Acrylate Esters for Synthesis of Chiral γ-lactams and Amino Acids

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Acrylate Esters for Synthesis of Chiral γ-lactams and Amino Acids"

Transcript

1 Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supplementary Information for: Highly Efficient Asymmetric Hydrogenation of Cyano-substituted Acrylate Esters for Synthesis of Chiral γ-lactams and Amino Acids Duanyang Kong, Meina Li, Rui Wang, Guofu Zi, and Guohua Hou* Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing , China Table of contents 1. General Information....S2 2. General procedure for the preparation of compounds 1and 3... S2 3. General procedure for asymmetric hydrogenation of compounds 1 and 3...S3 4. General procedure for the synthesis of compounds S4 5. Characterization data for compounds 1 and S4 6. Characterization data for compounds 2, 4and S10 7. Procedure for the synthesis of compound 6 and 7.S19 8. Procedure for the synthesis of compound 8 and 9. S20 9. NMR, GC and HPLC spectra of compounds S22 S1

2 1. General Information: All the air or moisture sensitive reactions and manipulations were performed by using standard Schlenk techniques and in a nitrogen-filled glovebox. DME, THF, dioxane and toluene were distilled from sodium benzophenone ketyl. CH 2 Cl 2 was distilled from calcium hydride. Anhydrous MeOH was distilled from magnesium. 1 H NMR and 13 C NMR spectra were recorded on Bruker AV (400 MHz) spectrometers. CDC1 3 was the solvent used for the NMR analysis, with TMS as the internal standard. Chemical shifts were reported upfield to TMS (0.00 ppm) for 1 H NMR. Data is represented as follows: chemical shift, integration, multiplicity (s = singlet, d = doublet, dd = double of doublets, t = triplet, q = quartet, m = multiplet) and coupling constants (J) in Hertz (Hz). Optical rotation was determined using a Perkin Elmer 241 MC polarimeter. GC analysis was conducted on an Agilent 7890A series instrument. HPLC analysis was conducted on Agilent 1260 series instrument. HRMS were recorded on a Waters LCT Premier XE mass spectrometer with APCI or ESI. 2. General procedure for the preparation of compounds 1 and 3. General Procedure for the synthesis of compounds 1: [1] The appropriate α-keto esters (0.02 mmol) and 2-(triphenylphosphoranylidene)-acetonitrile (0.024 mmol) were dissolved in toluene (30 ml) in a round bottle flask equipped with a reflux condenser. The mixture was heated to reflux for 4-8h after which the solvent was removed in vacuo. The residue was purified by silica gel column chromatography, using petroleum ether with increasing percentage of AcOEt or Et 2 O as an eluent, in order to separate (E)- and (Z)-stereoisomers. General Procedure for the synthesis of compounds 3: An 100 ml Schlenk tube equipped with a magnetic stir bar was charged with aromatic S2

3 aldehyde (30 mmol) and 3-benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride (1.5 mmol) in 20 ml of ethanol, and then sealed tightly with a rubber septum. The tube was evacuated and backfilled with argon three times. Et 3 N (9 mmol) was added via a syringe. The mixture was stirred for 24 h at 80 o C under N 2. After the reaction was completed, the mixture was concentrated and extracted with ethyl acetate, washed with water and brine, and then dried with anhydrous Na 2 SO 4. The solvent was removed under reduced pressure. The residue was used directly in next step without further purification. [2] An 50 ml round-bottom flask equipped with a magnetic stir bar was charged with the resulting crude product, glacial acetic acid (20 ml), NH 4 NO 3 (37.5 mmol) and 2% aqueous solution of CuSO 4 (3.75 ml). The resulting mixture was stirred at reflux until no materials was detected by TLC, and then poured into ice water. The precipitated product was filtered, washed with cold water, dried and recrystallization from ethanol to afford the corresponding benzil. The appropriate benzil (0.02 mol) and 2-(triphenylphosphoranylidene)-acetonitrile (0.024 mol) were dissolved in CH 2 Cl 2 (30 ml) in a round bottle flask equipped with a reflux condenser. The solution was stirred at reflux temperature until no starting material was detected by TLC. After the solvent was removed in vacuo, the residue was purified by silica gel column chromatography using petroleum ether/ AcOEt as an eluent. 3. General procedure for asymmetric hydrogenation of compounds 1 and 3. A stock solution was made by mixing Rh(COD) 2 BF 4 or [Rh(COD)Cl] 2 with (S,S)-fspiroPhos in a 1:1.1 molar ratio of Rh/(S,S)-f-spiroPhos in CH 2 Cl 2 at room temperature for 20 min in a nitrogen-filled glovebox. An aliquot of the catalyst solution (1.0 ml, mmol) was transferred by syringe into the vials charged with different substrates (0.1 mmol for each) in anhydrous CH 2 Cl 2 (2.0 ml). The vials were then placed into a steel autoclave. The inert atmosphere was replaced by H 2 and the reaction mixture was stirred under H 2 (30 atm) at 40 o C for 8 h. The hydrogen gas was released slowly and carefully. The solution was concentrated and passed through S3

4 a short column of silica gel to remove the metal complex. The ee values of all products were determined by GC or HPLC analysis on a chiral stationary phase. 4. General procedure for the synthesis of compounds 5. To a stirring solution of the hydrogenation product 4(0.1 mmol) in MeOH (3 ml) NaBH 4 (0.2 mmol) was added portionwise at 0 o C. The mixture was stirred at 0 o C until no starting material was detected by TLC and carefully quenched with H 2 O. The aqueous layer was extracted with ethyl acetate, dried over MgSO 4. The solvent was removed under reduced pressure. Diastereomeric ratios were determined by 1 H NMR of crude products. The ee values of all products were determined by HPLC analysis on a chiral stationary phase. 5. Characterization data for compounds 1 and 3. methyl 3-cyano-2-phenylacrylate: 1a (Z): colorless liquid; Yield: 33%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 5H), 5.94 (s, 1H), 3.97 (s, 3H). 1a (E): white solid; MP: o C; Yield: 59%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 5H), 6.53 (s, 1H), 3.86 (s, 3H). [1] ethyl 3-cyano-2-phenylacrylate: 1b (Z): yellow liquid; Yield: 28%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 5H), 5.92 (s, 1H), 4.45 (q, J = 7.2 Hz, 2H), 1.42 (t, J = 7.2 Hz, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 164.8, 152.7, 133.1, 131.0, 128.9, 127.5, 115.6, 101.1, 62.6, b (E): yellow liquid; Yield: 56%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 5H), 6.51 (s, 1H), 4.33 (q, J = 7.1 Hz, 2H), 1.33 (t, J = 7.1 Hz, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 164.5, 151.7, 132.4, 130.3, 129.2, 128.4, 115.9, 107.1, 62.6, [3] methyl 3-cyano-2-(p-tolyl)acrylate: 1c (Z): colorless liquid; Yield: 30%; 1 H NMR (CDCl 3, 400 MHz) δ: 7.15 (d, J = 8.2 Hz, 2H), 7.03 (d, J = 8.0 Hz, 2H), 5.72 (s, 1H), 3.76 (s, 3H), 2.20 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.5, 152.6, 141.7, 130.1, 129.7, 127.4, 115.8, 100.0, 53.0, c (E): white solid; MP: o C; Yield: 64%; 1 H NMR (CDCl 3, 400 MHz) δ: 7.29 (d, J = 8.2 Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 6.33 (s, 1H), S4

5 3.69 (s, 3H), 2.26 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.2, 151.5, 140.8, 129.4, 129.2, 129.1, 116.0, 106.5, 53.2, APCI-HRMS Calcd. for C 12 H 12 NO 2 [M+H + ]: , found methyl 3-cyano-2-(4-methoxyphenyl)acrylate: 1d (Z): yellow liquid; Yield: 24%; 1 H NMR (CDCl 3, 400 MHz) δ: 7.39 (dd, J = 6.8 Hz, 2.1 Hz, 2H), 6.91 (dd, J = 6.8 Hz, 2.1 Hz, 2H), 5.83 (s, 1H), 3.96 (s, 3H), 3.84 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.7, 162.0, 152.2, 129.1, 125.1, 116.0, 114.4, 98.2, 55.5, d (E): yellow solid; MP: o C; Yield: 56%; 1 H NMR (CDCl 3, 400 MHz) δ: 7.49 (dd, J = 6.8 Hz, 2.1 Hz, 2H), 6.97 (dd, J = 6.8 Hz, 2.2 Hz, 2H), 6.40 (s, 1H), 3.86 (s, 3H), 3.85 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.5, 161.3, 150.9, 130.9, 124.4, 116.3, 113.9, 105.1, 55.4, APCI-HRMS Calcd. for C 12 H 12 NO 3 [M+H + ]: , found methyl 3-cyano-2-(4-fluorophenyl)acrylate: 1e (Z): yellow liquid; Yield: 32%; 1 H NC NMR (CDCl 3, 400 MHz) δ: (m, 2H), 7.10 (t, J = 8.6 O Hz, 2H), 5.91 (s, 1H), 3.96 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) O F δ: 164.9, (d, J = Hz), 151.2, (d, J = 9.0 Hz), (d, J = 4.0 Hz), (d, J = 22.0 Hz), 115.5, 102.1, e (E): white solid; MP: o C; Yield: 47%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 2H), (m, 2H), 6.53 (s, 1H), 3.86 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.0, 164.8, 162.5, 150.3, (d, J = 9.0 Hz), (d, J = 4.0 Hz), (d, J = 22.0 Hz), 107.5, APCI-HRMS Calcd. for C 11 H 9 NO 2 F [M+H + ]: , found methyl 2-(4-chlorophenyl)-3-cyanoacrylate: 1f (Z): white solid; MP: o C; Yield: NC 33%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 4H), 5.94 O (s, 1H), 3.97 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 164.7, O Cl 151.2, 137.2, 131.7, 129.2, 129.1, 115.3, 102.8, f (E): white solid; MP: o C; Yield: 51%; 1 H NMR (CDCl 3, 400 MHz) δ: 7.37 (s, 4H), 6.48 (s, 1H), 3.80 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 164.6, 150.2, 136.6, 130.6, 130.5, 128.8, 115.5, 107.9, APCI-HRMS Calcd. for C 11 H 9 NO 2 Cl [M+H + ]: S5

6 , found methyl 2-(4-bromophenyl)-3-cyanoacrylate: 1g (Z): white solid; MP: o C; Yield: 37%; 1 H NMR (CDCl 3, 400 MHz) δ: 7.54 (t, J = 2.4 Hz, 2H), (m, 2H), 5.95 (s, 1H), 3.96 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 164.6, 151.2, 132.1, 129.3, 125.6, 115.3, 102.9, g (E): white solid; MP: o C; Yield: 48%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 4H), 5.94 (s, 1H), 3.97 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 164.5, 150.4, 131.8, 130.9, 130.7, 125.1, 115.5, 107.9, APCI-HRMS Calcd. for C 11 H 9 NO 2 Br [M+H + ]: , found methyl 3-cyano-2-(m-tolyl)acrylate: 1h (Z): colorless liquid; Yield: 32%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 4H), 5.85 (s, 1H), 3.90 (s, 3H), 2.31 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.4, 152.9, 138.8, 133.0, 131.9, 128.9, 128.1, 124.7, 115.6, 101.2, 53.1, h (E): white solid; MP: o C; Yield: 57%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 4H), 6.41 (s, 1H), 3.76 (s, 3H), 2.31 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.1, 151.6, 138.2, 132.2, 131.2, 129.6, 128.4, 126.2, 115.8, 107.2, 53.2, APCI-HRMS Calcd. for C 12 H 12 NO 2 [M+H + ]: , found methyl 3-cyano-2-(3-methoxyphenyl)acrylate: 1i (Z): white solid; MP: o C; Yield: 39%; 1 H NMR (CDCl 3, 400 MHz) δ: 7.23 (t, J = 8.0 Hz, 1H), (m, 3H), 5.84 (s, 1H), 3.85 (s, 3H), 3.72 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.1, 159.8, 152.6, 134.4, 130.0, 120.0, 116.4, 115.5, 113.2, 101.9, 55.4, i (E): colorless liquid; Yield: 43%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 1H), (m, 3H), 6.42 (s, 1H), 3.75 (s, 3H), 3.73 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.0, 159.4, 151.4, 133.3, 129.6, 121.4, 116.2, 115.7, 114.5, 107.5, 55.4, APCI-HRMS Calcd. for C 12 H 12 NO 3 [M+H + ]: , found methyl 3-cyano-2-(3-fluorophenyl)acrylate: 1j (Z): white solid; MP: o C; Yield: 28%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 1H), (m, 3H), 5.90 (s, 1H), 3.90 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 163.5, (d, J = Hz), S6

7 150.0 (d, J = 3.0 Hz), (d, J = 8.0 Hz), (d, J = 8.0 Hz), (d, J = 3.0 Hz), (d, J = 27.0 Hz), 714.1, (d, J = 23.0 Hz), 102.6, j (E): colorless liquid; Yield: 50%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 4H), 6.51 (s, 1H), 3.80 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 164.3, (d, J = Hz), (d, J = 2.0 Hz), (d, J = 8.0 Hz), (d, J = 8.0 Hz), (d, J = 3.0 Hz), (d, J = 21.0 Hz), (d, J = 23.0 Hz), 115.4, 108.6, APCI-HRMS Calcd. for C 11 H 9 NO 2 F [M+H + ]: , found methyl 3-cyano-2-(o-tolyl)acrylate: 1k (Z): white solid; MP: o C; Yield: 34%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 4H), 5.73 (s, 1H), 3.80 (s, 3H), 2.14 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 164.4, 153.0, 136.0, 134.5, 130.6, 130.1, 129.0, 126.2, 115.0, 107.1, 53.1, k (E): colorless liquid; Yield: 48%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 4H), 6.56 (s, 1H), 3.74 (s, 3H), 2.13 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 164.8, 152.7, 136.0, 132.5, 130.5, 130.0, 128.9, 126.1, 115.2, 109.8, 53.3, APCI-HRMS Calcd. for C 12 H 12 NO 2 [M+H + ]: , found methyl 3-cyano-2-(2-methoxyphenyl)acrylate: 1l (Z): white solid; MP: o C; Yield: 13%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 1H), (m, 1H), 6.94 (t, J = 7.5 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 5.83 (s, 1H), 3.82 (s, 3H), 3.75 (s, 3H), 13 C NMR (CDCl 3, 100 MHz) δ: 165.5, 157.0, 151.2, 132.5, 129.5, 123.7, 121.1, 115.6, 111.5, 103.0, 55.9, l (E): white solid; MP: o C; Yield: 70%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 2H), (m, 1H), 6.94 (d, J = 8.3 Hz, 1H), 6.42 (s, 1H), 3.75 (d, J = 3.8 Hz, 6H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.5, 157.0, 150.4, 132.0, 130.2, 122.2, 120.8, 115.7, 111.3, 107.4, 55.7, APCI-HRMS Calcd. for C 12 H 12 NO 3 [M+H + ]: , found methyl 3-cyano-2-(naphthalen-1-yl)acrylate: 1m (Z): yellow solid; MP: o C; Yield: 31%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 2H), (m, 5H), 6.00 (s, 1H), 3.84 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 164.8, 152.3, 133.4, 132.5, 130.8, 130.6, 128.8, 127.3, 127.2, 126.6, 125.2, 124.3, 115.0, 108.0, m (E): S7

8 yellow liquid; Yield: 46%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 2H), (m, 5H), 6.83 (s, 1H), 3.76 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.3, 152.1, 133.5, 131.0, 130.6, 130.5, 128.9, 127.5, 127.1, 126.6, 125.3, 124.4, 115.3, 110.9, APCI-HRMS Calcd. for C 15 H 12 NO 2 [M+H + ]: , found methyl 3-cyano-2-(naphthalen-2-yl)acrylate: 1n (Z): yellow solid; MP: o C; Yield: 32%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 4H), (m, 3H), 5.91 (s, 1H), 3.9 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.4, 152.7, 134.2, 132.8, 130.3, 128.9, 128.4, 128.0, 127.8, 127.2, 123.6, 115.7, 101.4, n (E): yellow solid; MP: o C;Yield: 37%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 4H), (m, 3H), 6.49 (s, 1H), 3.76 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.2, 151.5, 133.9, 132.7, 129.6, 129.5, 128.7, 128.3, 127.8, 127.7, 126.8, 125.7, 115.9, 107.5, APCI-HRMS Calcd. for C 15 H 12 NO 2 [M+H + ]: , found methyl 2-(cyanomethylene)-3-methylbutanoate: 1o (Z): colorless liquid; Yield: 34%; 1 H NMR (CDCl 3, 400 MHz) δ: 5.58 (d, J = 1.4 Hz, 1H), 3.86 (s, 3H), (m, 1H), 1.11 (s, 3H), 1.09 (s, 3H). 1o (E): yellow liquid; Yield: 38%; 1 H NMR (CDCl 3, 400 MHz) δ: 6.12 (s, 1H), 3.75 (s, 3H), (m, 1H), 1.23 (s, 3H), 1.21 (s, 3H). [1] methyl 3-cyano-2-cyclohexylacrylate: 1p (Z): colorless liquid; Yield: 35%; 1 H NMR (CDCl 3, 400 MHz) δ: 5.50 (s, 1H), 3.81 (s, 3H), (m, 1H), (m, 5H), (m, 5H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.3, 159.4, 115.6, 101.5, 52.6, 41.1, 31.4, 26.0, p (E): white solid; MP: o C; Yield: 27%; 1 H NMR (CDCl 3, 400 MHz) δ: 6.11 (s, 1H), 3.74 (s, 3H), (m, 1H), (m, 7H), (m, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 165.3, 158.4, 115.4, 105.5, 52.6, 42.3, 30.3, 26.2, APCI-HRMS Calcd. for C 11 H 16 NO 2 [M+H + ]: , found [1] (E)-4-oxo-3,4-diphenylbut-2-enenitrile (3a): yellow liquid; Yield: 88%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, 2H), (m, 3H), (m, 5H), 5.69 S8

9 (s, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 194.1, 159.3, 135.0, 134.4, 133.1, 130.9, 130.1, 129.1, 128.9, 128.2, 116.1, (E)-3,4-bis(2-methoxyphenyl)-4-oxobut-2-enenitrile (3b): yellow solid; MP: o C; Yield: 87%; 1 H NMR (CDCl 3, 400 MHz) δ: 7.57 (dd, J = 7.6 Hz, 1.6 Hz, 2H), (m, 2H), (m, 2H), (m, 2H), 6.09 (s, 1H), 3.64 (s, 3H), 358 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 194.1, 158.8, 157.6, 156.6, 133.4, 131.8, 130.9, 130.7, 127.0, 123.0, 120.4, 120.3, 116.7, 110.8, 110.7, 103.6, 55.2, (E)-4-oxo-3,4-di-m-tolylbut-2-enenitrile (3c): yellow liquid; Yield: 82%; 1 H NMR (CDCl 3, 400 MHz) δ: 7.72 (s, 1H), 7.63 (d, J = 7.7 Hz, 1H), (m, 6H), 5.71 (s, 1H), 2.39 (s, 3H), 2.37 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 194.4, 159.7, 138.9, 1388, 135.2, 135.1, 133.0, 131.7, 130.4, 129.0, 128.7, 128.6, 127.6, 125.4, 116.1, 99.7, 21.4, (E)-4-oxo-3,4-di-p-tolylbut-2-enenitrile (3d): yellow liquid; Yield: 67%; 1 H NMR (CDCl 3, 400 MHz) δ: 7.75 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 4H), 5.67 (s, 1H), 2.40 (s, 3H), 2.37 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 194.0, 159.6, 145.5, 141.5, 132.5, 130.3, 130.2, 129.8, 129.6, 128.2, 116.4, 98.5, 21.8, (E)-3,4-bis(4-methoxyphenyl)-4-oxobut-2-enenitrile (3e): yellow liquid; Yield: NC OCH 3 82%; 1 H NMR (CDCl 3, 400 MHz) δ: (m, H 3 CO O 2H), (m, 2H), (m, 4H), 5.55 (s, 1H), 3.85 (s, 3H), 3.82 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 193.1, 164.5, 161.6, 159.2, 132.6, 130.0, 127.9, 125.6, 116.8, 114.5, 114.2, 96.1, 55.6, S9

10 6. Characterization data for compounds 2, 4 and 5. methyl 3-cyano-2-phenylpropanoate: white solid; MP: o C; (R)-2a: Yield: 98%; 98% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 20:80, 1mL/min, 225 nm; t R = 15.9 min (major), t R = 22.4 min (minor). (S)-2a : Yield: 98%; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 20:80, 1mL/min, 225 nm; t R = 17.3 min (minor), t R = 27.1 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 5H), 3.87 (t, J = 7.2 Hz, 1H), 3.64 (s, 3H), 2.95 (q, J = 7.6 Hz, 1H), 2.73 (q, J = 7.3 Hz, 1H). [1] The absolute configuration of (R)-2a and (S)-2a was determined by comparison with optical rotation data for the reported literature. [1] 25 ethyl 3-cyano-2-phenylpropanoate: colorless liquid; 2b: Yield: 97%; 96% ee; [α] D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 9.2 min (major), t R = 10.9 min (minor). 2b : Yield: 98%; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 17.3 min (minor), t R = 27.1 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 5H), (m, 2H), 3.84 (t, J = 7.6 Hz, 1H), 2.94 (dd, J = 16.8 Hz, 7.6 Hz, 1H), 2.71 (dd, J = 16.8 Hz, 7.6 Hz, 1H), 1.13 (t, J = 7.1 Hz, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 171.0, 136.0, 129.2, 128.5, 127.5, 117.7, 61.8, 47.7, 21.7, APCI-HRMS Calcd. for C 12 H 14 NO 2 [M+H + ]: , found methyl 3-cyano-2-(p-tolyl)propanoate: white solid; MP: o C; 2c: Yield: 97%; 25 96% ee; [α] D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 10.3 min (major), t R = 14.0 min (minor). 2c : Yield: 96%; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 9.6 min (minor), t R = 12.5 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 4H), 3.82 (t, J = 7.6 Hz, 1H), 3.62 (s, 3H), 2.92 (dd, J = 16.8 S10

11 Hz, 7.5 Hz, 1H), 2.70 (dd, J = 16.8 Hz, 7.7 Hz, 1H), 2.25 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 171.7, 138.4, 132.8, 129.9, 127.4, 117.7, 52.8, 47.2, 21.8, APCI-HRMS Calcd. for C 12 H 14 NO 2 [M+H + ]: , found methyl 3-cyano-2-(4-methoxyphenyl)propanoate: white solid; MP: o C; 2d: Yield: 96%; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 15.4 min (major), t R = 17.5 min (minor). 2d : Yield: 96%; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 16.1 min (minor), t R = 18.1 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: 7.12 (d, J = 8.7 Hz, 2H), 6.82 (d, J = 8.7 Hz, 2H), 3.82 (t, J = 7.6 Hz, 1H), 3.71 (s, 3H), 3.63 (s, 3H), 2.92 (dd, J = 16.8 Hz, 7.4 Hz, 1H), 2.71 (dd, J = 16.8 Hz, 7.4 Hz, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 171.8, 159.7, 128.7, 127.8, 117.7, 114.6, 55.3, 52.7, 46.8, APCI-HRMS Calcd. for C 12 H 14 NO 3 [M+H + ]: , found methyl 3-cyano-2-(4-fluorophenyl)propanoate: colorless liquid; 2e: Yield: 96%; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 10.2 min (major), t R = 12.1 min (minor). 2e : Yield: 97%; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 11.1 min (minor), t R = 12.7 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 2H), (m, 2H), 3.86 (t, J = 7.6 Hz, 1H), 3.64 (s, 3H), 2.93 (dd, J = 16.8 Hz, 7.2 Hz, 1H), 2.73 (dd, J = 16.8 Hz, 7.2 Hz, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 171.3, (d, J = Hz), (d, J = 4.0 Hz), (d, J = 9.0 Hz), 117.4, (d, J = 21.0 Hz), 52.9, 46.8, APCI-HRMS Calcd. for C 11 H 11 NO 2 F [M+H + ]: , found methyl 2-(4-chlorophenyl)-3-cyanopropanoate: white solid; MP: o C; 2f: Yield: 97%; 98% ee; [α] 25 D = (c = 0.5, CHCl 3 ); GC condition: Supelco gamma DexTM 225 column (30 m 0.25 mm 0.25 µm), N ml/min, programmed 100 o C - 1 o C/min o C - 50 min; t R = 79.4 min (major), t R = 80.2 min (minor). 2f : S11

12 Yield: 96%; 96% ee; [α] 25 D = (c = 0.5, CHCl 3 ); GC condition: Supelco gamma DexTM 225 column (30 m 0.25 mm 0.25 µm), N ml/min, programmed 100 o C - 1 o C/min o C - 50 min; t R = 79.7 min (minor), t R = 80.1 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: 7.28 (d, J = 1.9 Hz, 2H), 7.15 (d, J = 1.7 Hz, 2H), 3.85 (t, J = 7.6 Hz, 1H), 3.66 (s, 3H), 2.94 (dd, J = 16.9 Hz, 7.2 Hz, 1H), 2.74 (dd, J = 16.9 Hz, 7.2 Hz, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 171.1, 134.7, 134.1, 129.5, 129.0, 117.3, 53.0, 46.9, APCI-HRMS Calcd. for C 11 H 11 NO 2 Cl [M+H + ]: , found methyl 2-(4-bromophenyl)-3-cyanopropanoate: white solid; MP: o C; 2g: Yield: 97%; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); GC condition: Supelco gamma DexTM 225 column (30 m 0.25 mm 0.25 µm), N ml/min, programmed 100 o C - 1 o C/min o C min; t R = 88.6 min (major), t R = 89.3 min (minor). 2g : Yield: 97%; 96% ee; [α] 25 D = (c = 0.5, CHCl 3 ); GC condition: Supelco gamma DexTM 225 column (30 m 0.25 mm 0.25 µm), N ml/min, programmed 100 o C - 1 o C/min o C min; t R = 88.8 min (minor), t R = 89.1 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: 7.44 (dd, J = 6.7 Hz, 1.8 Hz, 2H), 7.09 (dd, J = 6.7 Hz, 1.8 Hz, 2H), 3.84 (t, J = 7.6 Hz, 1H), 3.65 (s, 3H), 2.93 (dd, J = 16.8 Hz, 7.2 Hz, 1H), 2.73 (dd, J = 16.8 Hz, 7.2 Hz, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 171.0, 134.7, 132.4, 129.3, 122.8, 117.3, 53.0, 47.0, APCI-HRMS Calcd. for C 11 H 11 NO 2 Br [M+H + ]: , found methyl 3-cyano-2-(m-tolyl)propanoate: white solid; MP: o C; 2h: Yield: 98%; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 8.6 min (major), t R = 10.4 min (minor). 2h : Yield: 98%; 96% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 9.2 min (minor), t R = 11.0 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 4H), 3.82 (t, J = 7.6 Hz, 1H), 3.64 (s, 3H), 2.94 (dd, J = 16.8 Hz, 7.6 Hz, 1H), 2.71 (dd, J = S12

13 16.8 Hz, 7.6 Hz, 1H), 2.27 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 171.6, 139.1, 135.7, 129.3, 129.1, 128.2, 124.6, 117.7, 52.8, 47.5, 21.7, APCI-HRMS Calcd. for C 12 H 14 NO 2 [M+H + ]: , found methyl 3-cyano-2-(3-methoxyphenyl)propanoate: colorless liquid; 2i: Yield: 96%; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 15.1 min (major), t R = 20.3 min (minor). 2i : Yield: 98%; 95% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 14.6 min (minor), t R = 19.1 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: 7.20 (t, J = 8.0 Hz, 1H), (m, 3H), 3.83 (t, J = 7.6 Hz, 1H), 3.71 (s, 3H), 3.63 (s, 3H), 2.93 (dd, J = 16.8 Hz, 7.6 Hz, 1H), 2.71 (dd, J = 16.8 Hz, 7.6 Hz, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 171.4, 160.1, 137.2, 130.3, 119.7, 117.6, 113.8, 113.5, 55.3, 52.8, 47.5, APCI-HRMS Calcd. for C 12 H 14 NO 3 [M+H + ]: , found methyl 3-cyano-2-(3-fluorophenyl)propanoate: colorless liquid; 2j: Yield: 98%; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); GC condition: Supelco beta DexTM 120 column (30 m 0.25 mm 0.25 µm), N ml/min, programmed 100 o C - 1 o C/min o C min; t R = 61.9 min (minor), t R = 62.6 min (major). 2j : Yield: 97%; 96% ee; [α] 25 D = (c = 0.5, CHCl 3 ); GC condition: Supelco gamma DexTM 120 column (30 m 0.25 mm 0.25 µm), N ml/min, programmed 100 o C - 1 o C/min o C min; t R = 62.2 min (major), t R = 62.5 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 1H), (m, 3H), 3.87 (t, J = 7.6 Hz, 1H), 3.66 (s, 3H), 2.95 (dd, J = 16.9 Hz, 7.3 Hz, 1H), 2.75 (dd, J = 16.9 Hz, 7.3 Hz, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 171.0, (d, J = Hz), (d, J = 8.0 Hz), (d, J = 8.0 Hz), (d, J = 2.0 Hz), 117.2, (d, J = 21.0 Hz), (d, J = 22.0 Hz), 53.0, 47.2 (d, J = 1.0 Hz), APCI-HRMS Calcd. for C 11 H 11 NO 2 F [M+H + ]: , found S13

14 methyl 3-cyano-2-(o-tolyl)propanoate: white solid; MP: o C; 2k: Yield: 97%; 95% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 20:80, 1mL/min, 225 nm; t R = 12.0 min (minor), t R = 22.3 min (major). 2k : Yield: 96%; 98% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 20:80, 1mL/min, 225 nm; t R = 12.0 min (major), t R = 22.4 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 4H), 4.17 (t, J = 7.5 Hz, 1H), 3.64 (s, 3H), 2.97 (dd, J = 16.8 Hz, 7.7 Hz, 1H), 2.68 (dd, J = 16.8 Hz, 7.4 Hz, 1H), 2.36 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 171.9, 136.1, 134.4, 131.2, 128.4, 126.9, 126.3, 117.7, 52.8, 43.2, 21.1, APCI-HRMS Calcd. for C 12 H 14 NO 2 [M+H + ]: , found methyl 3-cyano-2-(2-methoxyphenyl)propanoate: colorless liquid; 2l: Yield: 95%; 98% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 9.3 min (major), t R = 13.2 min (minor). 2l : Yield: 96%; 98% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 11.7 min (minor), t R = 16.6 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 2H), (m, 2H), 4.13 (t, J = 7.2 Hz, 1H), 3.75 (s, 3H), 3.63 (s, 3H), 2.95 (dd, J = 16.8 Hz, 7.0 Hz, 1H), 2.73 (dd, J = 16.8 Hz, 7.0 Hz, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 171.9, 156.6, 129.7, 129.2, 124.6, 121.1, 118.2, 111.1, 55.5, 52.6, 42.6, APCI-HRMS Calcd. for C 12 H 14 NO 3 [M+H + ]: , found methyl 3-cyano-2-(naphthalen-1-yl)propanoate: white solid; MP: o C; 2m: Yield: 98%; 98% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 20.8 min (minor), t R = 30.3 min (major). 2m : Yield: 98%; 95% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 30:70, 1mL/min, 225 nm; t R = 20.7 min (major), t R = 30.4 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 3H), (m, 4H), 4.75 (t, J = 7.8 Hz, 1H), 3.71 (s, 3H), 3.22 (dd, J = 16.8 Hz, 8.1 Hz, S14

15 1H), 2.93 (dd, J = 16.8 Hz, 6.7 Hz, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 172.1, 134.2, 132.1, 130.8, 129.4, 129.3, 127.2, 126.2, 125.5, 125.4, 122.3, 117.8, 52.9, 43.7, APCI-HRMS Calcd. for C 15 H 14 NO 2 [M+H + ]: , found methyl 3-cyano-2-(naphthalen-2-yl)propanoate: white solid; MP: o C; 2n: CN Yield: 98%; 97% ee; [α] D 25 = (c = 0.5, CHCl 3 ); HPLC * O O condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 50:50, 1mL/min, 225 nm; t R = 14.5 min (major), t R = 25.3 min (minor). 2n : Yield: 98%; 95% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 50:50, 1mL/min, 225 nm; t R = 14.1 min (minor), t R = 24.5 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 3H), 7.64 (s, 1H), (m, 3H), 4.00 (t, J = 7.6 Hz, 1H), 3.60 (s, 3H), 2.99 (dd, J = 16.8 Hz, 7.5 Hz, 1H), 2.77 (dd, J = 16.8 Hz, 7.6 Hz, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 171.6, 133.4, 133.2, 133.1, 129.3, 128.0, 127.8, 127.1, 126.8, 126.7, 124.8, 117.7, 52.9, 47.7, APCI-HRMS Calcd. for C 15 H 14 NO 2 [M+H + ]: , found methyl 2-(cyanomethyl)-3-methylbutanoate: colorless liquid; 2o: Yield: 97%; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); GC condition: Supelco gamma DexTM 225 column (30 m 0.25 mm 0.25 µm), N ml/min, programmed 90 o C 0.5 o C/min o C min; t R = 38.8 min (major), t R = 41.9 min (minor). 2o : Yield: 96%; 96% ee; [α] 25 D = (c = 0.5, CHCl 3 ); GC condition: Supelco gamma DexTM 225 column (30 m 0.25 mm 0.25 µm), N ml/min, programmed 90 o C 0.5 o C/min o C min; t R = 39.6 min (minor), t R = 40.8 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: 3.68 (s, 3H), (m, 3H), (m, 1H), 0.91 (t, J = 6.6 Hz, 6H). 13 C NMR (CDCl 3, 100 MHz) δ: 172.6, 118.3, 52.0, 48.0, 30.0, 19.5, APCI-HRMS Calcd. for C 8 H 14 NO 2 [M+H + ]: , found methyl 3-cyano-2-cyclohexylpropanoate: colorless liquid; 2p: Yield: 95%; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); GC condition: Supelco gamma DexTM 225 column (30 m 0.25 mm 0.25 µm), N ml/min, S15

16 programmed 90 o C 0.8 o C/min o C - 50 min; t R = 78.3 min (major), t R = 79.6 min (minor). 2p : Yield: 96%; 94% ee; [α] 25 D = (c = 0.5, CHCl 3 ); GC condition: Supelco gamma DexTM 225 column (30 m 0.25 mm 0.25 µm), N ml/min, programmed 90 o C 0.8 o C/min o C - 50 min; t R = 78.5 min (minor), t R = 79.0 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: 3.68 (s, 3H), (m, 3H), (m, 6H), (m, 5H). 13 C NMR (CDCl 3, 100 MHz) δ: 172.8, 118.3, 52.0, 47.6, 39.6, 30.1, 30.0, 26.0, 25.9, 25.8, [4] 4-oxo-3,4-diphenylbutanenitrile (4a): colorless liquid; Yield: 96%; 95% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 30:70, 1mL/min, 254 nm; t R = 10.2 min (major), t R = 19.4 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: 7.81 (d, J = 1.2 Hz, 2H), (m, 8H), 4.78 (t, J = 7.4 Hz, 1H), 2.98 (dd, J = 16.8 Hz, 6.6 Hz, 1H), 2.78 (dd, J = 16.8 Hz, 6.6 Hz, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 196.0, 136.5, 135.0, 133.7, 129.7, 129.0, 128.7, 128.5, 128.0, 118.4, 50.3, ,4-bis(2-methoxyphenyl)-4-oxobutanenitrile (4b): colorless liquid; Yield: 97%; 96% OCH 3 * CN O OCH 3 ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 10:90, 1mL/min, 254 nm; t R = 14.4 min (major), t R = 20.3 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: 7.61 (d, J = 1.2 Hz, 1H), (m, 3H), (m, 4H), 5.11 (t, J = 6.7 Hz, 1H), 3.74 (s, 3H), 3.71 (s, 3H), 3.20 (dd, J = 16.8 Hz, 6.2 Hz, 1H), 2.78 (dd, J = 16.8 Hz, 6.2 Hz, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 199.4, 157.6, 156.7, 133.4, 130.7, 130.0, 129.3, 126.9, 125.3, 120.7, 120.5, 119.2, 111.0, 110.6, 55.1, 49.5, oxo-3,4-di-m-tolylbutanenitrile (4c): colorless liquid; Yield: 95%; 91% ee; [α] D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 30:70, 1mL/min, 254 nm; t R = 6.3 min (major), t R = 11.2 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 2H), (m, 3H), (m, 3H), 4.83 (t, J = 7.3 Hz, 1H), 3.06 (dd, J = 16.8 Hz, 6.7 Hz, 1H), 2.68 (dd, J = 16.8 Hz, 6.7 Hz, 1H), 2.33 (s, 3H), 2.30 (s, 3H). 13 C S16

17 NMR (CDCl 3, 100 MHz) δ: 196.3, 139.4, 138.6, 136.5, 135.1, 134.4, 129.5, 129.4, 129.2, 128.5, 128.4, 126.3, 125.2, 118.5, 50.3, 22.1, 21.4, oxo-3,4-di-p-tolylbutanenitrile (4d): colorless liquid; Yield: 95%; 92% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 30:70, 1mL/min, 254 nm; t R = 8.9 min (major), t R = 9.8 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: 7.82 (d, J = 8.3 Hz, 2H), (m, 6H), 4.81 (t, J = 7.7 Hz, 1H), 3.03 (dd, J = 16.8 Hz, 6.5 Hz, 1H), 2.84 (dd, J = 16.8 Hz, 6.5 Hz, 1H), 2.33 (s, 3H), 2.28 (s, 3H). 13 C NMR (CDCl 3, 100 MHz) δ: 195.7, 144.5, 138.2, 133.7, 132.6, 130.3, 129.4, 129.1, 127.8, 118.5, 49.9, 22.1, 21.6, ,4-bis(4-methoxyphenyl)-4-oxobutanenitrile (4e): colorless liquid; Yield: 96%; 94% ee; [α] D 25 = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 30:70, 1mL/min, 254 nm; t R = 20.8 min (major), t R = 26.3 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: 7.88 (d, J = 9.0 Hz, 2H), 7.19 (d, J = 8.7 Hz, 2H), (m, 4H), 4.75 (t, J = 6.2 Hz, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.01 (dd, J = 16.8 Hz, 6.4 Hz, 1H), 2.83 (dd, J = 16.8 Hz, 6.4 Hz, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 194.6, 163.7, 159.5, 131.3, 129.0, 128.9, 128.0, 118.6, 115.0, 113.9, 55.5, 55.2, 49.2, hydroxy-3,4-diphenylbutanenitrile (5a): white solid; MP: o C; Yield: 92%; 95% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 10:90, 1mL/min, 254 nm; t R = 25.0 min (major), t R = 33.9 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 10H), 4.90 (d, J = 7.1 Hz, 1H), 3.14 (dd, J = 14.0 Hz, 7.9 Hz, 1H), 2.58 (dd, J = 16.8 Hz, 5.8 Hz, 1H), 2.41 (q, J = 8.3 Hz, 1H), 2.03 (s, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 140.9, 137.6, 128.8, 128.6, 128.5, 128.4, 128.0, 126.5, 118.4, 76.1, 49.7, hydroxy-3,4-bis(2-methoxyphenyl)butanenitrile (5b): colorless liquid; Yield: 89%; 96% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 30:70, 1mL/min, 254 nm; t R = 15.8 min (major), t R = S17

18 23.2 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 4H), (m, 4H), 5.19 (s, 1H), (m, 1H), 3.68 (s, 3H), 3.54 (s, 3H), 2.69 (s, 1H), (m, 2H). 13 C NMR (CDCl 3, 100 MHz) δ: 157.5, 156.6, 129.6, 129.3, 128.8, 128.7, 127.5, 126.4, 120.8, 120.7, 119.0, 110.9, 110.4, 71.5, 55.4, 55.3, hydroxy-3,4-di-m-tolylbutanenitrile (5c): colorless liquid; Yield: 90%; 90% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 10:90, 1mL/min, 254 nm; t R = 17.4 min (major), t R = 19.8 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 2H), (m, 6H), 4.75 (d, J = 7.6 Hz, 1H), (m, 1H), 2.43 (dd, J = 16.8 Hz, 5.4 Hz, 1H), 2.31 (q, J = 8.6 Hz, 1H), 2.22 (d, J = 1.0 Hz, 6H), 1.99 (s, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 140.8, 138.5, 138.4, 137.8, 129.2, 129.1, 128.9, 128.8, 128.5, 127.3, 125.4, 123.8, 118.4, 76.4, 49.8, 21.5, 21.4, hydroxy-3,4-di-p-tolylbutanenitrile (5d): colorless liquid; Yield: 89%; 92% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 10:90, 1mL/min, 254 nm; t R = 9.4 min (major), t R = 11.5 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 8H), 4.90 (d, J = 20.7 Hz, 1H), (m, 1H), 2.59 (dd, J = 16.8 Hz, 5.5 Hz, 1H), 2.44 (q, J = 8.0 Hz, 1H), 2.36 (s, 6H), 2.14 (s, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 138.2, 137.9, 137.7, 134.8, 129.6, 129.3, 128.3, 126.5, 118.5, 76.2, 49.4, 21.3, 21.2, hydroxy-3,4-bis(4-methoxyphenyl)butanenitrile (5e): white solid; MP: o C; Yield: 91%; 94% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-1 ( mm), ipa : hex = 10:90, 1mL/min, 254 nm; t R = 9.5 min (major), t R = 17.9 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: 7.16 (dd, J = 8.6 Hz, 1.9 Hz, 4H), (m, 4H), 4.89 (d, J = 7.2 Hz, 1H), 3.80 (s, 6H), (m, 1H), 2.62 (dd, S18

19 J = 16.8 Hz, 5.6 Hz, 1H), 2.45 (q, J = 8.2 Hz, 1H), 205 (s, 1H). 13 C NMR (CDCl 3, 100 MHz) δ: 159.6, 159.3, 133.0, 129.7, 129.5, 127.8, 118.5, 114.3, 114.0, 75.9, 55.3, 55.2, 49.1, Procedure for the synthesis of compound 6 and 7. [5] To a stirring solution of the hydrogenation product (0.2 mmol) in MeOH (3 ml) NiCl 2 6H 2 O (0.4 mmol) was first added, then NaBH 4 (1.6 mmol) was added portionwise at 0 o C over 1 h. The mixture was stirred at room temperature for 15 min and carefully quenched with H 2 O. The aqueous layer was extracted with ethyl acetate, dried over MgSO 4. The solvent was removed in vacuo, the residue was heated and stirred at 40 o C in MeOH for 1h. After the usual workup, the residue was purified by silica gel column chromatography using petroleum ether/ AcOEt as an eluent. 3-phenylpyrrolidin-2-one (6): Yield: 83%; white solid; MP: o C; 94% ee; [α] 25 D = (c = 0.5, CHCl 3 ); GC condition: Supelco gamma DexTM 225 column (30 m 0.25 mm 0.25 µm), N ml/min, programmed 100 o C 8 o C/min o C min; t R = 15.3 min (minor), t R = 16.2 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 5H), 6.75 (s, 1H), (m, 1H), (m, 2H), (m, 1H), (m, 1H). [6] 3-(4-methoxyphenyl)pyrrolidin-2-one (7): Yield: 85%; white solid; MP: o C; 96% ee; [α] 25 D = (c = 0.5, CHCl 3 ); GC condition: Supelco gamma DexTM 225 column (30 m 0.25 mm 0.25 µm), N ml/min, programmed 100 o C 8 o C/min o C - 50 min; t R = 24.8 min (major), t R = 28.9 min (minor). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 2H), (m, 2H), 6.70 (s, 1H), 3.79 (s, 3H), 3.57 (t, J = 9.1 Hz, 1H), (m, 2H), (m, 1H), (m, 1H). 13 C NMR S19

20 (CDCl 3, 100 MHz) δ: 179.1, 158.7, 131.4, 129.0, 114.2, 55.3, 46.7, 40.5, APCI-HRMS Calcd. for C 11 H 14 NO 2 [M+H + ]: , found Procedure for the synthesis of compound 8 and 9. [1] To a stirring solution of the hydrogenation product (0.2 mmol) in MeOH (3 ml) Boc 2 O (0.4 mmol) and NiCl 2 6H 2 O (0.4 mmol) were first added, then NaBH 4 (1.6 mmol) was added portionwise at 0 o C over 1 h. The mixture was stirred at room temperature until no starting material was detected by TLC and carefully quenched with H 2 O. The aqueous layer was extracted with ethyl acetate, dried over MgSO 4. After the solvent was removed in vacuo, the residue was purified by silica gel column chromatography using petroleum ether/ AcOEt as an eluent. methyl 4-((tert-butoxycarbonyl)amino)-2-phenylbutanoate (8): Yield: 83%; colorless liquid; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 3:97, 1mL/min, 230 nm; t R = 17.4 min (minor), t R = 18.1 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: (m, 5H), 4.58 (s, 1H), (m, 4H), (m, 2H), (m, 1H), (m, 1H), 1.42 (s, 9H). [7] methyl 4-((tert-butoxycarbonyl)amino)-2-(4-methoxyphenyl)butanoate (9): Yield: 79%; colorless liquid; 97% ee; [α] 25 D = (c = 0.5, CHCl 3 ); HPLC condition: Lux 5u Cellulose-3 ( mm), ipa : hex = 5:95, 1mL/min, 230 nm; t R = 19.6 min (minor), t R = 20.5 min (major). 1 H NMR (CDCl 3, 400 MHz) δ: 7.20 (dd, J = 6.7 Hz, 2.0 Hz, 2H), 6.85 (dd, J = 6.7 Hz, 2.0 Hz, 2H), 4.55 (s, 1H), 3.77 (s, 3H), 3.64 (s, 3H), 3.55 (t, J = 7.6 Hz, 1H), (m, 2H), (m, 1H), (m, 1H), 1.42 (s, 9H). 13 C NMR (CDCl 3, 100 MHz) δ: 174.3, 158.9, 155.8, 130.4, 128.9, S20

21 114.2, 79.2, 55.2, 52.1, 48.2, 38.8, 33.6, APCI-HRMS Calcd. for C 17 H 26 NO 5 [M+H + ]: , found References [1] E. Brenna, F. G. Gatti, A.Manfredi, D. Monti and F. Parmeggiani, Catal. Sci. Technol. 2013, 3, [2] J. Meng, M. Gao, H. Lv, X. Zhang, Org. Lett. 2015, 17, [3] A. Spencer, J. Organomet. Chem. 1982, 240, 209. [4] R. Giovannini and Petrini, M. Tetrahedron Lett. 1997, 38, [5] E. Dieter and N. Oliver, Heterocycles 2005, 66, 385. [6] B. J. Kim, Y. S. Park and P. Beak, J. Org. Chem. 1999, 64, [7] R. D. Clark and Jahangir, Tetrahedron 1993, 49, S21

22 9. NMR, GC and HPLC spectra of compounds 1-9. (Z)-methyl 3-cyano-2-phenylacrylate (1a) (E)-methyl 3-cyano-2-phenylacrylate (1a ) S22

23 (Z)-ethyl 3-cyano-2-phenylacrylate (1b) S23

24 (E)-ethyl 3-cyano-2-phenylacrylate (1b ) S24

25 (Z)-methyl 3-cyano-2-(p-tolyl)acrylate (1c) S25

26 (E)-methyl 3-cyano-2-(p-tolyl)acrylate (1c ) S26

27 (Z)-methyl 3-cyano-2-(4-methoxyphenyl)acrylate (1d) S27

28 (E)-methyl 3-cyano-2-(4-methoxyphenyl)acrylate (1d ) S28

29 (Z)-methyl 3-cyano-2-(4-fluorophenyl)acrylate (1e) S29

30 (E)-methyl 3-cyano-2-(4-fluorophenyl)acrylate (1e ) S30

31 (Z)-methyl 2-(4-chlorophenyl)-3-cyanoacrylate (1f) S31

32 (E)-methyl 2-(4-chlorophenyl)-3-cyanoacrylate (1f ) S32

33 (Z)-methyl 2-(4-bromophenyl)-3-cyanoacrylate (1g) S33

34 (E)-methyl 2-(4-bromophenyl)-3-cyanoacrylate (1g ) S34

35 (Z)-methyl 3-cyano-2-(m-tolyl)acrylate (1h) S35

36 (E)-methyl 3-cyano-2-(m-tolyl)acrylate (1h ) S36

37 (Z)-methyl 3-cyano-2-(3-methoxyphenyl)acrylate (1i) S37

38 (E)-methyl 3-cyano-2-(3-methoxyphenyl)acrylate (1i ) S38

39 (Z)-methyl 3-cyano-2-(3-fluorophenyl)acrylate (1j) S39

40 (E)-methyl 3-cyano-2-(3-fluorophenyl)acrylate (1j ) S40

41 (Z)-methyl 3-cyano-2-(o-tolyl)acrylate (1k) S41

42 (E)-methyl 3-cyano-2-(o-tolyl)acrylate (1k ) S42

43 (Z)-methyl 3-cyano-2-(2-methoxyphenyl)acrylate (1l) S43

44 (E)-methyl 3-cyano-2-(2-methoxyphenyl)acrylate (1l ) S44

45 (Z)-methyl 3-cyano-2-(naphthalen-1-yl)acrylate (1m) S45

46 (E)-methyl 3-cyano-2-(naphthalen-1-yl)acrylate (1m ) S46

47 (Z)-methyl 3-cyano-2-(naphthalen-2-yl)acrylate (1n) S47

48 (E)-methyl 3-cyano-2-(naphthalen-2-yl)acrylate (1n ) S48

49 (Z)-methyl 2-( (cyanomethylene)-3-methylbutanoate (1o) (E)-methyl 2-( (cyanomethylene)-3-methylbutanoate (1o ) S49

50 (Z)-methyl 3-cyano-2-cyclohexylacrylate (1p) S50

51 (E)-methyl 3-cyano-2-cyclohexylacrylate (1p ) S51

52 (E)-4-oxo-3,4-diphenylbut-2-enenitrile (3a) S52

53 (E)-3,4-bis(2-methoxyphenyl)-4-oxobut-2-enenitrile (3b) S53

54 (E)-4-oxo-3,4-di-m-tolylbut-2-enenitrile (3c) S54

55 (E)-4-oxo-3,4-di-p-tolylbut-2-enenitrile (3d) S55

56 (E)-3,4-bis(4-methoxyphenyl)-4-oxobut-2-enenitrile (3e) S56

57 ethyl 3-cyano-2-phenylpropanoate methyl 3-cyano-2-phenylpropanoate S57

58 methyl 3-cyano-2-(p-tolyl)propanoate S58

59 methyl 3-cyano-2-(4-methoxyphenyl)propanoate S59

60 methyl 3-cyano-2-(4-fluorophenyl)propanoate S60

61 methyl 2-(4-chlorophenyl)-3-cyanopropanoate S61

62 methyl 2-(4-bromophenyl)-3-cyanopropanoate S62

63 methyl 3-cyano-2-(m-tolyl)propanoate S63

64 methyl 3-cyano-2-(3-methoxyphenyl)propanoate S64

65 methyl 3-cyano-2-(3-fluorophenyl)propanoate S65

66 methyl 3-cyano-2-(o-tolyl)propanoate S66

67 methyl 3-cyano-2-(2-methoxyphenyl)propanoate S67

68 methyl 3-cyano-2-(naphthalen-1-yl) )propanoate S68

69 methyl 3-cyano-2-(naphthalen-2-yl) )propanoate S69

70 methyl 2-(cyanomethyl)-3-methylbutanoate S70

71 methyl 3-cyano-2-cyclohexylpropanoate S71

72 4-oxo-3,4-diphenylbutanenitrile (4a) S72

73 3,4-bis(2-methoxyphenyl)-4-oxobutanenitrile (4b) S73

74 4-oxo-3,4-di-m-tolylbutanenitrile (4c) S74

75 4-oxo-3,4-di-p-tolylbutanenitrile (4d) S75

76 3,4-bis(4-methoxyphenyl)-4-oxobutanenitrile (4e) S76

77 4-hydroxy-3,4-diphenylbutanenitrile (5a) S77

78 4-hydroxy-3,4-bis(2-methoxyphenyl)butanenitrile (5b) S78

79 4-hydroxy-3,4-di-m-tolylbutanenitrile (5c) S79

80 4-hydroxy-3,4-di-p-tolylbutanenitrile (5d) S80

81 4-hydroxy-3,4-bis(4-methoxyphenyl)butanenitrile (5e) S81

82 3-phenylpyrrolidin-2-one (6) S82

83 3-(4-methoxyphenyl)pyrrolidin-2-one (7) S83

84 methyl 4-((tert-butoxycarbonyl)amino)-2-phenylbutanoate (8) methyl 4-((tert-butoxycarbonyl)amino)-2-(4-methoxyphenyl)butanoate (9) S84

85 S85

86 S86

87 S87 2b

88 S88

89 S89

90 S90 2e'

91 S91

92 S92

93 CN O O CH 3 CN O O CH 3 S93

94 CN O O OCH 3 CN O O OCH 3 S94

95 S95

96 S96

97 S97

98 S98

99 S99

100 S100 2o

101 S101

102 S102

103 S103

104 S104

105 S105 4d

106 S106

107 S107

108 OCH 3 CN (rac)- OH OCH 3 OCH 3 CN OH OCH 3 S108

109 S109

110 CN CH 3 (rac)- H 3 C OH S110

111 CN OCH 3 H 3 CO OH S111

112 S112

113 S113

114 S114

115 S115

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic

Διαβάστε περισσότερα

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Supporting Information Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Shohei Shimokawa, Yuhsuke Kawagoe, Katsuhiko Moriyama, Hideo Togo* Graduate

Διαβάστε περισσότερα

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information for AgOTf-catalyzed one-pot reactions of 2-alkynylbenzaldoximes with α,β-unsaturated carbonyl compounds Qiuping Ding 1, Dan Wang 1, Puying Luo* 2, Meiling Liu 1, Shouzhi Pu* 3 and

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Copper/Silver Cocatalyzed Oxidative Coupling of Vinylarenes with ICH 2 CF 3 or ICH 2 CHF 2 Leading to β-cf 3 /CHF 2 -Substituted Ketones Niannian Yi, Hao Zhang, Chonghui Xu, Wei

Διαβάστε περισσότερα

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic Supporting Information Asymmetric Binary-acid Catalysis with Chiral Phosphoric Acid and MgF 2 : Catalytic Enantioselective Friedel-Crafts Reactions of β,γ- Unsaturated-α-Ketoesters Jian Lv, Xin Li, Long

Διαβάστε περισσότερα

Supporting information

Supporting information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting information Copper-catalysed intramolecular O-arylation: a simple

Διαβάστε περισσότερα

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates:

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information for Lewis acid-catalyzed redox-neutral amination of 2-(3-pyrroline-1-yl)benzaldehydes via intramolecular [1,5]-hydride shift/isomerization reaction Chun-Huan Jiang, Xiantao Lei,

Διαβάστε περισσότερα

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Enantioselective Organocatalytic Michael Addition of Isorhodanines to α,

Διαβάστε περισσότερα

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2016 Supporting information Copper-Catalyzed Oxidative Dehydrogenative - Bond Formation

Διαβάστε περισσότερα

Supporting Information. Experimental section

Supporting Information. Experimental section Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Proton nuclear magnetic resonance ( 1

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Montmorillonite KSF-Catalyzed One-pot, Three-component, Aza-Diels- Alder Reactions of Methylenecyclopropanes With Arylaldehydes and Aromatic Amines Li-Xiong Shao and Min Shi* General

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Lewis acid catalyzed ring-opening reactions of methylenecyclopropanes with diphenylphosphine oxide in the presence of sulfur or selenium Min Shi,* Min Jiang and Le-Ping Liu State

Διαβάστε περισσότερα

Electronic Supplementary Information

Electronic Supplementary Information Electronic Supplementary Information Unprecedented Carbon-Carbon Bond Cleavage in Nucleophilic Aziridine Ring Opening Reaction, Efficient Ring Transformation of Aziridines to Imidazolidin-4-ones Jin-Yuan

Διαβάστε περισσότερα

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol FeCl 3 6H 2 O-Catalyzed Disproportionation of Allylic Alcohols and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol Jialiang Wang, Wen Huang, Zhengxing Zhang, Xu

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Supporting Information for An atom-economic route to densely functionalized thiophenes via base-catalyzed rearrangement of 5-propargyl-2H-thiopyran-4(3H)-ones Chunlin Tang a, Jian Qin b, Xingqi Li *a a

Διαβάστε περισσότερα

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer

Διαβάστε περισσότερα

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang* Facile construction of the functionalized 4H-chromene via tandem benzylation and cyclization Jinmin Fan and Zhiyong Wang* Hefei National Laboratory for Physical Science at Microscale, Joint- Lab of Green

Διαβάστε περισσότερα

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction Supporting Information ne-pot Approach to Chiral Chromenes via Enantioselective rganocatalytic Domino xa-michael-aldol Reaction Hao Li, Jian Wang, Timiyin E-Nunu, Liansuo Zu, Wei Jiang, Shaohua Wei, *

Διαβάστε περισσότερα

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Supporting Information for Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Changkun Li and Jianbo Wang* Beijing National Laboratory

Διαβάστε περισσότερα

Supporting Information. Experimental section

Supporting Information. Experimental section Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Anhydrous solvents were transferred by

Διαβάστε περισσότερα

Supporting information

Supporting information Electronic upplementary Material (EI) for New Journal of Chemistry. This journal is The Royal ociety of Chemistry and the Centre National de la Recherche cientifique 7 upporting information Lipase catalyzed,-addition

Διαβάστε περισσότερα

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Supporting Information for: Room Temperature Highly Diastereoselective Zn-Mediated Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Stereoselectivity Reversal

Διαβάστε περισσότερα

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces Highly enantioselective cascade synthesis of spiropyrazolones Alex Zea a, Andrea-Nekane R. Alba a, Andrea Mazzanti b, Albert Moyano a and Ramon Rios a,c * Supporting Information NMR spectra and HPLC traces

Διαβάστε περισσότερα

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran 1 Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran Munawar Hussain, a Rasheed Ahmad Khera, a Nguyen Thai Hung, a Peter Langer* a,b a Institut für Chemie, Universität Rostock,

Διαβάστε περισσότερα

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Pd Catalyzed Carbonylation for the Construction of Tertiary and Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Pd Catalyzed Carbonylation for the Construction of Tertiary and Quaternary

Διαβάστε περισσότερα

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Rhodium-Catalyzed Oxidative Decarbonylative Heck-type

Διαβάστε περισσότερα

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol Supporting Information for: Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol Yu-Fang Zhang, Diao Chen, Wen-Wen

Διαβάστε περισσότερα

Divergent synthesis of various iminocyclitols from D-ribose

Divergent synthesis of various iminocyclitols from D-ribose Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 205 Divergent synthesis of various iminocyclitols from D-ribose Ramu Petakamsetty,

Διαβάστε περισσότερα

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China; Supplementary Data Synthesis, Chemo-selective Properties of Substituted 9-Aryl-9H-fluorenes from Triarylcarbinols and Enantiomerical Kinetics of Chiral 9-Methoxy-11-(naphthalen-1-yl)-11H-benzo[a]fluorene

Διαβάστε περισσότερα

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu* Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 204 Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng

Διαβάστε περισσότερα

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A new Entry to N-Carbamate Protected Arylamines Bing Zhou,* Juanjuan Du, Yaxi Yang,* Huijin Feng, Yuanchao Li Shanghai Institute of Materia Medica,

Διαβάστε περισσότερα

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Selective Synthesis of xygen-containing Heterocycles via Tandem Reactions of 1,2-Allenic Ketones with Ethyl 4-Chloroacetoacetate Qiang Wang, a, b Zhouqing Xu b and Xuesen Fan a *

Διαβάστε περισσότερα

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process Jincan Zhao 1, Hong Fang 1, Jianlin Han* 1,2 and Yi Pan* 1

Διαβάστε περισσότερα

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of Supporting Information File 1 for First DMAP-mediated direct conversion of Morita Baylis Hillman alcohols into γ-ketoallylphosphonates: Synthesis of γ-aminoallylphosphonates Marwa Ayadi 1,2, Haitham Elleuch

Διαβάστε περισσότερα

Aminofluorination of Fluorinated Alkenes

Aminofluorination of Fluorinated Alkenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Synthesis of ɑ CF 3 and ɑ CF 2 H Amines via Aminofluorination of Fluorinated Alkenes Ling Yang,

Διαβάστε περισσότερα

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines Direct Palladium-Catalyzed Arylations of Aryl Bromides with 2/9-Substituted Pyrimido[5,4-b]indolizines Min Jiang, Ting Li, Linghua Meng, Chunhao Yang,* Yuyuan Xie*, and Jian Ding State Key Laboratory of

Διαβάστε περισσότερα

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols Dr. Xiao un Tang and Prof. Qing un Chen* Key Laboratory of Organofluorine Chemistry,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Synthesis of 3-omosubstituted Pyrroles via Palladium- Catalyzed Intermolecular Oxidative Cyclization

Διαβάστε περισσότερα

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du* Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic

Διαβάστε περισσότερα

Experimental procedure

Experimental procedure Supporting Information for Direct electrophilic N-trifluoromethylthiolation of amines with trifluoromethanesulfenamide Sébastien Alazet 1,2, Kevin Ollivier 1 and Thierry Billard* 1,2 Address: 1 Institute

Διαβάστε περισσότερα

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors Supporting Information Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors Frédéric Pin, a Frédéric Buron, a Fabienne Saab, a Lionel Colliandre,

Διαβάστε περισσότερα

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate upporting Information Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate Jing-Yu Wu, Zhi-Bin Luo, Li-Xin Dai and Xue-Long Hou* a tate Key Laboratory of Organometallic

Διαβάστε περισσότερα

The Free Internet Journal for Organic Chemistry

The Free Internet Journal for Organic Chemistry The Free Internet Journal for Organic Chemistry Paper Archive for Organic Chemistry Arkivoc 2018, part iii, S1-S6 Synthesis of dihydropyranones and dihydropyrano[2,3- d][1,3]dioxine-diones by cyclization

Διαβάστε περισσότερα

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information. Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2018 The,-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H Carbonylation using

Διαβάστε περισσότερα

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 205 Vilsmeier aack reagent-promoted formyloxylation of α-chloro-arylacetamides by formamide Jiann-Jyh

Διαβάστε περισσότερα

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006 Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 1 A Facile Way to Synthesize 2H-Chromenes: Reconsideration of the Reaction Mechanism between Salicylic Aldehyde and

Διαβάστε περισσότερα

Supplementary information

Supplementary information Electronic Supplementary Material (ESI) for MedChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary information Synthesis of carboxyimidamide-substituted benzo[c][1,2,5]oxadiazoles

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Convenient and General Zinc-Catalyzed Borylation of Aryl Diazonium Salts and Aryltriazenes under Mild Conditions

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information An Approach to 3,6-Disubstituted 2,5-Dioxybenzoquinones via Two Sequential Suzuki Couplings. Three-step Synthesis of Leucomelone Xianwen Gan, Wei Jiang, Wei Wang,,,* Lihong Hu,,*

Διαβάστε περισσότερα

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation This journal is The Royal Society of Chemistry 212 Supporting Information for Synthesis of Fused -Heterocycles via Tandem C-H Activation Ge Meng, Hong-Ying iu, Gui-Rong Qu, John S. Fossey, Jian-Ping Li,*

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic upplementary Material (EI) for Green Chemistry. This journal is The Royal ociety of Chemistry 204 upporting Information ynthesis of sulfonamides via I 2 -mediated reaction of sodium sulfinates

Διαβάστε περισσότερα

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%. Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%. S1 Supplementary Figure S2. Single X-ray structure 5a at probability ellipsoids of 20%. S2 H 15 Ph Ac Ac I AcH Ph Ac

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Ceric Ammonium Nitrate (CAN) catalyzed efficient one-pot three component aza-diels-alder reactions for a facile synthesis of tetrahydropyranoquinoline derivatives Ravinder Goud Puligoundla

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Transition-metal-free Ring Expansion Reactions of Indene-1,3-dione: Synthesis of Functionalized Benzoannulated Seven-Membered Ring Compounds Qiyi Yao, Lingkai Kong, Mengdan Wang,

Διαβάστε περισσότερα

Electronic Supplementary Information (ESI)

Electronic Supplementary Information (ESI) Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry Electronic Supplementary Information (ESI) For Iron-Catalysed xidative Amidation of Alcohols with Amines Silvia Gaspa, a Andrea

Διαβάστε περισσότερα

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde hydrazones leading

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Silver or Cerium-Promoted Free Radical Cascade Difunctionalization

Διαβάστε περισσότερα

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Supporting Information Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine

Διαβάστε περισσότερα

gem-dichloroalkenes for the Construction of 3-Arylchromones

gem-dichloroalkenes for the Construction of 3-Arylchromones Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Pd(OAc)2/S=PPh3 Accelerated Activation of gem-dichloroalkenes for the Construction of 3-Arylchromones

Διαβάστε περισσότερα

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF. ESI for A simple and efficient protocol for the palladium-catalyzed ligand-free Suzuki reaction at room temperature in aqueous DMF Chun Liu,* Qijian i, Fanying Bao and Jieshan Qiu State Key Laboratory

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for rganic Chemistry Frontiers. This journal is the Partner rganisations 2018 Palladium-catalyzed direct approach to α-cf 3 aryl ketones from arylboronic acids Bo

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2010 A Highly Effective Bis(sulfonamide) Diamine Ligand: A Unique Chiral Skeleton for the Enantioselective Cu-Catalyzed

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Supporting Information for Palladium-Catalyzed C-H Bond Functionalization of C6-Arylpurines Hai-Ming Guo,* Wei-Hao Rao, Hong-Ying iu, Li-Li Jiang, Ge ng, Jia-Jia Jin, Xi-ing Yang, and Gui-Rong Qu* College

Διαβάστε περισσότερα

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary information Copper-Catalyzed xidative Coupling of Acids with Alkanes Involving Dehydrogenation:

Διαβάστε περισσότερα

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions Supplementary Information for Phosphorus xychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions u Chen,* a,b Xunfu Xu, a Liu Liu, a Guo Tang,* a

Διαβάστε περισσότερα

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides Supporting Information for Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds in Aromatic Amides Feifan Wang, Qiyan Hu, Chao Shu, Zhiyang Lin, Dewen Min, Tianchao Shi and Wu Zhang* Key Laboratory

Διαβάστε περισσότερα

Supplementary Material

Supplementary Material Supplementary Material Control experiments S2 Characterization data for the products S2-S7 References S8 MR spectra for the products S9-S28 S1 Control experiments 2a (99.5 mg, 0.5 mmol), I 2 (50.8 mg,

Διαβάστε περισσότερα

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Synthesis and evaluation of novel aza-caged Garcinia xanthones Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry Synthesis and evaluation of novel aza-caged Garcinia xanthones Xiaojin Zhang, a,1 Xiang Li, a,1 Haopeng Sun, * b Zhengyu Jiang,

Διαβάστε περισσότερα

Sequential catalysis for the production of sterically hindered amines: Ruthenium(II)-catalyzed C-H bond activation and hydrosilylation of imines

Sequential catalysis for the production of sterically hindered amines: Ruthenium(II)-catalyzed C-H bond activation and hydrosilylation of imines Electronic Supporting Information Sequential catalysis for the production of sterically hindered amines: Ruthenium(II)-catalyzed C- bond activation and hydrosilylation of imines Bin Li, Charles B. Bheeter,

Διαβάστε περισσότερα

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors Supporting Information Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors Xiao-Peng He, abd Cui Li, d Xiao-Ping Jin, b Zhuo Song, b Hai-Lin Zhang,

Διαβάστε περισσότερα

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid Yawen Wei, a Chao Wang,* a Xue Jiang, a Dong Xue, a Zhao-Tie Liu, a and Jianliang Xiao* a,b a Key Laboratory of Applied

Διαβάστε περισσότερα

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent Supplementary information for the paper Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent Yang Xue, Ling-Po Li, Yan-Hong He * & Zhi Guan * School of Chemistry and Chemical Engineering,

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Metal-catalyzed Stereoselective and Protecting-group-free Synthesis of 1,2-cis-Glycosides Using 4,6-Dimethoxy-1,3,5-triazin-2-yl Glycosides as Glycosyl Donors Tomonari Tanaka,* 1

Διαβάστε περισσότερα

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPRTIG IFRMATI Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst-

Διαβάστε περισσότερα

Supporting Information for

Supporting Information for Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information for Quinine-Catalyzed Highly Enantioselective Cycloannulation

Διαβάστε περισσότερα

Supporting Information

Supporting Information Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Modular Synthesis of Propargylamine Modified Cyclodextrins by a Gold(III)-catalyzed Three Component

Διαβάστε περισσότερα

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of novel 1,2,3-triazolyl derivatives of

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Lewis Acid Mediated [2,3]-Sigmatropic Rearrangement of Allylic α-amino Amides. Jan Blid, Peter Brandt, Peter Somfai*, Department of Chemistry, rganic Chemistry, Royal Institute of

Διαβάστε περισσότερα

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans Liang Yun, Shi Tang, Xu-Dong Zhang, Li-Qiu Mao, Ye-Xiang Xie and Jin-Heng Li* Key Laboratory

Διαβάστε περισσότερα

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2017 Laboratoire de Méthodologie et ynthèse de Produit aturels. Université du Québec

Διαβάστε περισσότερα

Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse. Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening

Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse. Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening Reaction Involving 2-Methoxyfurans as Efficient Dienophiles Rong Huang, Xin

Διαβάστε περισσότερα

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl Philippe Pierrat, Philippe Gros* and Yves Fort Synthèse Organométallique

Διαβάστε περισσότερα

Supplementary Information for

Supplementary Information for Supplementary Information for Organocatalytic Asymmetric Intramolecular [3+2] Cycloaddition: A Straightforward Approach to Access Multiply Substituted Hexahydrochromeno[4,3-b]pyrrolidine Derivatives in

Διαβάστε περισσότερα

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds Supporting Information for Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds Zhongxue Fang, a Yongquan Ning, a Pengbing Mi, a Peiqiu Liao, a Xihe Bi* a,b a Department of Chemistry,

Διαβάστε περισσότερα

Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-Quinolones by Protecting Group-Free Approach

Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-Quinolones by Protecting Group-Free Approach Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-Quinolones by Protecting Group-Free Approach Kodai Saito, Yuka Moriya, and Takahiko Akiyama* Department of Chemistry,

Διαβάστε περισσότερα

Supplementary Information. Bio-catalytic asymmetric Mannich reaction of ketimines using. wheat germ lipase

Supplementary Information. Bio-catalytic asymmetric Mannich reaction of ketimines using. wheat germ lipase Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is The Royal Society of Chemistry 2016 Supplementary Information Bio-catalytic asymmetric Mannich reaction of ketimines

Διαβάστε περισσότερα

A straightforward metal-free synthesis of 2-substituted thiazolines in air

A straightforward metal-free synthesis of 2-substituted thiazolines in air Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 Supporting Information for A straightforward metal-free synthesis of 2-substituted thiazolines

Διαβάστε περισσότερα

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2 Free Radical Initiated Coupling Reaction of Alcohols and Alkynes: not C-O but C-C Bond Formation Zhongquan Liu,* Liang Sun, Jianguo Wang, Jie Han, Yankai Zhao, Bo Zhou Institute of Organic Chemistry, Gannan

Διαβάστε περισσότερα

Supporting Materials

Supporting Materials Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2016 Carbonylative Coupling of Aryl Tosylates/triflates with Arylboronic Acids under CO Atmosphere

Διαβάστε περισσότερα

Supporting Information

Supporting Information Supporting Information Wiley-VC 007 9 Weinheim, Germany ew ear Infrared Dyes and Fluorophores Based on Diketopyrrolopyrroles Dipl.-Chem. Georg M. Fischer, Dipl.-Chem. Andreas P. Ehlers, Prof. Dr. Andreas

Διαβάστε περισσότερα

multicomponent synthesis of 5-amino-4-

multicomponent synthesis of 5-amino-4- Supporting Informartion for Molecular iodine-catalyzed one-pot multicomponent synthesis of 5-amino-4- (arylselanyl)-1h-pyrazoles Camila S. Pires 1, Daniela H. de Oliveira 1, Maria R. B. Pontel 1, Jean

Διαβάστε περισσότερα

Diastereo- and Enantioselective Propargylation of Benzofuranones. Catalyzed by Pybox-Copper Complex

Diastereo- and Enantioselective Propargylation of Benzofuranones. Catalyzed by Pybox-Copper Complex Diastereo- and Enantioselective Propargylation of Benzofuranones Catalyzed by Pybox-Copper Complex Long Zhao, Guanxin Huang, Beibei Guo, Lijun Xu, Jie Chen, Weiguo Cao, Gang Zhao, *, Xiaoyu Wu *, Department

Διαβάστε περισσότερα

Supporting Information For

Supporting Information For Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Supporting Information For ne-pot synthesis of 2,3-difunctionalized indoles

Διαβάστε περισσότερα

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Won-Suk Kim, Hyung-Jin Kim and Cheon-Gyu Cho Department of Chemistry, Hanyang University, Seoul 133-791, Korea Experimental Section

Διαβάστε περισσότερα

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2 Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with β-nitroalkenes Jing Zheng, Dahai Wang, and Sunliang Cui* College of Pharmaceutical Sciences, Zhejiang University,

Διαβάστε περισσότερα

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-yl Aldimines Filip Colpaert, Sven Mangelinckx, and Norbert De Kimpe Department

Διαβάστε περισσότερα

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p Supplementary Figure 1 (X-ray structures of 6p and 7f) Me Br 6p 6p Supplementary Figures 2-68 (MR Spectra) Supplementary Figure 2. 1 H MR of the 6a Supplementary Figure 3. 13 C MR of the 6a Supplementary

Διαβάστε περισσότερα