Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry.

Σχετικά έγγραφα
Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

Higher spin gauge theories and their CFT duals

ΥΠΗΡΕΣΙΕΣ ΠΡΟΣΩΠΙΚΟΥ ΔΙΑΧΕΙΡΙΣΗ ΑΠΟΔΟΣΗΣ ΚΑΙ ΣΤΕΛΕΧΩΣΗ

SPECIAL FUNCTIONS and POLYNOMIALS

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Α Ρ Ι Θ Μ Ο Σ : 6.913

Geodesic Equations for the Wormhole Metric

Statistical analysis of extreme events in a nonstationary context via a Bayesian framework. Case study with peak-over-threshold data

ibemo Kazakhstan Republic of Kazakhstan, West Kazakhstan Oblast, Aksai, Pramzone, BKKS office complex Phone: ; Fax:

2. Α ν ά λ υ σ η Π ε ρ ι ο χ ή ς. 3. Α π α ι τ ή σ ε ι ς Ε ρ γ ο δ ό τ η. 4. Τ υ π ο λ ο γ ί α κ τ ι ρ ί ω ν. 5. Π ρ ό τ α σ η. 6.

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Electronic Supplementary Information

... 5 A.. RS-232C ( ) RS-232C ( ) RS-232C-LK & RS-232C-MK RS-232C-JK & RS-232C-KK

Supplementary Information Chemical Partition of the Radiative Decay Rate of Luminescence of Europium Complexes

SPONTANEOUS GENERATION OF GEOMETRY IN 4D

gr mol g lit mg lit mlit lit mol NaCl 96 NaCl HCl HCl

Non-Abelian Gauge Fields

6.1. Dirac Equation. Hamiltonian. Dirac Eq.


Hadronic Tau Decays at BaBar

UV fixed-point structure of the 3d Thirring model

Commutative Monoids in Intuitionistic Fuzzy Sets

Sachdev-Ye-Kitaev Model as Liouville Quantum Mechanics

On the Galois Group of Linear Difference-Differential Equations

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Supporting Information

4.- Littlest Higgs Model with T-parity. 5.- hhh at one loop in LHM with T-parity

!"#$ "%&$ ##%&%'()) *..$ /. 0-1$ )$.'-

Solutions - Chapter 4

Bounding Nonsplitting Enumeration Degrees

ΑΝΑΛΥΤΙΚΟΣ ΤΙΜΟΚΑΤΑΛΟΓΟΣ BMW / MINI (Ισχύει από 15/01/2018) ΚΙΒΩΤΙΟ ΤΑΧΥΤΗΤΩΝ ΚΥΒΙΣΜΟΣ ΙΣΧΥΣ (HP)

SIEMENS Squirrel Cage Induction Standard Three-phase Motors

Phys624 Quantization of Scalar Fields II Homework 3. Homework 3 Solutions. 3.1: U(1) symmetry for complex scalar

ITU-R P (2009/10)

Space-Time Symmetries

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Symmetries and Feynman Rules for Ramond Sector in WZW-type Superstring Field Theories

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

The ε-pseudospectrum of a Matrix

A summation formula ramified with hypergeometric function and involving recurrence relation

arxiv: v1 [math.ra] 19 Dec 2017

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

4.6 Autoregressive Moving Average Model ARMA(1,1)

Lecture 7: Overdispersion in Poisson regression

M p f(p, q) = (p + q) O(1)

> `type/scalartype`:=proc(x) local st; return member(true,{seq(type(x,st),st=convert(_scalartypes,list))}); end proc: 3.

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

Fourier Analysis of Waves

Πρότυπο Αδρονίων µε Στατικά κουάρκ Ι

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Iterated trilinear fourier integrals with arbitrary symbols

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä ³ Éμ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê ƒμ Ê É Ò Ê É É Ê, Ê, μ Ö

Notes on the Open Economy

Maude 6. Maude [1] UIUC J. Meseguer. Maude. Maude SRI SRI. Maude. AC (Associative-Commutative) Maude. Maude Meseguer OBJ LTL SPIN

Non-Gaussianity from Lifshitz Scalar

Divergence for log concave functions

Ceramic PTC Thermistor Overload Protection

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ

The Pohozaev identity for the fractional Laplacian

Computing the Gradient

A Convolutional Neural Network Approach for Objective Video Quality Assessment

Relativistic particle dynamics and deformed symmetry

A manifestly scale-invariant regularization and quantum effective operators

Eulerian Simulation of Large Deformations

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

Terminal Contact UL Insulation Designation (provided with) style form system approval Flux tight

8.324 Relativistic Quantum Field Theory II

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Κεφάλαιο 14: Πρόσθεση Στροφορμών

Hartree-Fock Theory. Solving electronic structure problem on computers

Accounting for model errors in iterative ensemble smoothers

= f(0) + f dt. = f. O 2 (x, u) x=(x 1,x 2,,x n ) T, f(x) =(f 1 (x), f 2 (x),, f n (x)) T. f x = A = f

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1


k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±

Variational Wavefunction for the Helium Atom

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

arxiv: v3 [math.ra] 24 Nov 2017

D-term Dynamical SUSY Breaking

Abstract Storage Devices

AdS black disk model for small-x DIS

A Summary Of Linear Continuum Mechanics 1. a b = a i b i = a b cos θ. det A = ɛ ijk A 1i A 2j A 3k. e 1 e 2 e 3 a b = ɛ ijk a j b k e i =

Η ανακάλυψη του Μποζονίου Higgs στο CERN

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

IL - 13 /IL - 18 ELISA PCR RT - PCR. IL - 13 IL - 18 mrna. 13 IL - 18 mrna IL - 13 /IL Th1 /Th2

ΤΗΛΕΠΙΣΚΟΠΗΣΗ. Γραµµικοί Μετασχηµατισµοί (Linear Transformations) Τονισµός χαρακτηριστικών εικόνας (image enhancement)

Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Δ.Π.Μ.Σ. ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΜΗΧΑΝΙΚΗΣ

'( )*(((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((((( +

ΕΘΝΙΚΗ ΣΧΟΛΗ ΤΟΠΙΚΗΣ ΑΥΤΟ ΙΟΙΚΗΣΗΣ Β ΕΚΠΑΙ ΕΥΤΙΚΗ ΣΕΙΡΑ ΤΜΗΜΑ: ΟΡΓΑΝΩΣΗΣ ΚΑΙ ΙΟΙΚΗΣΗΣ ΤΕΛΙΚΗ ΕΡΓΑΣΙΑ. Θέµα:

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Models for Probabilistic Programs with an Adversary

Partial Trace and Partial Transpose

Wavelet based matrix compression for boundary integral equations on complex geometries

EE101: Resonance in RLC circuits

Transcript:

Rethinking Connes' approach to the standard model of particle physics via non-commutative geometry. Shane Farnsworth, joint work with Latham Boyle. Perimeter Institute for Theoretical Physics arxiv:1408.5367, arxiv:1401.5083, arxiv:1303.1782 November 02, 2014

Overview 1. Introduction: - The NCG Standard particle model

Overview 1. Introduction: - The NCG Standard particle model 2. Reformulation: - {m,g} {A,H,D} B 3. Applications: - Constraining D F - Fixing the Higgs Mass - Non-associative geometry 4. Open problems

Introduction: The standard model S SM = d 4 xψ /Dψ + ψφψ +F 2 +(Dφ) 2 m 2 φ φ2 + λ φ φ 4

Introduction: The Standard model. SU(3) SU(2) U(1) u R 3 1 +2/3 d R 3 1 1/3 q L 3 2 +1/6 ν R 1 1 0 e R 1 1 1 l L 1 2 1/2 h 1 2 +1/2 A F = M 3 (C) H C π {H F,J F,γ F } D F S = S SM S = Tr[f (D/Λ)]+ < ψ Dψ >

Introduction: The Standard model. SU(3) SU(2) U(1) u R 3 1 +2/3 d R 3 1 1/3 q L 3 2 +1/6 ν R 1 1 0 e R 1 1 1 l L 1 2 1/2 h 1 2 +1/2 A F = M 3 (C) H C π {H F,J F,γ F } D F S = S SM S = Tr[f (D/Λ)]+ < ψ Dψ >

Introduction: The Standard model. SU(3) SU(2) U(1) u R 3 1 +2/3 d R 3 1 1/3 q L 3 2 +1/6 ν R 1 1 0 e R 1 1 1 l L 1 2 1/2 h 1 2 +1/2 A F = M 3 (C) H C π {H F,J F,γ F } D F S = S SM S = Tr[f (D/Λ)]+ < ψ Dψ >

Introduction: The Standard model. SU(3) SU(2) U(1) u R 3 1 +2/3 d R 3 1 1/3 q L 3 2 +1/6 ν R 1 1 0 e R 1 1 1 l L 1 2 1/2 h 1 2 +1/2 A F = M 3 (C) H C π {H F,J F,γ F } D F S = S SM S = Tr[f (D/Λ)]+ < ψ Dψ >

Introduction: The Standard model. SU(3) SU(2) U(1) u R 3 1 +2/3 d R 3 1 1/3 q L 3 2 +1/6 ν R 1 1 0 e R 1 1 1 l L 1 2 1/2 h 1 2 +1/2 A F = M 3 (C) H C π {H F,J F,γ F } D F S = S SM S = Tr[f (D/Λ)]+ < ψ Dψ >

Introduction: The Standard model. SU(3) SU(2) U(1) u R 3 1 +2/3 d R 3 1 1/3 q L 3 2 +1/6 ν R 1 1 0 e R 1 1 1 l L 1 2 1/2 h 1 2 +1/2 A F = M 3 (C) H C π {H F,J F,γ F } D F S = S SM S = Tr[f (D/Λ)]+ < ψ Dψ >

Introduction: The Standard model. SU(3) SU(2) U(1) u R 3 1 +2/3 d R 3 1 1/3 q L 3 2 +1/6 ν R 1 1 0 e R 1 1 1 l L 1 2 1/2 h 1 2 +1/2 A F = M 3 (C) H C π {H F,J F,γ F } D F S = S SM S = Tr[f (D/Λ)]+ < ψ Dψ >

Introduction: The Standard model. SU(3) SU(2) U(1) u R 3 1 +2/3 d R 3 1 1/3 q L 3 2 +1/6 ν R 1 1 0 e R 1 1 1 l L 1 2 1/2 h 1 2 +1/2 A F = M 3 (C) H C π {H F,J F,γ F } D F S = S SM S = Tr[f (D/Λ)]+ < ψ Dψ >

Reformulation: WHY 1. Long obscure list of axioms

Reformulation: WHY 1. Long obscure list of axioms A is a real, associative, involutive, unital algebra D = D J is a unitary anti-linear operator on H γ = γ 1 = γ [a,jb J ] = 0 for all a,b A [[D,a],Jb J ] = 0 for all a,b A Ra = JL aj {D,γ} = 0...

Reformulation: WHY 1. Long obscure list of axioms A is a real, associative, involutive, unital algebra D = D J is a unitary anti-linear operator on H γ = γ 1 = γ [a,jb J ] = 0 for all a,b A [[D,a],Jb J ] = 0 for all a,b A Ra = JL aj {D,γ} = 0... 2. Too Many Higgs elds

Reformulation: WHY 1. Long obscure list of axioms A is a real, associative, involutive, unital algebra D = D J is a unitary anti-linear operator on H γ = γ 1 = γ [a,jb J ] = 0 for all a,b A [[D,a],Jb J ] = 0 for all a,b A Ra = JL aj {D,γ} = 0... 2. Too Many Higgs elds 3. Incorrect Higgs mass predicted

Reformulation: {A,H,J} B 0 B 0 = A H bb = (a +h)(a +h ) = aa +ah +h a + 0 b = (a +h) = a +Jh

Reformulation: {A,H,J} B 0 B 0 = A H bb = (a +h)(a +h ) = aa +ah +h a + 0 b = (a +h) = a +Jh

Reformulation: {A,H,J} B 0 B 0 = A H bb = (a +h)(a +h ) = aa +ah +h a + 0 b = (a +h) = a +Jh

Reformulation: {A,H,J} B 0 B 0 = A H bb = (a +h)(a +h ) = aa +ah +h a + 0 b = (a +h) = a +Jh

Reformulation: {A,H,J} B 0 Associativity: [b 1,b 0,b 2 ] = (b 1 b 0 )b 2 b 1 (b 0 b 2 ) = 0 (a 1 h)a 2 a 1 (ha 2 ) = [R a2,l a1 ]h = 0 [R a2,l a1 ] = 0 a i A,h H,b i B 0

Reformulation: {A,H,J} B 0 Associativity: [b 1,b 0,b 2 ] = (b 1 b 0 )b 2 b 1 (b 0 b 2 ) = 0 (a 1 h)a 2 a 1 (ha 2 ) = [R a2,l a1 ]h = 0 [R a2,l a1 ] = 0 a i A,h H,b i B 0 Involution: (b 1 b 0 ) = b 0 b 1 JL a1 h = R a 1 Jh R a1 = JL a 1 J a 1 A,h H,b i B 0

Reformulation: {A,H,D,J} B A ΩA = A Ω 1 A Ω 2 A... B = ΩA H Associativity: [ω 1,h,ω 2 ] = [R ω2,l ω1 ]h = 0 [[D,a],Jb J ] = 0 [[D,a],J[D,b ]J ] = 0...

Reformulation: {A,H,D,J} B A ΩA = A Ω 1 A Ω 2 A... B = ΩA H Associativity: [ω 1,h,ω 2 ] = [R ω2,l ω1 ] = 0 [[D,a],Jb J ] = 0 [[D,a],J[D,b ]J ] = 0...

Reformulation: {A,H,D,J} B A ΩA = A Ω 1 A Ω 2 A... B = ΩA H Associativity: [ω 1,h,ω 2 ] = [R ω2,l ω1 ] = 0 [[D,a],Jb J ] = 0 [[D,a],J[D,b ]J ] = 0...

Reformulation: {A,H,D,J} B A ΩA = A Ω 1 A Ω 2 A... B = ΩA H Associativity: [ω 1,h,ω 2 ] = [R ω2,l ω1 ] = 0 [[D,a],Jb J ] = 0 [[D,a],J[D,b ]J ] = 0...

Reformulation: {A,H,D,J} B A ΩA = A Ω 1 A Ω 2 A... B = ΩA H Associativity: [ω 1,h,ω 2 ] = [R ω2,l ω1 ] = 0 [[D,a],Jb J ] = 0 [[D,a],J[D,b] J ] = 0...

Applications:Too many Higgs Fields Constraints on D: D = D,{D,γ} = 0,DJ = ɛjd,[[d,a],jb J ] = 0 D 11 D 12 D 13 D 14 D 15 D 16 D 17 D 18 D 21 D 22 D 23 D 24 D 25 D 26 D 27 D 28 D 31 D 32 D 33 D 34 D 35 D 36 D 37 D 38 D 41 D 42 D 43 D 44 D 45 D 46 D 47 D 48 D F = D 51 D 52 D 53 D 54 D 55 D 56 D 57 D 58 D 61 D 62 D 63 D 64 D 65 D 66 D 67 D 68 D 71 D 72 D 73 D 74 D 75 D 76 D 77 D 78 D 81 D 82 D 83 D 84 D 85 D 86 D 87 D 88 Basis:{l R,q R,l L,q L,l R,q R,l L,q L }

Applications:Too many Higgs Fields Constraints on D: D = D,{D,γ} = 0,DJ = ɛjd,[[d,a],jb J ] = 0 D F = Basis:{l R,q R,l L,q L,l R,q R,l L,q L } 0 0 y l 0 m n 0 0 0 0 0 y q n 0 0 0 y l 0 0 0 0 0 0 0 0 y q 0 0 0 0 0 0 m n T 0 0 0 0 yl T 0 n 0 0 0 0 0 0 yq T 0 0 0 0 y l 0 0 0 0 0 0 0 0 y q 0 0

Too Many Higgs Fields [ω m,h,ω n ] = 0 [[D,a],J[D,b] J ] = 0 m = ( ) ( a b c, n = ) d b 0 0 0

Applications: Incorrect Higgs mass D F = 0 0 y l 0 m 0 0 0 0 0 0 y q 0 0 0 0 y l 0 0 0 0 0 0 0 0 y q 0 0 0 0 0 0 m 0 0 0 0 0 yl T 0 0 0 0 0 0 0 0 yq T 0 0 0 0 y l 0 0 0 0 0 0 0 0 y q 0 0 m = ( ) a 0, y l = 0 0 ( Yν α Y e β Y ν β Y e α ), y q = ( Yu α ) Y d β Y u β Y d α

Applications: Incorrect Higgs mass Traditional approach: symmetries = Aut(A) Symmetry Generators: δ = L a R a, where a = a A.

Applications: Incorrect Higgs mass Traditional approach: symmetries = Aut(A) Symmetry Generators: δ = L a R a, where a = a A. D D A = D +A+JAJ ( ) ( ) Yν α Y y l = e β Yν φ 1 Y e φ 2 Y ν β Y e α Y ν φ 2 Y e φ 1 ( ) ( ) Yu α Y y q = d β Yν φ 1 Y e φ 2 Y u β Y d α Y ν φ 2 Y e φ 1 m = ( ) ( ) a 0 a 0 0 0 0 0

Applications: Incorrect Higgs mass

Applications: Incorrect Higgs mass Fused algebra approach: symmetries = Aut(B) Symmetry Generators: δ = L a R a +t, where a = a A, [t,l x ] = [t,r x ] = [t,j] = [t,γ] = 0, and t = t End(H).

Applications: Incorrect Higgs mass Fused algebra approach: symmetries = Aut(B) Symmetry Generators: δ = L a R a +t, where a = a A, [t,l x ] = [t,r x ] = [t,j] = [t,γ] = 0, and t = t End(H). D D B = D +A+JAJ +T ( ) ( ) Yν α Y y l = e β Yν φ 1 Y e φ 2 Y ν β Y e α Y ν φ 2 Y e φ 1 ( ) ( ) Yu α Y y q = d β Yν φ 1 Y e φ 2 Y u β Y d α Y ν φ 2 Y e φ 1 m = ( ) ( ) a 0 YM σ(x) 0 0 0 0 0

Applications: Non-associative geometry [b 1,b 0,b 2 ] 0

Summary: {A,H,D} B