Non-Gaussianity from Lifshitz Scalar

Σχετικά έγγραφα
Primordial non-gaussianity from inflation

Strain gauge and rosettes

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Space-Time Symmetries

derivation of the Laplacian from rectangular to spherical coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Higher Derivative Gravity Theories

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Approximation of distance between locations on earth given by latitude and longitude

Finite Field Problems: Solutions

This is a repository copy of Persistent poverty and children's cognitive development: Evidence from the UK Millennium Cohort Study.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Partial Trace and Partial Transpose

( y) Partial Differential Equations

( ) = a(1)b( 2 ) c( N ) is a product of N orthonormal spatial

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

EE512: Error Control Coding

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Example Sheet 3 Solutions

ST5224: Advanced Statistical Theory II

Προσωπική Aνάπτυξη. Ενότητα 2: Διαπραγμάτευση. Juan Carlos Martínez Director of Projects Development Department

A manifestly scale-invariant regularization and quantum effective operators

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Forced Pendulum Numerical approach

Προσωπική Aνάπτυξη. Ενότητα 4: Συνεργασία. Juan Carlos Martínez Director of Projects Development Department

Reminders: linear functions

Numerical Analysis FMN011

Abstract Storage Devices


ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Homework 3 Solutions

Congruence Classes of Invertible Matrices of Order 3 over F 2

Srednicki Chapter 55

Lecture 34 Bootstrap confidence intervals

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ Β ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ: ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ. Θέµα:

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

UV fixed-point structure of the 3d Thirring model

2 Composition. Invertible Mappings

Dark matter from Dark Energy-Baryonic Matter Couplings

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

CRASH COURSE IN PRECALCULUS

Higher spin gauge theories and their CFT duals

6.3 Forecasting ARMA processes

Three coupled amplitudes for the πη, K K and πη channels without data

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Math 6 SL Probability Distributions Practice Test Mark Scheme

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

5. Choice under Uncertainty

Fractional Colorings and Zykov Products of graphs

Matrices and Determinants

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Second Order Partial Differential Equations

Lecture 21: Scattering and FGR

6.4 Superposition of Linear Plane Progressive Waves

From the finite to the transfinite: Λµ-terms and streams

Derivation of Optical-Bloch Equations

Mean-Variance Analysis

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

1 String with massive end-points

On a four-dimensional hyperbolic manifold with finite volume

An Inventory of Continuous Distributions

Areas and Lengths in Polar Coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Differential equations

Cosmological dynamics and perturbations in Light mass Galileon models

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

D Alembert s Solution to the Wave Equation

IMES DISCUSSION PAPER SERIES

Electronic structure and spectroscopy of HBr and HBr +

Computing the Macdonald function for complex orders

Biodiesel quality and EN 14214:2012

Example 1: THE ELECTRIC DIPOLE

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Aluminum Electrolytic Capacitors (Large Can Type)

LIGHT UNFLAVORED MESONS (S = C = B = 0)

ΜΗΤΡΙΚΟΣ ΘΗΛΑΣΜΟΣ ΚΑΙ ΓΝΩΣΤΙΚΗ ΑΝΑΠΤΥΞΗ ΜΕΧΡΙ ΚΑΙ 10 ΧΡΟΝΩΝ

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Statistical Inference I Locally most powerful tests

Section 8.3 Trigonometric Equations

[1] P Q. Fig. 3.1

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Parametrized Surfaces

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Geometry of the 2-sphere

Dr. D. Dinev, Department of Structural Mechanics, UACEG

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Αναερόβια Φυσική Κατάσταση

Η αλληλεπίδραση ανάμεσα στην καθημερινή γλώσσα και την επιστημονική ορολογία: παράδειγμα από το πεδίο της Κοσμολογίας

Other Test Constructions: Likelihood Ratio & Bayes Tests

Transcript:

COSMO/CosPA 200 September 27, 200 Non-Gaussianity from Lifshitz Scalar Takeshi Kobayashi (Tokyo U.) based on: arxiv:008.406 with Keisuke Izumi, Shinji Mukohyama

Lifshitz scalars with z=3 obtain super-horizon, scale-invariant field fluctuations without the need of an inflationary era Mukohyama 09 can source the primordial curvature perturbations this mechanism works regardless of the Lifshitz scalar s selfcoupling strength ( field fluctuations in the inflationary era) large non-gaussianity expected We study the non-gaussian nature of the Lifshitz scalar s intrinsic field fluctuations.

Lifshitz scalars action : S Φ = 2 dtd 3 x ] [( t Φ) 2 + ( )z+ M 2(z ) Φ z Φ anisotropic scaling with dynamical critical exponent : z x b x t b z t Φ b (z 3)/2 Φ especially for z =3, Φ b 0 Φ (cf. Hořava 09, Quantum gravity at a Lifshitz point )

super-horizon field flucuations of S φ = 2 Lifshitz scalars with z=3 dtd 3 xa(t) 3 [ ( t φ) 2 + φoφ + O(φ 3 ) ] O = M 4 a(t) 6 3 s M 2 a(t) 4 2 + c2 s a(t) 2 m2 a t p /3 < p < curvature perturbations via curvaton mechanism/ modulated reheating

scale-invariant field flucuations of S φ = 2 Lifshitz scalars with z=3 dtd 3 xa(t) 3 [ ( t φ) 2 + φoφ + O(φ 3 ) ] O = M 4 a(t) 6 3 φφ M 2, s M 2 a(t) 4 2 + c2 s a(t) 2 m2 Since [φ] = 0, field fluctuations are independent of H: regardless of its self-coupling strength.

scale-invariant field flucuations of S φ = 2 Lifshitz scalars with z=3 dtd 3 xa(t) 3 [ ( t φ) 2 + φoφ + O(φ 3 ) ] O = M 4 a(t) 6 3 φφ M 2, s M 2 a(t) 4 2 + c2 s a(t) 2 m2 Since [φ] = 0, field fluctuations are independent of H: regardless of its self-coupling strength. Fluctuations can be scale-invariant & non-gaussian.

order estimate of f S φ = dtd 3 xa 3 [ 2 ( tφ) 2 + 2 φ 3 φ M 4 a 6 + 3 φ αφ2 M 5 a 6 + ] φφ M 2 φφφ αm 3 for linear conversion to curvature pert. ζ = φ µ, ζζ M 2 µ 2 ζζζ α M 3 µ 3 f ζζζ ζζ 2 α µ M

order estimate of f S φ = dtd 3 xa 3 [ 2 ( tφ) 2 + 2 φ 3 φ M 4 a 6 + 3 φ αφ2 M 5 a 6 + ] φφ M 2 φφφ αm 3 for linear conversion to curvature pert. ζ = φ µ, 0 0 ζζ M 2 µ 2 ζζζ α M 3 µ 3 f ζζζ ζζ 2 α µ M 000 α

order estimate of f S φ = dtd 3 xa 3 [ 2 ( tφ) 2 + 2 φ 3 φ M 4 a 6 + 3 φ αφ2 M 5 a 6 + ] φφ M 2 φφφ αm 3 Large f produced as α approaches unity. for linear conversion to curvature pert. ζ = φ µ, 0 0 ζζ M 2 µ 2 ζζζ α M 3 µ 3 f ζζζ ζζ 2 α µ M 000 α

shapes of bispectra three independent marginal cubic operators: S3 =! " # 2 3 2 2 3 dtd x 5 α φ φ + α2 ( φ)( i φ) + α3 ( φ) 3 M a(t) 3 (k k2 k3 )2 F 0.2 3.0 2 0.4.0.0 0.0 0.2!0.2 0 0.0 0.8 0.8 x2 0.5 x3 x3 k3 /k 0.0 0.6.0 x2 k2 /k x2 0.5 x3 0.6 0.0 0.0 0.8 x2 0.5 x3.0 0.6.0!φk (t)φk2 (t)φk3 (t)" = (2π)3 M 3 δ (3) (k + k2 + k3 )F (k, k2, k3 ) Only the α term breaks the shift symmetry φ φ + const., and blows up in the squeezed traiangle limit.

S 3 = observational constraints dtd 3 x WMAP7 constraints: for ζ φ, M 5 a(t) 3 { α φ 2 3 φ + α 2 ( 2 φ)( i φ) 2 + α 3 ( φ) 3} 0 <f local < 74 40 <f orthog. < 6 24 <f equil. < 266 (95% CL) 0.03 < α < 0.004 < α 2 < 0.4 0.5 < α 3 < 0.3

S 3 = observational constraints dtd 3 x WMAP7 constraints: for ζ φ, M 5 a(t) 3 { α φ 2 3 φ + α 2 ( 2 φ)( i φ) 2 + α 3 ( φ) 3} 0 <f local < 74 40 <f orthog. < 6 24 <f equil. < 266 (95% CL) 0.03 < α < 0.004 < α 2 < 0.4 0.5 < α 3 < 0.3 NOTE: α i required for validity of perturbative expansions significant orthogonal/equilateral-type non-gaussianity produced within perturbatively controllable regime

S 3 = observational constraints dtd 3 x WMAP7 constraints: for ζ φ, M 5 a(t) 3 { α φ 2 3 φ + α 2 ( 2 φ)( i φ) 2 + α 3 ( φ) 3} 0 <f local < 74 40 <f orthog. < 6 24 <f equil. < 266 (95% CL) 0.03 < α < 0.004 < α 2 < 0.4 0.5 < α 3 < 0.3 NOTE: α i required for validity of perturbative expansions significant orthogonal/equilateral-type non-gaussianity produced within perturbatively controllable regime α required to be further suppressed, e.g. by shift symmetry

S 3 = S 4 = trispectra dtd 3 { x α M 5 a(t) 3 φ 2 3 φ + α 2 ( 2 φ)( i φ) 2 + α 3 ( φ) 3} dtd 3 { x β M 6 a(t) 3 φ 3 3 φ + β 2 φ 2 ( φ)( 2 φ)+β 3 φ( φ) 3 +β 4 φ 2 ( i φ) 2 + β 5 φ 2 ( i j k φ) 2 + β 6 ( i j k φ)( i φ)( j φ)( k φ) } φ k (t)φ k2 (t)φ k3 (t)φ k4 (t) = (2π) 3 M 4 δ (4) (k + k 2 + k 3 + k 4 )T (k, k 2, k 3, k 4 ) plots of (k k 2 k 3 k 4 ) 9/4 T in the equilateral limit: k = k 2 = k 3 = k 4 in terms of C 2 k k 2 /k k 2, C 3 k k 3 /k k 3 α 2 α 2 2 α 2 3 α α 2 α α 3 α 2 α 3 β β 2 β 3

summary a Lifshitz scalar with z = 3 obtains super-horizon, scaleinvariant field fluctuations, regardless of its self-coupling strength the resulting curvature perturbations necessarily leave large non-gaussianity in the sky, unless the field s self-couplings are somehow suppressed significant non-gaussianity of order f = O(00) is generated, within the regime of validity of perturbative expansions self-coupling terms containing spatial derivatives produce non- Gaussianities with various shapes, including the local, equilateral, and orthogonal shapes

marginal cubic terms in the UV cubic terms with six spatial derivatives: A ( 3 φ ) φ 2, A 2 ( 2 i φ ) ( i φ) φ, A 3 ( 2 φ ) ( φ), A 4 ( i j φ)( i j φ) φ A 5 ( i φ)( i φ) φ, A 6 ( i j k φ)( i j k φ) φ, A 7 ( 2 φ ) ( i φ)( i φ), A 8 ( i j φ)( i φ)( j A 9 ( i φ)( φ)( i φ), A 0 ( i φ)( i j φ)( j φ), A ( i j k φ)( i j φ)( k φ), A 2 ( φ)( φ)( φ), A 3 ( φ)( i j φ)( i j φ), A 4 ( i j φ)( j k φ)( k i φ). total derivatives with six spatial derivatives: [( i 2 i φ ) φ 2] = A +2A 2, [( i 2 φ ) ( i φ) φ ] = A 2 + A 3 + A 7, i [( i j φ)( j φ) φ] =A 2 + A 4 + A 8, i [( i φ)( φ) φ] =A 3 + A 5 + A 9, i [( j φ)( i j φ) φ] =A 4 + A 5 + A 0, i [( i j k φ)( j k φ) φ] =A 4 + A 6 + A, i [( i φ)( j φ)( j φ)] = A 7 +2A 0, i [( j φ)( i φ)( j φ)] = A 8 + A 9 + A 0, i [( i j k φ)( j φ)( k φ)] = A 8 +2A, i [( φ)( φ)( i φ)] = 2A 9 + A 2, i [( φ)( i j φ)( j φ)] = A 9 + A 0 + A 3, i [( i j φ)( j k φ)( k φ)] = A 0 + A + A 4, i [( j k φ)( j k φ)( i φ)] = 2A + A 3. three independent terms: S 3 = dtd 3 x M 5 a(t) 3 { α φ 2 3 φ + α 2 ( 2 φ)( i φ) 2 + α 3 ( φ) 3}

observational constraints on α i φ k (t)φ k2 (t)φ k3 (t) = (2π) 3 M 3 δ (3) (k + k 2 + k 3 )F (k,k 2,k 3 ) scalar product: F template = c local F F 2 k i F (k,k 2,k 3 )F 2 (k,k 2,k 3 ) P k P k2 P k3 F local + c orthog. F orthog. + c equil. F equil. c local = 0.25α c orthog. =0.226α +0.086α 2 0.00334α 3 c equil. = 0.223α +0.0280α 2 0.0876α 3 for ζ = φ µ, f i = 20 3 µ M ci 2.2 0 4 c i necessary conditions for 0 <f local < 74 40 <f orthog. < 6 24 <f equil. < 266 are 0.03 < α < 0.004 < α 2 < 0.4 0.5 < α 3 < 0.3