Contents 1 Properties and Applications of Recycled Polymers: An Introduction... 1 1.1 Introduction... 1 2 Recycled Polymers: Overview of their Reuse in Blends, Composites and Nanocomposites... 9 2.1 Introduction... 9 2.2 Homopolymers and Polymer Blends... 10 2.3 Composites and Nanocomposites... 16 3 Recycled Polymers: Properties and Applications... 27 3.1 Introduction... 27 3.2 Polyvinyl Chloride Recycling... 29 3.3 Application of Nanofillers... 31 3.3.1 Overview... 31 3.3.2 Nanocomposites from Recycled Polyethylene Terephthalate... 31 3.3.3 Nanocomposites from Recycled Polypropylene... 35 3.3.4 Nanocomposites from Recycled Polyethylene... 37 3.3.5 Nanocomposites from Recycled Polyvinyl Chloride... 39 3.3.6 Nanocomposites from Other Waste Polymers... 39 3.3.7 Evaluation of Interfacial Adhesion by Modelling Mechanical Properties... 42 3.4 Conclusions and Future Trends... 44 ix
Recycled Polymers: Properties and Applications, Volume 2 4 A Study on the Creep Model of Polymer Concrete using Recycled Polyester Resin... 51 4.1 Introduction... 51 4.2 Experimental Programme... 52 4.2.1 Materials... 52 4.2.2 Aggregate... 53 4.2.3 Mineral Filler... 53 4.2.4 Test Set-up... 54 4.2.5 Loading and Measurements... 55 4.3 Creep Model of Recycled Polyethylene Terephthalate Polymer Concrete... 58 4.3.1 Empirical Models... 58 4.3.2 The Time-dependent Function... 61 4.3.3 Creep Models... 62 4.3.4 Temperature Correction Factor... 67 4.3.5 The Stress Correction Factor... 72 4.3.6 The Creep Model with Temperature and Stress Factors... 74 4.4 Mechanical Parameter Model... 77 4.5 Conclusions... 87 5 Current Applications of Recycled Polyethylene terephthalate... 91 5.1 Introduction... 91 5.1.1 Polyethylene Terephthalate... 91 5.1.2 Recycled Polyethylene Terephthalate... 93 5.2 Applications of Recycled Polyethylene Terephthalate... 97 5.2.1 Applications of Recycled Polyethylene Terephthalate in Food Packaging... 97 5.2.2 Applications of Recycled Polyethylene Terephthalate in Construction... 101 5.2.3 Applications of Recycled Polyethylene Terephthalate in the Textile Industry... 105 x
Contents 5.2.3.1 Recycled Polyethylene Terephthalate in Textile or Bottle Applications... 106 5.2.4 Applications of Recycled Polyethylene Terephthalate in Injection Moulding and other Outlets... 106 5.2.5 Application of Recycled Polyethylene Terephthalate in Wood-Plastic Composites... 107 5.2.6 Applications of Recycled Polyethylene Terephthalate in Alloys, Blends and Compounds... 109 5.2.6.1 Recycled Polyethylene Terephthalate/Polyethylene Alloys... 110 5.2.6.2 Pioneering Applications... 111 5.2.6.3 Recycled Polyethylene Terephthalate/Nylon Blends... 112 5.2.6.4 Recycled Polyethylene Terephthalate/Polycarbonate Alloys... 113 5.2.6.5 Glass-filled Compounds of Recycled Polyethylene Terephthalate... 114 5.2.7 Recycled Polyethylene Terephthalate Products: Global Market... 115 5.2.8 Recycled Polyethylene Terephthalate/Clay Nanocomposites as an Improving Factor for Recycling.. 116 5.3 Yet Unsolved Issues... 117 5.4 Future Expectations... 117 6 Optical Properties of Polyolefins upon Recycling... 123 6.1 Introduction: Recycling and Optical Properties... 123 6.1.1 Isotactic Polypropylene... 126 6.2 Materials and Methods... 129 6.3 Results and Discussion... 132 6.4 Final Comments... 143 7 Enzymatic Degradation as a Method of Polymer Recycling: Limitations and Perspectives... 149 7.1 Introduction... 149 xi
Recycled Polymers: Properties and Applications, Volume 2 7.2 Aliphatic Polyesters... 153 7.2.1 Aliphatic Polyesters from Fossil Resources... 154 7.2.1.1 Poly(ε-caprolactone)... 154 7.2.1.2 Polyethylene Adipate... 156 7.2.1.3 Polybutylene Succinate and Polyethylene Succinate... 157 7.2.2 Aliphatic Polyesters from Renewable Resources... 158 7.2.2.1 Polylactic Acid... 158 7.2.2.2 Polyhydroxyalkanoates... 158 7.3 Aromatic Polyesters and Copolymers of Aliphatic and Aromatic Polyesters... 159 7.3.1 Polyethylene Terephthalate... 160 7.3.2 Polybutylene Terephthalate... 162 7.3.3 Poly(butylene adipate-co-terephthalate)... 164 7.3.4 Polypropylene Terephthalate and Poly(propylene terephthalate-co-adipate)... 167 7.3.5 Aromatic Polycarbonates... 168 7.4 Polyolefins... 173 7.4.1 Polyethylene... 173 7.4.2 Polypropylene... 175 7.5 Other Polymers... 175 7.5.1 Polyurethanes... 175 7.5.1.1 Fungal Biodegradation... 176 7.5.1.2 Bacterial Biodegradation... 176 7.5.1.3 Degradation of Polyurethane by Polyurethanase and other Enzymes... 177 7.5.2 Polyamides and Polyimides... 178 7.5.3 Polystyrene... 179 7.5.4 Polyvinyl Alcohol... 179 xii
Contents 8 Methods of Plastic Waste Management for the Conversion of Waste Plastics into Fuel... 185 8.1 Introduction... 185 8.2 Types of Plastic Waste... 188 8.2.1 Recyclable Plastic... 188 8.2.2 Nonrecyclable Plastic... 188 8.3 Recycling Categories... 189 8.3.1 Primary Recycling... 190 8.3.2 Secondary Recycling... 190 8.3.3 Tertiary Recycling... 191 8.3.4 Quaternary Recycling... 191 8.4 Methods of Converting Plastic into Fuel... 192 8.4.1 Thermolysis Thermal Conversion... 192 8.4.1.1 Gasification Technology... 192 8.4.1.2 Pyrolysis/Thermal Degradation (Thermal Cracking of Polymers in Inert Atmospheres)... 193 8.4.1.3 Mechanism of Thermal Degradation... 196 8.4.2 Catalytic Cracking... 198 8.4.2.1 Hydrocracking... 198 8.4.2.2 Catalytic Cracking... 198 8.4.3 Mechanism of Catalytic Degradation... 198 8.4.4 Method... 202 8.4.5 Process Assembly... 202 8.4.5.1 Plastic Preheating and Filtration... 202 8.4.5.2 Heating and Catalyst Mixing... 202 8.4.5.3 Reaction in Vessels... 203 8.4.5.4 Vapour Condensation... 203 8.4.5.5 Condensate to Tankage... 203 8.4.5.6 Noncondensable to Reignition... 203 8.4.5.7 Waste Reclamation... 203 xiii
Recycled Polymers: Properties and Applications, Volume 2 8.5 Coprocessing of Plastic Waste as an Alternative Fuel and Raw Material... 204 8.6 Summary... 204 9 Advanced Method for the Application of Recycled Polymers: Functionalisation of Recycled Polymers... 211 9.1 Introduction... 211 9.2 Plastics... 212 9.3 Plastic Wastes and Their Utilisation... 215 9.4 The Problem of Waste Plastic Mechanical Recycling and its Solution... 217 9.5 Improving the Properties of Polymer Blends using Compatibilisers... 218 9.5.1 Physical-chemical Background of Compatibilisation... 219 9.5.2 Improving Compatibility through Process Parameters... 223 9.5.3 Grafting Compatibilisation... 224 9.5.4 Reactive Compatibilisation... 225 9.5.5 Compatibilisation by Silane-based Compounds... 226 9.5.6 Application of Polyakenyl Polymaleic Anhydride-based Coupling Agents... 228 9.6 Applications... 228 10 Synthetic Binders from Recycled Polymers as a New Resource... 235 10.1 Introduction... 235 10.1.1 Use of Colourable Synthetic Binders... 237 10.1.2 Components of Synthetic Binders... 237 10.1.3 Characterisation of Synthetic Binders... 238 10.2 Materials and Methods... 239 10.3 Results and Discussion... 242 10.3.1 Characterisation of the Synthetic Binders... 242 10.3.1.1 Rheological Behaviour... 242 10.3.1.2 The Influence of Binary Blends on Rheology... 245 xiv
Contents 10.3.1.3 Differential Scanning Calorimetry... 248 10.3.2 Modelling of Synthetic Binders... 249 10.3.3 Technological Tests... 253 10.3.4 Microstructure... 256 10.4 Conclusions... 257 Abbreviations... 261 Index... 269 xv
Recycled Polymers: Properties and Applications, Volume 2 xvi