Teisteanais Nàiseanta

Σχετικά έγγραφα
Chapter 6 BLM Answers

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

MathCity.org Merging man and maths

Section 8.3 Trigonometric Equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Chapter 1 Complex numbers

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

If we restrict the domain of y = sin x to [ π 2, π 2

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

COMPLEX NUMBERS. 1. A number of the form.

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Differential equations

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometric Formula Sheet

Logsine integrals. Notes by G.J.O. Jameson. log sin θ dθ = π log 2,

4.5 SUMMARY OF CURVE SKETCHING. Click here for answers. Click here for solutions. y cos x sin x. x 2 x 3 4. x 1 x y x 3 x

Areas and Lengths in Polar Coordinates

Homework 8 Model Solution Section

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Matrices and Determinants

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Section 9.2 Polar Equations and Graphs

Trigonometry (4A) Trigonometric Identities. Young Won Lim 1/2/15

PARTIAL NOTES for 6.1 Trigonometric Identities

CRASH COURSE IN PRECALCULUS

Review Exercises for Chapter 7

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Core Mathematics C34

Matamaitic (Tionscadal Mata Céim 2)

Το άτομο του Υδρογόνου

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes

1 Elementary Functions

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Graded Refractive-Index

Math221: HW# 1 solutions

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Example 1: THE ELECTRIC DIPOLE

CAMI Wiskunde: Graad 10

Principles of Mathematics 12 Answer Key, Contents 185

CHEMISTRY 1. A. Paper-2 HINTS & SOLUTIONS C 3. D 4. C + + Sol: Mg N Mg N Mg ( OH) NH Cu ( NH ) 5. AD Sol: α hydrogen absent

Differentiation exercise show differential equation

CÁC CÔNG THỨC CỰC TRỊ ĐIỆN XOAY CHIỀU

Homework#13 Trigonometry Honors Study Guide for Final Test#3

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

5. Phương trình vi phân

Q1a. HeavisideTheta x. Plot f, x, Pi, Pi. Simplify, n Integers

Core Mathematics C34

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Section 8.2 Graphs of Polar Equations

ΤΡΟΠΟΣ ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΕΜΒΟΛΗ (INTERPOL ATION)

Solutions to Exercise Sheet 5

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

ΜΑΣ002: Μαθηματικά ΙΙ ΑΣΚΗΣΕΙΣ (για εξάσκηση)

TRIGONOMETRY:+2.1++Degrees+&+Radians+ Definitions:* 1*degree*/* ** * 1*radian* * * *

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

F-TF Sum and Difference angle

Answer sheet: Third Midterm for Math 2339

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Finite Field Problems: Solutions

bab.la Φράσεις: Ταξίδι Τρώγοντας έξω ελληνικά-ελληνικά

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Leaving Certificate Applied Maths Higher Level Answers

(Gan Áireamhán) Bonnsraith


Γενικά Μαθηματικά Ι. Ενότητα 16: Ολοκλήρωση Τριγωνομετρικών Συναρτήσεων, Γενικευμένα Ολοκληρώματα Λουκάς Βλάχος Τμήμα Φυσικής

8. f = {(-1, 2), (-3, 1), (-5, 6), (-4, 3)} - i.) ii)..

Areas and Lengths in Polar Coordinates

Numerical Analysis FMN011

Rectangular Polar Parametric

Parametrized Surfaces

Reminders: linear functions

Not for reproduction

Η ΦΩΤΟΛΙΘΟΓΡΑΦΙΑ & ΟΙ ΕΞΕΛΙΞΕΙΣ ΤΗΣ. Ε. Κ. Παλούρα, Καθηγήτρια ΠΜΣ «Φυσική & τεχνολογία υλικών» Τμήμα Φυσικής ΑΠΘ

Lifting Entry (continued)

11.4 Graphing in Polar Coordinates Polar Symmetries

Section 7.6 Double and Half Angle Formulas

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

f (x + h) f (x) h f (x) = lim h 0 f (z) f (x) z x df (x) dx, df dy dx,

SINH-VIEÂN PHAÛI GHI MAÕ-SOÁ SINH-VIEÂN LEÂN ÑEÀ THI VAØ NOÄP LAÏI ÑEÀ THI + BAØI THI

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

THỂ TÍCH KHỐI CHÓP (Phần 04) Giáo viên: LÊ BÁ TRẦN PHƯƠNG

An Luas, An Díláithriú agus An Treoluas

Διαφορικά Αόριστα Ολοκληρώµατα Κανόνες Ολοκλήρωσης. Γιάννης Σαριδάκης Σχολή Μ.Π.Δ., Πολυτεχνείο Κρήτης

Solutions to Mock IIT Advanced/Test - 3[Paper-2]/2013

Năm Chứng minh. Cách 1. Y H b. H c. BH c BM = P M. CM = Y H b

(product-operator) I I cos ω ( t sin ω ( t x x ) + Iy )

EE1. Solutions of Problems 4. : a) f(x) = x 2 +x. = (x+ǫ)2 +(x+ǫ) (x 2 +x) ǫ

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Transcript:

Teisteanais Nàiseanta AH08 X774/77/ Matamataig DIARDAOIN, CÈITEAN 9:00 M :00 F Comharran gu lèir 00 Feuch na ceistean UILE. Faodaidh tu àireamhair a chleachdadh. Gus na comharran gu lèir fhaighinn, feumaidh tu d obrachadh a-mach a shealltainn. Cuir na h-aonadan anns na freagairtean agad far a bheil sin iomchaidh. Chan fhaighear comharraidhean idir airson freagairtean air an togail bho dhealbhan-sgèile. Sgrìobh do fhreagairtean gu soilleir ann an leabhran nam freagairtean. Ann an leabhran nam freagairtean feumaidh tu àireamh na ceiste a tha thu a freagairt a chomharrachadh gu soilleir. Cleachd inc gorm no dubh. Mus fàg thu seòmar na deuchainne, feumaidh tu leabhran nam freagairtean a thoirt don Fhreiceadan; mura dèan thu sin, dh fhaodadh tu na comharran gu lèir airson a phàipeir a chall. *X77477* A/SQA

LIOSTA FHOIRMLEAN Deribheatan cumanta Iontagralan cumanta f ( ) f ( ) f ( ) f ( ) d sin cos ( ) sec a tan( a) + c a a sin + c a tan + a + tan + c a a tan sec ln + c cot cosec a e a e a + c sec sec tan cosec ln cosec cot e e Suimean Sn n a n d (Sreath airitmeatrach) = + ( ) (Sreath geoimeatrach) S n n ( r ), a = r r nn ( + ) nn ( + )( n+ ) n( n+ ) r =, r =, r = 6 4 n n n r= r= r= Teorem dà-theirmeach n n n n r r a+ b = a b r= 0 r far a bheil ( ) n n n! = C = r r r!( n r)! Leudachadh Maclaurin iv 4 f ( 0) f ( 0) f ( 0) f( ) = f( 0) + f ( 0) + + + +...!! 4! duilleag 0

LIOSTA FHOIRMLEAN (a leantainn) Teorem De Moivre [ (cos sin )] n n r θ + i θ = r ( cos nθ + isin nθ ) Iomadachadh bheactoran i j k a a a a a a a b= absin θ nˆ = a a a = i j + k b b b b b b b b b Cruth-atharrachadh matraigs Cuartachadh tuathal tro cheàrn, θ, mun origin, cosθ sin θ sin θ cosθ [Tionndaidh an duilleag duilleag 0

Comharran gu lèir 00 Feuch na ceistean UILE COMHARRAN. (a) Ma tha f( ) = sin, lorg f ( ). 5 e (b) Diofaraich y = 7 +. (c) Ma tha ycos + y = 6, lorg dy d le diofarachadh fhillteach. 4. Le bloighean pàirteach lorg 7 d. 5 4. (a) Sgrìobh sìos agus sìmplich an teirm coitcheann anns a leudachadh dà-theirmeach 9 aig 5 +. (b) Leis an fhiosrachadh seo, no ann an dòigh eile, lorg an teirm nach eil an eisimeil air. 4. Ma tha z = + i agus z = p 6 i, p, lorg: (a) zz ; (b) luach p far a bheil z z na fìor àireamh. 5. Cleachd algoritim Euclid airson nan iontaidsearan a agus b a lorg ma tha 06a+ 9b= 7. 4 duilleag 04

6. Air raon freagarrach tha lùb co-chomharraichte gu parameatrach le = t + agus y = t+. ln ( ) COMHARRAN Obraich a-mach co-aontar a bheantainn ris a lùb far a bheil t =. 5 7. Tha na maitraigsean C agus D air am mìneachadh le: C = 0 0 agus D= k+ 0, far a bheil k. (a) Lorg C D far an e bheil C an transpòs aig C. (b) (i) Lorg agus sìmplich abairt airson an deteirmeanant aig D. (ii) Sgrìobh sìos luach k far nach eil D idir ann. 8. Leis an ionadachadh u = sinθ, no ann an dòigh eile, lorg luach π 4 sin θcosθdθ. π 6 4 9. Dearbh gu bheil: (a) sùim trì iontaidsearan leantainneach sam bith so-roinnte le ; (b) e comasach àireamh còrr sam bith a sgrìobhadh mar sùim dà iontaidsear leantainneach. [Tionndaidh an duilleag duilleag 05

0. Ma tha z = + iy, dèan sgeidse dhen locus anns an raon coimpleacs z = z + i. COMHARRAN. (a) Lorg am matraigs, A, mar thoradh air cuairt tuathal de π radianan mun oirigin. (b) Lorg am matraigs, B, mar thoradh air faileas-sgàthain anns an -ais. (c) Leis an fhiosrachadh seo lorg a matraigs, P, mar thoradh air cuairt tuathail de π radianan mun oirigin agus faileas-sgàthain anns an -ais. Sgrìobh do fhreagairtean ann an luachan mionaideach. (d) Mìnich carson nach eil ceangal sam bith eadar matraigs P agus cuairt mun oirigin.. Airson n, nan iontaidsearan dhearbhte air fad, dearbh le ionducsean gu bheil n = ( ). n r r= 5 duilleag 06

COMHARRAN. Tha einnseanair air inneal-togaidh a dhealbh. Tha sgriubha a tionndadh agus bidh seo a giorrachadh faid an inneil agus a meudachadh an àirde. Tha an t-inneal air a mhodaileadh air rhombus, le gach taobh 5 cm a dh fhaid. Tha an fhaid cm, agus an àirde h cm anns an diagram seo. 5 cm h (a) Dearbh gu bheil h = 500. (b) Tha an fhaid a lùghdachadh aig reit 0 cm gach diog nuair a tha an sgriubha air a thionndadh. Obraich a-mach an reit aig a bheil an àirde ag atharrachadh nuair a tha = 0. 5 [Tionndaidh an duilleag duilleag 07

COMHARRAN 4. Ann an òrdugh geoimeatrach tha a chiad teirm 80 agus an co-mheas coitcheann. (a) Airson an òrdugh seo, obraich a-mach: (i) an 7 mh teirm; (ii) an sùim gu neo-chrìochnachd dhen t-sreath geoimeatrach seo. Tha a chiad teirm dhen òrdugh geoimeatrach seo co-ionann ris a chiad teirm de òrdugh airitmeatrach. Tha sùim a chiad còig teirmean dhen òrdugh airitmeatrach seo 40. (b) (i) Obraich a-mach diofar coitcheann an òrdugh seo. (ii) Sgrìobh sìos agus sìmplich abairt airson an nmh teirm. Tha S n a riochdachadh sùim a chiad n teirmean dhen òrdugh airitmeatrach seo. (c) Obraich a-mach luachan n far a bheil S n = 44. 5. (a) Cleachd iontagrachadh pàirteach agus lorg sin d. (b) Leis an fhiosrachadh seo lorg fuasgladh sònraichte dy y = sin, 0 d ma tha =π nuair a tha y = 0. Sgrìobh do fhreagairt anns an riochd y = f( ). 7 duilleag 08

6. Seo na co-aontaran aig na raointean π, π agus π : COMHARRAN π : y+ z = 4 π : 5y z = π : 7 + y + az = far a bheil a. (a) Cleachd gearradh-às Gauss agus lorg luach a gus am bi trasnadh na raointean π, π agus π na loidhne dhìreach. (b) Lorg co-aontar a loidhne trasnaidh nuair a tha an luach seo aig a. 4 Tha raon eile π 4 ann le co-aontar 9+ 5y+ 6z = 0. (c) Obraich a-mach an ceàrn caol eadar π agus π 4. (d) Mìnich an dàimh geoimeatrach eadar π agus π 4. Dearbh do fhreagairt. 7. (a) Ma tha f ( ) = e, obraich a-mach leudachadh Maclaurin airson f ( ) agus a toirt a-steach, an teirm ann an. suas gu, (b) Air raon freagarrach tha g( ) = tan. (i) Dearbh gu bheil an treasamh deribheataibh aig g( ) air a riochdachadh le 4 g ( ) = sec + 4 tan sec. (ii) Leis an fhiosrachadh seo, lorg leudachadh Maclaurin airson g( ) suas gu, agus a toirt a-steach an teirm ann an. (c) Leis an fhiosrachadh seo, no ann an dòigh eile, lorg leudachadh Maclaurin airson e tan suas gu, agus a toirt a-steach, an teirm ann an. (d) Sgrìobh sìos a chiad trì teirmean, nach eil aig neoni, ann an leudachadh Maclaurin airson e tan + e sec. [CRÌOCH A PHÀIPEIR] duilleag 09

[DUILLEAG BHÀN] NA SGRÌOBH AIR AN DUILLEIG SEO duilleag 0

[DUILLEAG BHÀN] NA SGRÌOBH AIR AN DUILLEIG SEO duilleag

[DUILLEAG BHÀN] NA SGRÌOBH AIR AN DUILLEIG SEO duilleag

Teisteanais Nàiseanta AH08 X774/77/ Matamataig Briathrachas DIARDAOIN, CÈITEAN 9:00 M :00 F *X77477* A/SQA

Gàidhlig Diofarachadh fhillteach Teirm coitcheann Leudachadh dà-theirmeach Algoritim Euclid Transpòs Ionadachadh Iontaidsearan leantainneach So-roinnte Àireamh còrr Raon coimpleacs Oirigin Faileas-sgàthain Dearbh le ionducsean Co-mheas coitcheann Òrdugh geoimeatrach Sreath geoimeatrach Òrdugh airitmeatrach Diofar coitcheann Iontagrachadh pàirteach Fuasgladh sònraichte Raointean Trasnadh Loidhne trasnaidh Beurla Implicit differentiation General term Binomial epansion Euclidean algorithm Transpose Substitution Consecutive integers Divisible by Odd number Comple plane Origin Reflection Prove by induction Common ratio Geometric sequence Geometric series Arithmetric sequence Common difference Integration by parts Particular solution Planes Intersection Line of intersection duilleag 0