Vocal Dynamics Controller:

Σχετικά έγγραφα
Fourier transform, STFT 5. Continuous wavelet transform, CWT STFT STFT STFT STFT [1] CWT CWT CWT STFT [2 5] CWT STFT STFT CWT CWT. Griffin [8] CWT CWT

Vol.4-DCC-8 No.8 Vol.4-MUS-5 No.8 4// 3 3 Hanning (T ) 3 Hanning 3T (y(t)w(t)) dt =.5 T y (t)dt. () STRAIGHT F 3 TANDEM-STRAIGHT[] 3 F F 3 [] F []. :

MIDI [8] MIDI. [9] Hsu [1], [2] [10] Salamon [11] [5] Song [6] Sony, Minato, Tokyo , Japan a) b)

Query by Phrase (QBP) (Music Information Retrieval, MIR) QBH QBP / [1, 2] [3, 4] Query-by-Humming (QBH) QBP MIDI [5, 6] [8 10] [7]

Acoustic Signal Adjustment by Considering Musical Expressive Intention Using a Performance Intension Function

SNR F0 [2], [3], [4] F0 F0 F0 F0 F0 TUSK F0 TUSK F0 6 TUSK 6 F0 2. F0 F0 [5] [6] [7] p[8] Cepstrum [9], [10] [11] [12] [13] F0 [14] F0 [15] DIO[16] [1

CSJ. Speaker clustering based on non-negative matrix factorization using i-vector-based speaker similarity

Ψηφιακή Επεξεργασία Φωνής

Singing Information Processing: Music Information Processing for Singing Voices

EM Baum-Welch. Step by Step the Baum-Welch Algorithm and its Application 2. HMM Baum-Welch. Baum-Welch. Baum-Welch Baum-Welch.

Buried Markov Model Pairwise

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Estimation, Evaluation and Guarantee of the Reverberant Speech Recognition Performance based on Room Acoustic Parameters

1,a) 1,b) 2 3 Sakriani Sakti 1 Graham Neubig 1 1. A Study on HMM-Based Speech Synthesis Using Rich Context Models

GUI

3: A convolution-pooling layer in PS-CNN 1: Partially Shared Deep Neural Network 2.2 Partially Shared Convolutional Neural Network 2: A hidden layer o

An Automatic Modulation Classifier using a Frequency Discriminator for Intelligent Software Defined Radio

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

Signal processing for handling singing voice texture

VOCODER VOCODER Vocal

Analysis of prosodic features in native and non-native Japanese using generation process model of fundamental frequency contours


( ) (Harmonic-Temporal Clustering; HTC) [1], [2] ( ) ( ) [4] HTC. (Non-negative Matrix Factorization; NMF) [3] [5], [6] [7], [8]

Detection and Recognition of Traffic Signal Using Machine Learning

: TANDEM-STRAIGHT. Make singing voice tangible: TANDEM-STRAIGHT and temporally variable morphing as substrate. Hideki Kawahara 1 and Masanori Morise 2

The Algorithm to Extract Characteristic Chord Progression Extended the Sequential Pattern Mining

Sampling Basics (1B) Young Won Lim 9/21/13

F0 Estimation of Melody and Bass Lines in Real-world Musical Audio Signals

Speech Recognition using Phase Information based on Long-Term Analysis

Spectrum Representation (5A) Young Won Lim 11/3/16

Lifting Entry (continued)

Ψηφιακή Επεξεργασία Φωνής

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Συνδυασμένη Οπτική-Ακουστική Ανάλυση Ομιλίας

[5] F 16.1% MFCC NMF D-CASE 17 [5] NMF NMF 3. [5] 1 NMF Deep Neural Network(DNN) FUSION 3.1 NMF NMF [12] S W H 1 Fig. 1 Our aoustic event detect

Outline. (strain) !!! Rouse ! PASTA

GPGPU. Grover. On Large Scale Simulation of Grover s Algorithm by Using GPGPU

Lecture 21: Scattering and FGR

6.3 Forecasting ARMA processes

1 n-gram n-gram n-gram [11], [15] n-best [16] n-gram. n-gram. 1,a) Graham Neubig 1,b) Sakriani Sakti 1,c) 1,d) 1,e)

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

(hidden Markov model: HMM) FUNDAMENTALS OF SPEECH SYNTHESIS BASED ON HMM. Keiichi Tokuda. Department of Computer Science

Ψηφιακή Επεξεργασία Φωνής

[2] REVERB 8 [3], [4] [5] [20] [6], [7], [8], [9], [10] [11] REVERB 8 *1 [9] LDA *2 MLLT (SAT) [8] (basis fmllr) [12] (DNN) [10] DNN [11] [13] [14] Ka

Sinsy: HMM. Sinsy An HMM-based singing voice synthesis system which can realize your wish I want this person to sing my song

Assignment 1 Solutions Complex Sinusoids

Numerical Analysis FMN011

ME 365: SYSTEMS, MEASUREMENTS, AND CONTROL (SMAC) I

Ψηφιακή Επεξεργασία Φωνής

Instrument Blood Current Measuring Instrument. Brain Wave Measuring Instrument. (frequency) f. log. 1/f

v.connect 2 v.connect : A Singing Synthesis System Enabling Users to Control Vocal Tones Makoto Ogawa, 1 Syunji Yazaki 1 and Kôki Abe 1 VOCALOID

Evolution of Novel Studies on Thermofluid Dynamics with Combustion

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

«ΑΝΑΠΣΤΞΖ ΓΠ ΚΑΗ ΥΩΡΗΚΖ ΑΝΑΛΤΖ ΜΔΣΔΩΡΟΛΟΓΗΚΩΝ ΓΔΓΟΜΔΝΩΝ ΣΟΝ ΔΛΛΑΓΗΚΟ ΥΩΡΟ»

Applying Markov Decision Processes to Role-playing Game

Yoshifumi Moriyama 1,a) Ichiro Iimura 2,b) Tomotsugu Ohno 1,c) Shigeru Nakayama 3,d)

Chinese Journal of Applied Probability and Statistics Vol.28 No.3 Jun (,, ) 应用概率统计 版权所用,,, EM,,. :,,, P-. : O (count data)

MachineDancing: MikuMikuDance (MMD) *1 MMD MMD. Kinect. MachineDancing. 3 MachineDancing. 1 MachineDancing :

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Non-negative Matrix Factorization, NMF [5] NMF. [1 3] Bregman [4] Harmonic-Temporal Clustering, HTC [2,3] 1,2,b) NTT

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.


IPSJ SIG Technical Report Vol.2014-CE-127 No /12/6 CS Activity 1,a) CS Computer Science Activity Activity Actvity Activity Dining Eight-He

Bundle Adjustment for 3-D Reconstruction: Implementation and Evaluation

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ Β ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ: ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ. Θέµα:

Διπλωματική Εργασία. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

476,,. : 4. 7, MML. 4 6,.,. : ; Wishart ; MML Wishart ; CEM 2 ; ;,. 2. EM 2.1 Y = Y 1,, Y d T d, y = y 1,, y d T Y. k : p(y θ) = k α m p(y θ m ), (2.1

Second Order RLC Filters

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Adaptive compensation control for a piezoelectric actuator exhibiting rate-dependent hysteresis Y. Ueda, F. Fujii (Yamaguchi Univ.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ECE 468: Digital Image Processing. Lecture 8

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Computing the Macdonald function for complex orders

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Πανεπιστήµιο Πειραιώς Τµήµα Πληροφορικής

2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems

2.153 Adaptive Control Lecture 7 Adaptive PID Control

Fundamentals of Signals, Systems and Filtering

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του Φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Echo path identification for stereophonic acoustic echo cancellation without pre-processing

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

A Method of Trajectory Tracking Control for Nonminimum Phase Continuous Time Systems

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Anomaly Detection with Neighborhood Preservation Principle

Cite as: Pol Antras, course materials for International Economics I, Spring MIT OpenCourseWare ( Massachusetts

1530 ( ) 2014,54(12),, E (, 1, X ) [4],,, α, T α, β,, T β, c, P(T β 1 T α,α, β,c) 1 1,,X X F, X E F X E X F X F E X E 1 [1-2] , 2 : X X 1 X 2 ;

Reminders: linear functions

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

Διπλωματική Εργασία του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του Πανεπιστημίου Πατρών

6.003: Signals and Systems. Modulation

Retrieval of Seismic Data Recorded on Open-reel-type Magnetic Tapes (MT) by Using Existing Devices

はじめに 1. 保存則導出の新しい手法. Open-loop. π μ - E-L. * ** *** Received, March, ρ (, ) μ μ

BCI On Feature Extraction from Multi-Channel Brain Waves Used for Brain Computer Interface

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Monetary Policy Design in the Basic New Keynesian Model

Automatic extraction of bibliography with machine learning

Transcript:

Vocal Dynamics Controller:. F ),) F F 2 F F EM 2 ),2),3) 2 F 4) F Vocal Dynamics Controller 2 Vocal Dynamics Controller: A note-by-note editing and synthesizing interface for F dynamics in singing voices Yasunori Ohishi, Hirokazu Kameoka, Daichi Mochihashi, Hidehisa Nagano and Kunio Kashino We present a novel statistical model for dynamics of various singing behaviors, such as vibrato and overshoot, in a fundamental frequency (F) sequence and develop a note-by-note editing and synthesizing interface for F dynamics. We develop a complete stochastic representation of the F dynamics based on a second-order linear system and propose a complete, efficient scheme for parameter estimation using the Expectation-Maximization (EM) algorithm. Finally, we synthesize the singing voice using the F sequence generated by manipulating model parameters individually which control the oscillation based on the second-order system and the pitch of each note. F F ),2) 3) 5) 6) 9) F F F F 2 H(s) = Ω 2 s 2 + 2ζΩs + Ω 2 () ζ (ζ > ) ( < ζ < ) ) (ζ = ) (ζ = ) ζ Ω () F ) F F 2 ζ, Ω NTT NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation c 2 Information Processing Society of Japan

56 ] t n 52 e c 48 F44 6 4 2 4 6 8 観測 F 系列 観測信号 : 旋律成分 ノート間の音高差 歌唱動的変動成分 線形 2 次系 sec] ガウス性白色雑音 時間 時間 時間時間 ステップ信号 : インパルス応答 : 系の出力信号 : 残差信号 : F F o(t) f(t) 2 h(t) y(t) ɛ(t) h(t) ɛ(t) F h(t) ɛ(t) F Vocal Dynamics Controller 2. 2 F () () ) HMM ζ () ( Ωe ζωt e ζ 2 Ωt e ) ζ 2 Ωt (ζ > ) 2 ζ F F 2 ( Ωe ζωt sin( ζ2 Ωt ) ( < ζ < ) F h(t) = ζ 2 Ω 2 te Ωt (ζ = ) Ω sin(ωt) (ζ = ) F 5) y = Φf 2 y = y, y 2,..., y N ] T, f = f, f 2,..., f N ] T y(t) f(t) N 2 Φ ζ = Φ F ( ) 2 h(t) ) 5) Ω 2 e Ω 2Ω 2 e 2Ω Ω 2 e Ω Φ =....... ( 2 ) F NΩ 2 e NΩ... 2Ω 2 e 2Ω Ω 2 e Ω h(t) (2) Φ (2) 2 c 2 Information Processing Society of Japan

Φ w Υ () + w 2 Υ (2) +... + w I Υ (I) (3) y y N ( Ψ u, αψ (Ψ ) T) (7) ζ, Ω I 3.2 {Φ (), Φ (2),..., Φ (I) } Υ (i) := (Φ (i) ) = ɛ, ɛ 2,..., ɛ N ] T N (, βi N ) F Φ o = o, o 2,..., o N ] T y w := {w, w 2,..., w I } o = y + (8) Φ β y o Θ := {w, u, β} w Φ Φ (i) { Φ Υ (i) P (o Θ) = (2π) N/2 Σ exp } /2 2 (o )T Σ (o ) (9) = Ψ u, Σ = αψ (Ψ ) T + βi N (w Υ () + w 2Υ (2) +... + w IΥ (I) )y = f (4) Ψ := w Υ () + w 2Υ (2) +... + w IΥ (I) Θ P (Θ) P (Θ) = P (w)p (u)p (β) u β w 3. 2 F I λp p P (w) = wi 2Γ(/p) exp λ p () (4) 2 i= 3. p, λ < p < 2 f p(w) u = u,..., u N ] T = u,,..., ] T = u 4. EM u N u N (u, αi N ) F o P (Θ o) P (o Θ)P (Θ) f α Θ Θ (MAP) I N N N y f y = Ψ f ( ) F o y y ( 2 ) w Ey] = Ψ Ef] = Ψ u (5) ( ) EM 6) E-step o y covy] = Ψ Eff T ](Ψ ) T Ψ Ef]Ef] T (Ψ ) T = αψ (Ψ ) T (6) ( 2 ) EM M-step Q 3 c 2 Information Processing Society of Japan

2 4.2 M-step 4. MAP EM EM f(w, u, β) := N N ( I ) 2 log αβ + log w iυ (i) y x Q(Θ, Θ ) = c 2 + log P (Θ) o = Hx, ( ]) ] y H := I N I N, x := () 7) (6) x Θ 2 log P (Θ) Q N ( I ) N I log Λ tr ( Λ Exx T o; Θ ] ) ] log w iυ (i) γ i,n log w iυ (i) (7) γ + 2m T Λ Ex o; Θ ] m T Λ i,n m n= i n= i= ( ] Ψ u m :=, Λ := α ΨT Ψ tr( ) Ex o; Θ ] Exx T o; Θ ] f + (w, u, β, w, ) := N N 2 log αβ + β IN ]) (2) Ex o; Θ ] = m + ΛH T (HΛH T ) (o Hm) (3) Exx T o; Θ ] = Λ ΛH T (HΛH T ) HΛ + Ex o; Θ ]Ex o; Θ ] T (4) EM E-step Θ w i = w i, γ i,n = Ex o; Θ ] Exx T o; Θ ] y, Ex o; Θ ] Exx T o; Θ ] ] Ex o; Θ x y ] =, Exx T o; Θ ] = x ɛ R y x y x ɛ N R y R ɛ N N ] R ɛ (5) (2) Θ n= i= 2β tr(rɛ) 2α ut u λ p + α ut Ψ x y 2α tr(ψt ΨR y) I w i p (6) i= Υ (i) Υ (i) n n w i p p w i p w i + w i p p w i p, ( < p ) (8) w := { w, w 2,..., w I }, := {γ,,..., γ I,N } (7) (8) (6) I n= i= 2β tr(rɛ) 2α ut u λ p γ i,n log w iυ (i) + γ i,n α ut Ψ x y 2α tr(ψt ΨR y) I ) (p w i p w i + w i p p w i p (9) i= f(w, u, β) f + (w, u, β, w, ) w i Υ (i) I i = w i Υ(i ), (i =, 2,..., I, n =, 2,..., N) (2) (9) (9) w i I α i= ( ) tr R T y Υ (i)t Υ (i ) w i α ut Υ (i ) x y + λ p p w i p N n= γ i,n w i = (i =, 2,..., I) (2) (2) w, w 2,..., w I 4 c 2 Information Processing Society of Japan

: Θ = {w, u, β} E-step: Ex o; Θ ], Exx T o; Θ ] w, M-step: (22) (23) Θ = {w, u, β} : (9) Θ = Θ E-step 2 EM 2 F Coordinate descent 8) w, w 2,..., w I (2) w i w i = Y 2 + Y 2 4XZ 2X ( ) X = tr R T y Υ (i ) T Υ (i ), ( ) Y = R T y Υ (i)t Υ (i ) w i u T Υ (i ) x y + αλ p p w i p, i i tr Z = α i =, 2,..., I (22) w, w 2,..., w I f + (w, u, β, w, ) u, β u = N T Ψ x y, β = N tr( ) R ɛ (23) N n= γ i,n (22) u β 2 ( ) 42 HMM F Viterbi 5. Vocal Dynamics Controller w, u, β F o (8) w, u, β 3cent F Vocal Dynamics 7cent cent Controller 3 GUI 64 A: F F F YIN 9) 5ms = 5ms Hz 3 Vocal Dynamics Controller 2 A I 5 o Hz cent o cent o cent = 2 log 2 o Hz 44 2 3 2 5 (24) F B: 4 F HMM 2 cent cent /42.999999./4 HMM 4 5 c 2 Information Processing Society of Japan

セグメント分割 (HMM による Viterbi 探索 ) セグメントごとのモデルパラメータ推定 ( 桃線はを表す ) 先頭の F 値 4 B 5 C D ( 2 ) all 4 {Υ (), Υ (2),..., Υ (I) } ζ 2.2 Ω.5.3.5 I = 3 w = {w, w 2,..., w I} /I u F o β β = ( 5 ) () (4) (9) α = 2, λ =, p =.8 ( 3 ) 2 C: F F F ζ Ω F 4 F all () HMM Viterbi (2) (3) Viterbi = Ψ u F 2 F h(t) Φ Φu F 2 5 ζ F Ω u F ( 4 ) (2) (3) D: x ɛ 2 F F 6 c 2 Information Processing Society of Japan

Depth cent (2) ζ = Ω Frequency ] F t 2 5 Frequency c F Depth 54 E: 2 F F u u ζ Ω Φ Φu F ] 2 F: C D E B F G: B E F Griffin-Lim STFT 2) 6 F o F µ ( ) F F F ( 2 ) STFT H: A F Y = (Y f,t ) F T STFT 2ms Hanning 5ms ( 3 ) LPC 2) ( 4 ) () w, u (9) F F o Beethoven 9 4 ( 5 ) (4) {X ω,t} R w, u F V ω,t C ( 6 ) {V f,t } f {,...,F },t {,...,T } STFT vm] M m= ) ( 7 ) vm] M m= STFT {V f,t } f {,...,F },t {,...,T } V ( 8 ) f, t V f,t X f,t f,t V f,t V f,t (6) F (6) (8) Griffin-Lim STFT Le Roux 22) β n e t n e c F 62 58 5 5 46 42 38 2 4 6 8 Time sec] 声楽家 ( 女性 ) 素人 ( 男性 ) 6. F 6 7 c 2 Information Processing Society of Japan

Prosody of Japanese Lyrics, Proc. ICEC 29, pp.39 3 (29). Multiple Kernel Learning ) Ohishi, Y. et al.: A Stochastic Representation of the Dynamics of Sung Melody, 23) 25) Proc. ISMIR 27 (27). ) Ohishi, Y. et al.: Parameter Estimation Method of F Control Model for Singing w, u, β Voices, Proc. ICSLP 28, pp.39 42 (28). 2), 2-9- pp.625 626 (998). 7. 3) Minematsu, N. et al.: Prosodic Modeling of Nagauta Singing and Its Evaluation, Proc. SpeechProsody 24, pp.487 49 (24). F 4) Fujisaki, H.: A note on the physiological and physical basis for the phrase and accent components in the voice fundamental frequency contour, Vocal Physiology: Voice Production, Mechanisms and Functions, (O. Fujimura, ed.), Raven Press, pp. 347 355 (988). MFCC 5) HMM Vol.28, No.76, pp.89 96 (28). Jonathan Le Roux NTT CS 6) Feder, M. and Weinstein, E.: Parameter estimation of superimposed signals using the EM algorithm, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.36, No.4, pp.477 489 (988). 7) Kameoka, H. et al.: Complex NMF: A New Sparse Representation for Acoustic ) Saitou, T. et al.: Speech-To-Singing Synthesis: Converting Speaking Voices to Signals, Proc. ICASSP 29, pp.3437 344 (29). Singing Voices by Controlling Acoustic Features Unique to Singing Voices, Proc. 8) Meng, X.L. and Rubin, D.B.: Maximum Likelihood Estimation via the ECM Algorithm: A general framework, Biometrika, Vol.8, pp.267 278 (993). WASSPA 27, pp.25 28 (27). 2) Saitou, T. et al.: Acoustic and Perceptual Effects of Vocal training in Amateur 9) de Cheveigné, A. and Kawahara, H.: YIN, a fundamental frequency estimator for Male Singing, Proc. EUROSPEECH 29, pp.832 835 (29). speech and music, JASA, Vol., No.4, pp.97 93 (22). 3) Nakano, T. et al.: An Automatic Singing Skill Evaluation Method for Unknown 2) Griffin, D.W. and Lim, J.S.: Signal estimation from modified short-time Fourier Melodies Using Pitch Interval Accuracy and Vibrato Features, Proc. ICSLP 26, transform, IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol.32, pp.76 79 (26). No.2, pp.236 243 (984). 4) Kako, T. et al.: Automatic Identification for Singing Style Based on Sung Melodic 2) Itakura, F. and Saito, S.: Digital filtering techniques for speech analysis and synthesis, Proc. ICA 97, Vol.25-C-, pp.26 264 (97). Contour Characterized in Phase Plane, Proc. ISMIR 29, pp.393 397 (29). 5) Proutskova, P. and Casey, M.: You Call That Singing? Ensemble Classification 22) Le Roux, J. et al.: Explicit consistency constraints for STFT spectrograms and for Multi-Cultural Collections of Music Recordings, Proc. ISMIR 29, pp.759 764 their application to phase reconstruction, Proc. SAPA 28 (28). (29). 23) Rasmussen, C.E. and Williams, C. K.I.: Gaussian Processes for Machine Learning, 6) Sundberg, J.: The KTH synthesis of singing, Advances in Cognitive Psychology. MIT Press, Cambridge, Mass, USA (26). Special issue on Music Performance, Vol.2, No.2-3, pp.3 43 (26). 24) Bach, F. et al.: Multiple kernel learning, conic duality, and the smo algorithm, 7) Bonada, J. and Loscos, A.: Sample-based singing voice synthesizer by spectral Proc. ICML 24, pp.6 3. concatenation, Proc. SMAC 23 (23). 25), 2-Q-24 8) Nakano, T. et al.: VocaListener: A Singing-to-Singing Synthesis System Based on pp.499 52 (2). Iterative Parameter Estimation, Proc. SMC 29, pp.343 348 (29). 9) Fukayama, S. et al.: Orpheus: Automatic Composition System Considering 8 c 2 Information Processing Society of Japan