 456.9 444.8 1 444.8 1.03 ev 2 11.4 ZrO 2-1100.3 Zr(g) 608.8 O(g) 498.3 2207.4 1100.0 2 2199.9 1.00 a Conversion factors applied 1 : 1 hartree = 2 Ry = 2625.5 kj mol -1 ; 1 ev = 96.4869 kj mol -1 ; 1 kcal mol -1 = 4.184 kj mol -1 S6

Table S2: Lattice energies, U pot, derived from tables of incorrectly identified cohesive energies, sorted alphabetically by chemical formula. The U pot values in the penultimate column are from Jenkins and Roobottom. 12 Apparent Cohes. E. Material Apparent Cohes. E. U pot (calc) Upot(calc) /Apparent Cohes. E. /kcal mol -1 /kj mol -1 179 AlAs 748.9 198 AlP 828.4 165 AlSb 690.4 786 BaO 3288.6 3029 0.92 679 BaS 2840.9 660 BaSe 2761.4 2611 0.95 629 BaTe 2631.7 839 CaO 3510.4 3414 0.97 764 CaS 3196.6 726 CaSe 3037.6 2858 0.94 679 CaTe 2840.9 2721 0.96 132 CdS 552.3 114 CdSe 477.0 96 CdTe 401.7 155 GaAs 648.5 174 GaP 728.0 139 GaSb 581.6 144 InAs 602.5 159 InP 665.3 129 InSb 539.7 163 KBr 682.0 671 0.98 170 KCl 711.3 701 0.99 194 KF 811.7 808 1.00 154 KI 644.3 632 0.98 194 LiBr 811.7 788 0.97 203 LiCl 849.4 834 0.98 247 LiF 1033.4 1030 1.00 180 LiI 753.1 730 0.97 932 MgO 3899.5 3795 0.97 896 MgS 3748.9 780 MgSe 3263.5 3071 0.94 179 NaBr 748.9 732 0.98 187 NaCl 782.4 769 0.98 220 NaF 920.5 910 0.99 167 NaI 698.7 682 0.98 157 RbBr 656.9 651 0.99 164 RbCl 686.2 680 0.99 S7

186 RbF 778.2 774 0.99 149 RbI 623.4 617 0.99 796 SrO 3330.5 3217 0.97 720 SrS 3012.5 693 SrSe 2899.5 2736 0.94 667 SrTe 2790.7 147 ZnS 615.0 125 ZnSe 523.0 106 ZnTe 443.5 S8

Table S3: Cohesive energies of alkaline-earth halides calculated via thermodynamic enthalpy summation. 13 Von Szentpaly 14 has a more extensive list for these and related materials. Material f H Atom Contributions / kj mol -1 Moles of /kj mol -1 M(g) f H(M,g) M X(g) f H(X,g) Cohesive Energy Moles of X /kj mol -1 MgF2-1124.2 Mg(g) 147.1 1 F(g) 79.4 2 1430.1 MgCl2-641.3 Mg(g) 147.1 1 Cl(g) 121.3 2 1031.0 MgBr2-524.3 Mg(g) 147.1 1 Br(g) 111.9 2 895.1 MgI2-364.0 Mg(g) 147.1 1 I(g) 106.8 2 724.6 CaF2-1228.0 Ca(g) 177.8 1 F(g) 79.4 2 1564.6 CaCl2-795.4 Ca(g) 177.8 1 Cl(g) 121.3 2 1215.8 CaBr2-683.8 Ca(g) 177.8 1 Br(g) 111.9 2 1085.3 CaI2-536.4 Ca(g) 177.8 1 I(g) 106.8 2 927.7 SrF2-1217.1 Sr(g) 164.0 1 F(g) 79.4 2 1539.9 SrCl2-833.8 Sr(g) 164.0 1 Cl(g) 121.3 2 1240.5 SrBr2-718.0 Sr(g) 164.0 1 Br(g) 111.9 2 1105.7 SrI2-561.5 Sr(g) 164.0 1 I(g) 106.8 2 939.0 BaF2-1208.8 Ba(g) 180.1 1 F(g) 79.4 2 1547.6 BaCl2-855.2 Ba(g) 180.1 1 Cl(g) 121.3 2 1277.9 BaBr2-757.3 Ba(g) 180.1 1 Br(g) 111.9 2 1161.1 BaI2-605.4 Ba(g) 180.1 1 I(g) 106.8 2 999.0 S9

Apparent "Cohesive Energy" 4500 4000 3500 / kj mol -1 3000 2500 2000 1500 1000 500 0 400 600 800 1000 1200 Thermodynamic Enthalpy Sum / kj mol -1 Figure S1: Plot of apparent cohesive energy (data listed in Tables 2 and S2) versus thermodynamic enthalpy sum (calculations not shown), showing lack of correlation; that is, this confirms that the listed apparent cohesive energy is not a cohesive energy, but actually a lattice enthalpy. S10

References (1) Cohen, E. R.; Cvitaš, T.; Frey, J. G.; Holmström, B.; Kuchitsu, K.; Marquardt, R.; Mills, I.; Pavese, F.; Quack, M.; Stohner, J.; Strauss, H. L.; Takami, M.; Thor, A. J., Quantities, Units and Symbols in Physical Chemistry - the IUPAC Green Book. 3rd ed.; IUPAC: RSC Publishing: Cambridge, UK, 2007. (2) Shinzato, Y. Energy expression for the chemical bond between atoms in hydrides and oxides. Nagoya University, 2008. (3) Yadav, D. S.; Singh, D. V., Phys. Scr. 2012, 85, 015701. (4) Jog, K. N.; Singh, R. K.; Sanyal, S. P., Physical Review B 1985, 31, 6047-6057. (5) Li, C.; Lim Hoe, J.; Wu, P., J. Phys. Chem. Solids 2003, 64, 201-212. (6) Palummo, M.; Bertoni, C. M.; Reining, L.; Finocchi, F., Physica B: Condensed Matter 1993, 185, 404-409. (7) Hilsum, C.; Rose-Innes, A. C., Semiconducting III-V compounds. Pergamon Press: New York, 1961. (8) Doll, K.; Stoll, H., Physical Review B 1997, 56, 10121-10127. (9) Thompson, M.; Shen, X.; Allen, P. B., Physical Review B 2009, 79, 113108. (10) Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P., Physical Review B 1998, 57, 1505-1509. (11) Hamad, B. A., European Physical Journal B 2009, 70, 163-169. (12) Jenkins, H. D. B.; Roobottom, H. K., Lattice Energies. In CRC Handbook of Chemistry and Physics, Haynes, W. M., (Editor-in-Chief), Ed. CRC Press: Boca Raton, FL, 2015. (13) Outotec HSC Chemistry 8. http://www.outotec.com/en/products--services/hsc-chemistry/ (April, 2016), (14) von Szentpaly, L., J. Am. Chem. Soc. 2008, 130, 5962-5973. S11