6 4. Ενεργό ύψος εκποµπής Ενεργό ύψος εκποµπής ενεργό ύψος (effective height) ανύψωση του θυσάνου (plume rise) θερµική ανύψωση (thermal rise).

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "6 4. Ενεργό ύψος εκποµπής Ενεργό ύψος εκποµπής ενεργό ύψος (effective height) ανύψωση του θυσάνου (plume rise) θερµική ανύψωση (thermal rise)."

Transcript

1 6 4. Ενεργό ύψος εκποµπής Ενεργό ύψος εκποµπής Οι περισσότεροι ρύποι που εκπέµπονται στην ατµόσφαιρα προέρχονται από καύσεις πράγµα το οποίο έχει σαν αποτέλεσµα να έχουν υψηλότερη θερµοκρασία από το περιβάλλον. Αυτό έχει σαν συνέπεια ο καπνός να ανυψώνεται µε αποτέλεσµα το ενεργό ύψος (effective height) της καµινάδας, Η, να είναι µεγαλύτερο από το φυσικό ύψος της, h. Η ανύψωση του θυσάνου (plume rise) λόγω της άνωσης λέγεται θερµική ανύψωση (thermal rise). Ακόµα, τα αέρια όταν αφήνουν την καµινάδα έχουν µια υψηλή αρχική ταχύτητα (δεν είναι ασυνήθεις ταχύτητες της τάξης των 20 ms -1 ) γεγονός το οποίο επίσης συνεισφέρει στην ανύψωση του θυσάνου. Αυτή η επίδραση έχει γενικά µικρή εµβέλεια (ο χρόνος δράσης είναι περίπου δευτερόλεπτα) και είναι συνήθως δευτερεύουσας σηµασίας σε σύγκριση µε την θερµική ανύψωση. Ένας εµπειρικός κανόνας λέει ότι αν η θερµοκρασία των αερίων υπερβαίνει αυτή του αέρα κατά K τότε η θερµική ανύψωση είναι µεγαλύτερη από την αντίστοιχη λόγω της ορµής. Από την άλλη πλευρά τα αέρια τα οποία είναι βαρύτερα του ατµοσφαιρικού αέρα κατέρχονται λόγω αρνητικής άνωσης ενώ και το κατώρευµα στην υπήνεµη πλευρά της καµινάδας µπορεί να έχει σαν αποτέλεσµα την κάθοδο του θυσάνου. Στις περισσότερες περιπτώσεις η ανύψωση του θυσάνου έχει πολύ µεγάλη σηµασία στον υπολογισµό των µεγίστων συγκεντρώσεων εδάφους γιατί µπορεί να αυξήσει το ενεργό ύψος της καµινάδας µε ένα παράγοντα 2 έως 10 φορές το φυσικό ύψος εκποµπής. Λαµβάνοντας υπόψη ότι η µέγιστη συγκέντρωση εδάφους είναι χονδρικά αντιστρόφως ανάλογη του τετραγώνου του ενεργού ύψους της καµινάδας (σχήµα 6.1), είναι φανερό ότι η ανύψωση του θυσάνου µπορεί, στην ακραία περίπτωση, να µειώσει τις συγκεντρώσεις εδάφους µε ένα παράγοντα της τάξης του 100. Οι παραπάνω διαπιστώσεις αφορούν κυρίως τη βιοµηχανική ρύπανση. Οι ρύποι που εκπέµπονται από οχήµατα και κεντρικές θερµάνσεις έχουν συνήθως πολύ µικρή ανύψωση. Ειδικά για τις κεντρικές θερµάνσεις, η περιβαλλοντική επιβάρυνση των πόλεων κατά την διάρκεια του χειµώνα είναι πολύ σηµαντική, ιδιαίτερα για το διοξείδιο του θείου και τον καπνό που εκπέµπονται από τους καυστήρες. Αυτός είναι ένας σηµαντικός λόγος για τον οποίο έχουν προχωρήσει σε πολλές Ευρωπαϊκές πόλεις στην λύση της τηλεθέρµανσης κατά την οποία το νερό θερµαίνεται σε µια 91

2 κεντρική µονάδα και µετά διανέµεται στις οικίες. Αντικαθιστώντας τις πολλές χαµηλές καµινάδες µε µία υψηλή έχει σαν αποτέλεσµα την σηµαντική µείωση των τοπικών συγκεντρώσεων (σχήµα 6.2). Η σηµασία του ύψους εκποµπής ήταν ήδη γνωστή από τον 18 ο αιώνα οπότε ήταν γενικά αποδεκτός ο αφορισµός «The solution to pollution is dilution (Η λύση για την ρύπανση είναι η αραίωση)». Έτσι η κατασκευή ψηλών καµινάδων καθιερώθηκε σαν η πλέον αποδεκτή λύση για τον περιορισµό της ρύπανσης µιας και οι ρύποι αναµιγνύονται µε το περιβάλλοντα αέρα και αραιώνουν πριν φθάσουν στο έδαφος. Τις τελευταίες δεκαετίες, όµως, αναδείχθηκε η σηµασία των παγκοσµίων περιβαλλοντικών προβληµάτων τα οποία βέβαια δεν επηρεάζονται από το ύψος εκποµπής αλλά είναι αποτέλεσµα των συνολικών εκποµπών ρυπογόνων ουσιών. Αυτό είχε σαν αποτέλεσµα να τεθούν όρια όχι µόνο στις µέγιστες συγκεντρώσεις, οι οποίες εµφανίζονται συνήθως σε τοπική κλίµακα, αλλά επίσης και στις συνολικές εκποµπές. Σχήµα 6.1 Η επίδραση του ύψους εκποµπής στις παρατηρούµενες µέγιστες συγκεντρώσεις για δύο διαφορετικές κλάσεις ευστάθειας. 92

3 Σχήµα 6.2 Η εξέλιξη των συγκεντρώσεων στην διεύθυνση του ανέµου από δύο διαφορετικές κατηγορίες πηγών. Η ένταση της πηγής είναι η ίδια αλλά στην µια περίπτωση η εκποµπή γίνεται σε µικρό ύψος, διάχυτα πάνω από µια πόλη (π.χ. από καµινάδες κεντρικών θερµάνσεων) ενώ στην άλλη περίπτωση οι πολλές µικρές πηγές έχουν αντικατασταθεί από µια ψηλή καµινάδα. Σχήµα 6.3. Σχηµατική παρουσίαση του πεδίου ροής γύρω από µία χαµηλή καµινάδα τοποθετηµένη στην κορυφή ενός κτιρίου. 93

4 Σχήµα 6.4 Σχηµατική αναπαράσταση του πεδίου ροής γύρω από ένα κτίριο. 6.1 Επίδραση κτιρίων και κατώρευµα καµινάδας (stack downwash) Στο σχήµα 6.3 γίνεται µία σχηµατική παρουσίαση του πεδίου ροής γύρω από µία χαµηλή καµινάδα τοποθετηµένη στην κορυφή ενός κτιρίου ενώ στο σχήµα 6.4 παρουσιάζεται το πεδίο ροής γύρω και πάνω από ένα κτίριο. Ο αέρας εξαναγκάζεται να ανυψωθεί µπροστά και πάνω από το κτίριο ενώ στην υπήνεµη πλευρά του σχηµατίζεται ένας µεγάλος στρόβιλος (κοιλότητα, cavity). Οι ρύποι που εκλύονται από την καµινάδα µεταφέρονται από τον στρόβιλο χαµηλά στο έδαφος και ένα µέρος τους επιστρέφει στην πίσω πλευρά του κτιρίου. Όταν το ύψος της καµινάδας ξεπερνάει κάποιο όριο τότε ο θύσανος ξεφεύγει από τον στρόβιλο ο οποίος σχηµατίζεται στην υπήνεµη πλευρά του κτιρίου και οι αρνητικές συνέπειες περιορίζονται σε µία αρνητική "ανύψωση" του θυσάνου, δηλ. σε µία κάθοδο του κεντρικού άξονά του λόγω της αεροδυναµικής της καµινάδας. Προκειµένου να αποφευχθεί η εµπλοκή του θυσάνου στον στρόβιλο πρέπει να εφαρµόζεται ο χοντρικός κανόνας ότι η καµινάδα θα πρέπει να έχει ύψος µεγαλύτερο από 1.5 φορές το ύψος του κτιρίου δηλ. το συνολικό ύψος της πάνω από το έδαφος θα πρέπει να είναι τουλάχιστον 2.5 H b, όπου H b είναι το ύψος του κτιρίου. Σ' αυτή την περίπτωση 94

5 παραµένει µόνο το χαµήλωµα του κεντρικού άξονα του θυσάνου λόγω της αεροδυναµικής της καµινάδας. Στο σχήµα 6.5 παρουσιάζονται σχηµατικά οι παράµετροι που χρησιµοποιούνται στον υπολογισµό της επίδρασης του κατωρεύµατος. Για να λάβουµε υπόψη την επίδραση της καµινάδας αντικαθιστούµε στους υπολογισµούς µας το φυσικό ύψος της καµινάδας h µε το h' το οποίο είναι µικρότερο ή ίσο του h. h' = h (vs 1.5u) (6.1) h' = h + 2d [(vs/u)-1.5] (vs<1.5u) (6.2) όπου vs είναι η ταχύτητα εξόδου των αερίων (ms -1 ) και d είναι η εσωτερική διάµετρος της κορυφής της καµινάδας. Σχήµα 6.5 Χαρακτηριστικοί παράµετροι της καµινάδας οι οποίοι χρησιµοποιούνται στον υπολογισµό της επίδρασης του κατωρεύµατος (downwash) της καµινάδας. Τα διάφορα σύµβολα που υπάρχουν στο σχήµα εξηγούνται στο κείµενο. Αφού υπολογιστεί η τιµή του h' χρησιµοποιούµε µία από τις σχέσεις που δίνονται στα παρακάτω κεφάλαια προκειµένου να υπολογίσουµε την θερµική και τη µηχανική ανύψωση του θυσάνου. 95

6 Σχήµα 6.6 Τυπικό διάγραµµα ενός κατακόρυφου και ενός κεκαµµένου θυσάνου. Στο σχήµα φαίνονται και κάποια χαρακτηριστικά του θυσάνου τα οποία χρησιµοποιούνται στον υπολογισµό της ανύψωσής του. Σχήµα 6.7 Φωτογραφίες ενός κατακόρυφου (αριστερά) και ενός κεκαµµένου θυσάνου (δεξιά). 96

7 6.2 Ανύψωση του θυσάνου Στο σχήµα 6.6 παρουσιάζονται σχηµατικά ένας κατακόρυφος θύσανος (vertical plume) και ένας κεκαµµένος θύσανος (bent-over plume) καθώς και οι διαφορετικοί παράµετροι που χρησιµοποιούνται για τον υπολογισµό της ανύψωσης σε κάθε περίπτωση. Ο θύσανος γίνεται κατακόρυφος όταν η ταχύτητα του ανέµου είναι γενικά µικρότερη από 1 ms -1. Για τον υπολογισµό της ανύψωσης του θυσάνου έχουν αναπτυχθεί µοντέλα τα οποία κατά κανόνα βασίζονται στους βασικούς νόµους της ρευστοµηχανικής. Το βιβλίο των Hanna et. al. (1982) παρέχει µία εκτενή ανασκόπηση του θεωρητικού υπόβαθρου των υπαρχόντων µοντέλων. Σε αυτό το κεφάλαιο θα εξετάσουµε την ανύψωση του θυσάνου για την περίπτωση όπου η ταχύτητα του ανέµου είναι µη µηδενική και έχουµε την περίπτωση του κεκαµµένου θυσάνου. Οι φυσικοί παράµετροι που επιδρούν στην ανύψωση του θυσάνου είναι οι παρακάτω: παράµετρος καµινάδας (stack parameter) παράµετρος ευστάθειας (stability parameter) ταχύτητα ανέµου (wind velocity) κάποια παράµετρος που εκφράζει την F=gv s d 2 (Τ s -T)/4T s S=g/θ θ/ z επίδραση της ατµοσφαιρικής τύρβης π.χ. u * u όπου g είναι η επιτάχυνση της βαρύτητας (ms -2 ), Τ s είναι η θερµοκρασία των αερίων όταν αφήνουν την καµινάδα (K), Τ η θερµοκρασία του περιβάλλοντα αέρα (K), θ/ z η βαθµίδα της δυναµικής θερµοκρασίας (K/m) και u * η ταχύτητα τριβής στο οριακό στρώµα της ατµόσφαιρας (ms -1 ). Η παράµετρος καµινάδας έχει µονάδες m 4 s -3 ενώ η παράµετρος ευστάθειας s -2. Η σχέση ανάµεσα στην κατακόρυφη βαθµίδα της δυναµικής θερµοκρασίας και την αντίστοιχη της θερµοκρασία είναι η παρακάτω: θ T = z z +Γ όπου Γ είναι η ξηρή αδιαβατική θερµοβαθµίδα (Γ= Κ/m). Οι τρεις πρώτοι παράµετροι χρησιµοποιούνται ευρέως στην ανάπτυξη µοντέλων για τον υπολογισµό της ανύψωσης του θυσάνου ενώ η επίδραση της ατµοσφαιρικής τύρβης θεωρείται, συνήθως, αµελητέα. Κατά συνέπεια, τα υπάρχοντα µοντέλα για να λειτουργήσουν χρειάζονται στοιχεία για την καµινάδα (d, v s, T s ) και τις επικρατούσες ατµοσφαιρικές συνθήκες (Τ, u, θ/ z). Το κύριο αποτέλεσµα του µοντέλου είναι η ανύψωση του θυσάνου h η οποία ορίζεται, έµµεσα, από την σχέση: H = h' + h (6.3) 97

8 όπου Η είναι το ενεργό ύψος της καµινάδας, h' είναι το φυσικό ύψος της καµινάδας, ενδεχοµένως διορθωµένο για την επίδραση του κατωρεύµατος και h η ανύψωση του θυσάνου. Όπως αναφέρεται και παρακάτω, η ανύψωση του θυσάνου είναι µία συνεχιζόµενη διαδικασία γι' αυτό τον λόγο το ενεργό ύψος της καµινάδας είναι µία συνάρτηση της απόστασης x. Σε πολλές περισσότερες περιπτώσεις ενδιαφερόµαστε για την τελική ανύψωση, δηλ. το ύψος στο οποίο ο κεντρικός άξονας του θυσάνου σταθεροποιείται κατά κάποιο τρόπο αλλά λεπτοµερειακοί υπολογισµοί συµπεριλαµβάνουν και την επίδραση της βαθµιαίας ανύψωσης του θυσάνου. Ενώ σε ευσταθείς συνθήκες µπορούµε σχετικά εύκολα να ορίσουµε το τελικό ύψος, σε ασταθείς όπως και σε συνθήκες ουδέτερης στρωµάτωσης το πρόβληµα είναι δυσκολότερο. Οι εξισώσεις που παρατίθενται στις επόµενες παραγράφους είναι σε µεγάλο βαθµό εµπειρικές, έχουν δηλαδή προκύψει µε προσαρµογή καµπυλών στα πειραµατικά δεδοµένα. Αυτό εξηγεί κάποιες ιδιοµορφίες που εµφανίζονται στις εξισώσεις καθώς και την έλλειψη συµβατότητας στις µονάδες. Το είδος ανύψωσης του θυσάνου (θερµική ή λόγω ορµής) καθορίζεται από τη σχέση ανάµεσα στη διαφορά της θερµοκρασίας των αερίων από αυτή του περιβάλλοντος Τ ( Τ = Τs-T) µε την κρίσιµη διαφορά θερµοκρασίας Τ c που ορίζεται ως εξής: α) Συνθήκες αστάθειας η ουδέτερης στρωµάτωσης Τ c = T s (v s /d 2 ) 1/3 (F<55 m 4 s -3 ) (6.4) Τ c = T s (v s 2 /d) 1/3 (F 55 m 4 s -3 ) (6.5) β) Συνθήκες ευστάθειας Τ c = T s v s s 1/2 (6.6) Όταν Τ Τ c τότε η ανύψωση του θυσάνου είναι θερµική, διαφορετικά οφείλεται στην ορµή των αερίων. 6.2.α Θερµική ανύψωση θυσάνου σε συνθήκες αστάθειας η ουδέτερης στρωµάτωσης. Κατά την διάρκεια της ηµέρας ή σε ηµέρες/νύχτες οι οποίες είναι νεφελώδεις µε ισχυρούς ανέµους η στρωµάτωση στο οριακό στρώµα της ατµόσφαιρας µπορεί να είναι ασταθής ή ουδέτερη. Το ύψος του οριακού στρώµατος παίρνει, σε τυπικές περιπτώσεις, τιµές στο διάστηµα m. Κοντά στην πηγή, η εσωτερική τύρβη του θυσάνου είναι πολύ µεγαλύτερη απ' αυτή του περιβάλλοντα αέρα. Αν ο θύσανος συνεχίσει να ανέρχεται µέσα στο οριακό στρώµα, από ένα σηµείο και µετά η ατµοσφαιρική τύρβη αρχίζει να υπερισχύει περιορίζοντας τελικά την ανύψωση του θυσάνου. 98

9 Για συνθήκες αστάθειας ή ουδέτερης στρωµάτωσης ισχύουν οι παρακάτω σχέσεις για το τελικό ύψος του θυσάνου: H = h' F 3/4 /u (F<55 m 4 s -3 ) (6.7) H = h' F 3/5 /u (F 55 m 4 s -3 ) (6.8) Σε συνθήκες αστάθειας ή ουδέτερης στρωµάτωσης δεν υπάρχει κάποιο ξεκάθαρο ανώτερο όριο στην ανύψωση του θυσάνου. Σ' αυτές τις περιπτώσεις η επίδραση της άνωσης θεωρείται ότι διαρκεί µέχρις ότου επαρκής ποσότητα περιβάλλοντα αέρα εισέλθει στον θύσανο και µειώσει την θερµοκρασία του στα ίδια επίπεδα µε αυτά του περιβάλλοντα αέρα. Η οριζόντια απόσταση στην οποία θεωρείται ότι παύει η ανύψωση δίνεται από τις σχέσεις: x f =49 F 5/8 (F<55) (6.9) x f =119 F 2/5 (F 55) (6.10) όπου x f είναι η απόσταση από την πηγή στην οποία ο κεντρικός άξονας του θυσάνου έχει φθάσει στο τελικό ύψος, H. 6.2.β Θερµική ανύψωση θυσάνου σε συνθήκες ευστάθειας Κατά την διάρκεια της νύχτας σχηµατίζεται ένα σχετικά ρηχό οριακό στρώµα (~200 m) στο οποίο επικρατούν ευσταθείς συνθήκες. Ακόµα και κατά την διάρκεια της µέρας, το άνω όριο του ασταθούς στρώµατος που σχηµατίζεται κοντά στο έδαφος σηµαδεύεται από µία υπερυψωµένη αναστροφή. Στις περισσότερες περιπτώσεις λοιπόν ο θύσανος µπορεί να βρεθεί σε κάποιο στρώµα αέρα ο οποίος χαρακτηρίζεται από ευσταθή στρωµάτωση. Σ' αυτή την περίπτωση ο θύσανος φθάνει σε ένα µέγιστο ύψος και µετά από µία ή δύο ταλαντώσεις κατέρχεται στο τελικό ύψος. Σε συνθήκες ευστάθειας το τελικό ύψος του κεντρικού άξονα ενός κεκαµµένου θυσάνου δίνεται από την παρακάτω σχέση: Η αντίστοιχη απόσταση είναι: H = h' [F/(us)] 1/3 (6.11) x f = us -1/2 (6.12) Στην περίπτωση κατακόρυφου θυσάνου (u<1 ms -1 ) η θερµική ανύψωση σε συνθήκες ευστάθειας δίνεται από την σχέση: H = h' +4 F 1/4 s -3/8 (6.13) 99

10 Σε συνθήκες ευστάθειας συνήθως λαµβάνεται σαν ενεργό ύψος η χαµηλότερη τιµή από τις εξισώσεις (6.11) και (6.13). 6.2.γ Ανύψωση θυσάνου λόγω ορµής Όπως προαναφέρθηκε στις περισσότερες περιπτώσεις η θερµική άνοδος του θυσάνου υπερισχύει της αντίστοιχης που οφείλεται στην ορµή των αερίων. Στις περιπτώσεις όµως που η θερµοκρασία των αερίων είναι χαµηλότερη ή ελαφρά υψηλότερη της θερµοκρασίας του περιβάλλοντα αέρα η ανύψωση του θυσάνου λόγω της ορµής θα είναι µεγαλύτερη της αντίστοιχης λόγω της άνωσης. Λόγω του γεγονότος ότι η επίδραση της αρχικής ορµής είναι σηµαντική µόνο κοντά στην πηγή, η απόσταση από την πηγή στην οποία ο κεντρικός άξονας του θυσάνου έχει φθάσει στο τελικό ύψος θεωρείται σ' αυτή την περίπτωση ίση µε το µηδέν. Σε συνθήκες αστάθειας εφαρµόζεται η παρακάτω σχέση, Η = h' + 3dv s /u (6.14) ενώ σε συνθήκες ευστάθειας η παρακάτω σχέση είναι κατάλληλη, Η = h' [(v s 2 d 2 T)/(4T s u)] 1/3 s -1/6 (6.15) Συνήθως χρησιµοποιούνται και οι δύο εξισώσεις (6.14) και (6.15) και επιλέγεται η χαµηλότερη από τις δύο τιµές. 6.2.δ Σταδιακή ανύψωση Σε πολλές περιπτώσεις ο χρόνος που απαιτείται για την ανύψωση του θυσάνου στο τελικό ύψος είναι µικρός. Σε άλλες όµως, ιδιαίτερα στην περίπτωση που οι υπολογισµοί γίνονται µε πολύ καλή χωρική ανάλυση (π.χ. λίγες εκατοντάδες µέτρα) είναι απαραίτητο να λάβουµε υπόψη τη σταδιακή ανύψωση του θυσάνου. Σε αυτές τις περιπτώσεις χρησιµοποιείται η παρακάτω εξίσωση H = h' F 1/3 x 2/3 u -1 (x<x f ) (6.16) όπου x είναι η απόσταση από την πηγή Η παραπάνω προσεγγιστική εξίσωση εφαρµόζεται για όλες τις συνθήκες ευστάθειας. Σε περιπτώσεις που σε απόσταση x r < x f το ύψος που υπολογίζεται από την εξίσωση (6.16) γίνει µεγαλύτερο ή ίσο του αντίστοιχου τελικού ύψους που υπολογίζεται στα προηγούµενα κεφάλαια τότε η εφαρµογή της εξίσωσης αυτής περιορίζεται µέχρι την απόσταση x r. 100

11 ΥΠΟΛΟΓΙΣΜΟΣ ΤΟΥ ΥΨΟΥΣ ΤΟΥ ΘΥΣΑΝΟΥ ΑΣΤΑΘΕΙΑ Ή ΟΥ ΕΤΕΡΗ ΣΤΡΩΜΑΤΩΣΗ Παράµετρος καµινάδας F (m 4 s -3 ) ( Τ) c (K) Αιτία ανύψωσης Tελικό ύψος H Aπόσταση x f Σταδιακή ανύψωση (x<x f ) Άνωση h' F 3/4 /u 49 F 5/8 h' F 1/3 x 2/3 u -1 < v s 1/3 T s /d 2/3 Ορµή h' + 3dv s /u 0 - Άνωση h' F 3/5 /u 119 F 2/5 h' F 1/3 x 2/3 u v s 2/3 T s /d 1/3 Ορµή h' + 3dv s /u 0 - ΕΥΣΤΑΘΕΙΑ Είδος θυσσάνου ( Τ) c (K) Αιτία ανύψωσης Tελικό ύψος H Aπόσταση x f Σταδιακή ανύψωση (x<x f ) Κατακόρυφος (u< 1m/s) Κεκαµµένος (u 1m/s) v s T s s 1/2 Άνωση h' + 4F 1/4 s -3/8 0 - Ορµή h'+1.5[v 2 s d 2 T/(4T s u)] 1/3 s -1/6 0 - Άνωση h' + 2.6[F/(us)] 1/ us -1/2 h' F 1/3 x 2/3 u -1 Ορµή h'+1.5[v 2 s d 2 T/(4T s u)] 1/3 s -1/6 0 - Άνωση fi Τ Τ c Ορµήfi Τ< Τ c 101

Ενεργό Ύψος Εκποµπής. Επίδραση. Ανύψωση. του θυσάνου Θερµική. Ανύψωση. ανύψωση θυσάνου σε συνθήκες αστάθειας ή ουδέτερης στρωµάτωσης.

Ενεργό Ύψος Εκποµπής. Επίδραση. Ανύψωση. του θυσάνου Θερµική. Ανύψωση. ανύψωση θυσάνου σε συνθήκες αστάθειας ή ουδέτερης στρωµάτωσης. Ενεργό Ύψος Εκποµπής Επίδραση κτιρίου και κατώρευµα καµινάδας Ανύψωση του θυσάνου Θερµική ανύψωση θυσάνου σε συνθήκες αστάθειας ή ουδέτερης στρωµάτωσης Θερµική ανύψωση θυσάνου σε συνθήκες ευστάθειας Ανύψωση

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΣΗΣΗ 5

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΣΗΣΗ 5 ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΦΥΣΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΣΗΣΗ 5 Προσδιορισµός του ύψους του οραικού στρώµατος µε τη διάταξη lidar. Μπαλής

Διαβάστε περισσότερα

Τεχνολογία Περιβαλλοντικών Μετρήσεων

Τεχνολογία Περιβαλλοντικών Μετρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνολογία Περιβαλλοντικών Μετρήσεων Ενότητα #9: Μοντέλα Διάχυσης & Διασποράς της Ατμοσφαιρικής Ρύπανσης Δρ Κ.Π. Μουστρής Τμήμα

Διαβάστε περισσότερα

Ευστάθεια αστάθεια στην ατμόσφαιρα Αναστροφή θερμοκρασίας - μελέτη των αναστροφών, τα είδη τους και η ταξινόμηση τους

Ευστάθεια αστάθεια στην ατμόσφαιρα Αναστροφή θερμοκρασίας - μελέτη των αναστροφών, τα είδη τους και η ταξινόμηση τους Ευστάθεια αστάθεια στην ατμόσφαιρα Αναστροφή θερμοκρασίας - μελέτη των αναστροφών, τα είδη τους και η ταξινόμηση τους 1 Η αδιαβατική θερμοβαθμίδα dt dz. g c p d ξηρή ατμόσφαιρα Γ d ξηρή αδιαβατική θερμοβαθμίδα

Διαβάστε περισσότερα

1. Τοπικοί άνεµοι και ατµοσφαιρική ρύπανση

1. Τοπικοί άνεµοι και ατµοσφαιρική ρύπανση 1. Τοπικοί άνεµοι και ατµοσφαιρική ρύπανση Όπως είναι γνωστό, οι ρύποι µιας καπνοδόχου αποµακρύνονται ακολουθώντας υποχρεωτικά την κατεύθυνση πνοής του ανέµου. Η ταχύτητα του ανέµου δεν είναι σταθερή.

Διαβάστε περισσότερα

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3

39th International Physics Olympiad - Hanoi - Vietnam Theoretical Problem No. 3 ΑΛΛΑΓΗ ΤΗΣ ΘΕΡΜΟΚΡΑΣΙΑΣ ΤΟΥ ΑΕΡΑ ΜΕ ΤΟ ΥΨΟΣ, ΣΤΑΘΕΡΟΤΗΤΑ ΤΗΣ ΑΤΜΟΣΦΑΙΡΑΣ KAI ΡΥΠΑΝΣΗ ΤΟΥ ΑΕΡΑ Στην κατακόρυφη κίνηση του αέρα οφείλονται πολλές ατμοσφαιρικές διαδικασίες, όπως ο σχηματισμός των νεφών και

Διαβάστε περισσότερα

Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ Υ ΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ 4 ΚΑΤΑΚΟΡΥΦΗ ΑΝΩΣΤΙΚΗ ΦΛΕΒΑ ΜΕΣΑ ΣΕ ΣΤΡΩΜΑΤΙΣΜΕΝΟ ΠΕΡΙΒΑΛΛΟΝ

Διαβάστε περισσότερα

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΣΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΕΠΙΠΤΩΣΕΩΝ ΜΕΓΑΛΩΝ ΑΤΥΧΗΜΑΤΩΝ

ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΣΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΕΠΙΠΤΩΣΕΩΝ ΜΕΓΑΛΩΝ ΑΤΥΧΗΜΑΤΩΝ Industrial Safety for the onshore and offshore industry ΕΦΑΡΜΟΓΕΣ ΤΗΣ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΡΕΥΣΤΟΜΗΧΑΝΙΚΗΣ ΣΤΗΝ ΠΡΟΣΟΜΟΙΩΣΗ ΕΠΙΠΤΩΣΕΩΝ ΜΕΓΑΛΩΝ ΑΤΥΧΗΜΑΤΩΝ Μ.Ν. Χριστόλη, Πολ. Μηχ. Περ/γου DEA Ν.Χ. Μαρκάτου, Ομότ.

Διαβάστε περισσότερα

Τεχνολογία Περιβαλλοντικών Μετρήσεων

Τεχνολογία Περιβαλλοντικών Μετρήσεων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Τεχνολογία Περιβαλλοντικών Μετρήσεων Ενότητα #8: Η Ατμόσφαιρα της Γης-Το Ατμοσφαιρικό Οριακό Στρώμα Δρ Κ.Π. Μουστρής Τμήμα Μηχανολόγων

Διαβάστε περισσότερα

3 Μοντέλα υπολογισµού της ατµοσφαιρικής διασποράς Ατµοσφαιρικό µοντέλο ονοµάζουµε ένα σύστηµα εξισώσεων το οποίο χρησιµοποιείται για να περιγράψει τις φυσικές και/ή τις χηµικές διεργασίες στην ατµόσφαιρα.

Διαβάστε περισσότερα

Θερμοδυναμική. Ενότητα 3: Ασκήσεις στη Θερμοδυναμική. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ

Θερμοδυναμική. Ενότητα 3: Ασκήσεις στη Θερμοδυναμική. Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Θερμοδυναμική Ενότητα 3: Ασκήσεις στη Θερμοδυναμική Κυρατζής Νικόλαος Τμήμα Μηχανικών Περιβάλλοντος και Μηχανικών Αντιρρύπανσης ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

Η µείωση των εκποµπών των αερίων ρύπων (µε εξαίρεση τα θερµοκήπια αέρια) στη δυτική Ευρώπη και τη βόρεια Αµερική έχει επιτευχθεί µέσω της νοµοθέτησης

Η µείωση των εκποµπών των αερίων ρύπων (µε εξαίρεση τα θερµοκήπια αέρια) στη δυτική Ευρώπη και τη βόρεια Αµερική έχει επιτευχθεί µέσω της νοµοθέτησης 1 Εισαγωγή 1.1 Ατµοσφαιρική ρύπανση, ένα παγκόσµιο πρόβληµα Σε πολλές περιοχές της γης, η ατµοσφαιρική ρύπανση αποτελεί το σηµαντικότερο περιβαλλοντικό πρόβληµα, ιδιαίτερα λαµβάνοντας υπόψη τις µεγάλες

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7. Θερµοϊονικό φαινόµενο - ίοδος λυχνία

ΑΣΚΗΣΗ 7. Θερµοϊονικό φαινόµενο - ίοδος λυχνία ΑΣΚΗΣΗ 7 Θερµοϊονικό φαινόµενο - ίοδος λυχνία ΣΥΣΚΕΥΕΣ : Πηγή συνεχούς 0-50 Volts, πηγή 6V/2A, βολτόµετρο συνεχούς, αµπερόµετρο συνεχούς, βολτόµετρο, ροοστάτης. ΘΕΩΡΗΤΙΚΗ ΕΙΣΑΓΩΓΗ Όταν η θερµοκρασία ενός

Διαβάστε περισσότερα

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004)

4 η Εργασία (Ηµεροµηνία Παράδοσης: 10-5-2004) Άσκηση (Μονάδες ) 4 η Εργασία (Ηµεροµηνία Παράδοσης: -5-4) Α) Αστροναύτης µάζας 6 Κg βρίσκεται µέσα σε διαστηµόπλοιο που κινείται µε σταθερή ταχύτητα προς τον Άρη. Σε κάποιο σηµείο του ταξιδιού βρίσκεται

Διαβάστε περισσότερα

5 Μετρητές παροχής. 5.1Εισαγωγή

5 Μετρητές παροχής. 5.1Εισαγωγή 5 Μετρητές παροχής 5.Εισαγωγή Τρεις βασικές συσκευές, με τις οποίες μπορεί να γίνει η μέτρηση της ογκομετρικής παροχής των ρευστών, είναι ο μετρητής Venturi (ή βεντουρίμετρο), ο μετρητής διαφράγματος (ή

Διαβάστε περισσότερα

Φυσική Ατμοσφαιρικού Περιβάλλοντος Κεφάλαια 3-4

Φυσική Ατμοσφαιρικού Περιβάλλοντος Κεφάλαια 3-4 Φυσική Ατμοσφαιρικού Περιβάλλοντος Κεφάλαια 3-4 Θα μιλήσουμε για: Μερικές εισαγωγικές έννοιες ευστάθεια αστάθεια στην ατμόσφαιρα δυναμική θερμοκρασία αδιαβατικό διάγραμμα πώς δημιουργείται η αναστροφή

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερο Φροντιστήριο

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών. HY-112: Φυσική Ι Χειµερινό Εξάµηνο 2016 ιδάσκων : Γ. Καφεντζής. εύτερο Φροντιστήριο ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Τµήµα Επιστήµης Υπολογιστών HY-112: Φυσική Ι Χειµερινό Εξάµηνο 216 ιδάσκων : Γ. Καφεντζής εύτερο Φροντιστήριο Ασκηση 1. Το ϑύµα ενός ατυχήµατος έχει σπασµένο πόδι, το ο- ποίο οι γιατροί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1 ο A Λυκείου 22 Μαρτίου 2008 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΕΩΡΟΛΟΓΙΑΣ Μέτρηση θερμοκρασίας, υγρασίας και πίεσης με χρήση διαφορετικών οργάνων.

ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΕΩΡΟΛΟΓΙΑΣ Μέτρηση θερμοκρασίας, υγρασίας και πίεσης με χρήση διαφορετικών οργάνων. ΕΡΓΑΣΤΗΡΙΟ ΜΕΤΕΩΡΟΛΟΓΙΑΣ Μέτρηση θερμοκρασίας, υγρασίας και πίεσης με χρήση διαφορετικών οργάνων. ΟΝΟΜΑ: ΗΜΕΡΟΜΗΝΙΑ: ΕΞΟΠΛΙΣΜΟΣ. Ψυχρόμετρο Assmann (+ αποσταγμένο νερό). Ψηφιακό βαρόμετρο ακριβείας DeltaOhm

Διαβάστε περισσότερα

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες:

Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: Παρακαλώ διαβάστε πρώτα τις πιο κάτω οδηγίες: 1. Η εξέταση διαρκεί 5 h (πέντε ώρες). Υπάρχουν τρεις ερωτήσεις και κάθε μια από αυτές βαθμολογείται με 10 βαθμούς. 2. Χρησιμοποιήστε μόνο το στυλό που υπάρχει

Διαβάστε περισσότερα

1. Σύντοµα Ιστορικά Στοιχεία

1. Σύντοµα Ιστορικά Στοιχεία ΑΤΜΟΣΦΑΙΡΙΚΗ ΡΥΠΑΝΣΗ ηµήτρη Μελά Τµήµα Φυσικής Αριστοτέλειο Πανεπιστήµιο Θεσσαλονίκης 1. Σύντοµα Ιστορικά Στοιχεία Η περιβαλλοντική ρύπανση δεν είναι νέο φαινόµενο. Ένας από τους λόγους που ανάγκαζαν τις

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ»

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ» ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΔΙΑΤΜΗΜΑΤΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΚΑΤΑΣΚΕΥΗ ΥΠΟΓΕΙΩΝ ΕΡΓΩΝ» ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΜΗΧΑΝΟΛΟΓΙΚΕΣ ΕΓΚΑΤΑΣΤΑΣΕΙΣ ΔΙΔΑΣΚΩΝ: Επικ. Καθ. Δ. ΜΑΘΙΟΥΛΑΚΗΣ ΘΕΜΑΤΑ ΤΕΤΡΑΜΗΝΟΥ

Διαβάστε περισσότερα

Η επιτάχυνση της βαρύτητας στον Πλανήτη Άρη είναι g=3,7 m/s 2 και τα πλαίσια αποτελούν μεγέθυνση των αντίστοιχων θέσεων.

Η επιτάχυνση της βαρύτητας στον Πλανήτη Άρη είναι g=3,7 m/s 2 και τα πλαίσια αποτελούν μεγέθυνση των αντίστοιχων θέσεων. ΟΔΗΓΙΕΣ: 1. Η επεξεργασία των θεμάτων θα γίνει γραπτώς σε χαρτί Α4 ή σε τετράδιο που θα σας δοθεί (το οποίο θα παραδώσετε στο τέλος της εξέτασης). Εκεί θα σχεδιάσετε και όσα γραφήματα ζητούνται στο Θεωρητικό

Διαβάστε περισσότερα

(Μαθιουλάκης.) Q=V*I (1)

(Μαθιουλάκης.) Q=V*I (1) (Μαθιουλάκης.) Φυσικός Αερισµός Κτιρίων Φυσικό αερισµό κτιρίων ονοµάζουµε την είσοδο του ατµοσφαιρικού αέρα σε αυτά µέσω κατάλληλων ανοιγµάτων, χωρίς τη χρήση φυσητήρων, µε σκοπό τον έλεγχο της θερµοκρασίας

Διαβάστε περισσότερα

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ

B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÅÐÉËÏÃÇ 1 B' ΤΑΞΗ ΓΕΝ.ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό κάθε µιας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Μαΐου 014 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από Α1-Α4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και το γράµµα

Διαβάστε περισσότερα

Κεφάλαιο 8 Διατήρηση της Ενέργειας

Κεφάλαιο 8 Διατήρηση της Ενέργειας Κεφάλαιο 8 Διατήρηση της Ενέργειας ΔΥΝΑΜΗ ΕΡΓΟ ΕΝΕΡΓΕΙΑ µηχανική, χηµική, θερµότητα, βαρυτική, ηλεκτρική, µαγνητική, πυρηνική, ραδιοενέργεια, τριβής, κινητική, δυναµική Περιεχόµενα Κεφαλαίου 8 Συντηρητικές

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 1 η & 2 η : ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού

Διαβάστε περισσότερα

Ασκήσεις Επαγωγής. 2) Νόμος της επαγωγής και φορά του ρεύματος.

Ασκήσεις Επαγωγής. 2) Νόμος της επαγωγής και φορά του ρεύματος. Ασκήσεις ς. 1) Μεταβαλλόμενο μαγνητικό πεδίο και επαγωγικό ρεύμα. Ένα τετράγωνο µεταλλικό πλαίσιο πλευράς α=2m και αντίστασης 2m βρίσκεται σε οριζόντιο επίπεδο και στο διάγραµµα φαίνεται πώς µεταβάλλεται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Ε_3.Φλ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Απριλίου 6 ιάρκεια Εξέτασης: ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α Α4 να γράψετε στο απαντητικό φύλλο τον αριθµό της πρότασης

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΕΠΩΗ 1. Ευθύγραμμος αγωγός μήκους L = 1 m κινείται με σταθερή ταχύτητα υ = 2 m/s μέσα σε ομογενές μαγνητικό πεδίο έντασης Β = 0,8 Τ. Η κίνηση γίνεται έτσι ώστε η ταχύτητα του αγωγού να σχηματίζει γωνία

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ

ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ Γ. ΒΙΣΚΑΔΟΥΡΟΣ Ι. Φραγκιαδάκης Φ. Μαυροματάκης ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ Ταχύτητα ανέμου Παράγοντες που την καθορίζουν Μεταβολή ταχύτητας ανέμου με το ύψος από το έδαφος Κατανομή

Διαβάστε περισσότερα

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση

4.1.α. Κρούσεις. Κρούσεις. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. 4.1.22. Κρούση και τριβές. 4.1.23. Κεντρική ανελαστική κρούση 4.1.α.. 4.1.21. Ενέργεια Ταλάντωσης και Ελαστική κρούση. Μια πλάκα µάζας Μ=4kg ηρεµεί στο πάνω άκρο ενός κατακόρυφου ελατηρίου, σταθεράς k=250ν/m, το άλλο άκρο του οποίου στηρίζεται στο έδαφος. Εκτρέπουµε

Διαβάστε περισσότερα

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο

Ã. ÁÓÉÁÊÇÓ ÐÅÉÑÁÉÁÓ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ. ΘΕΜΑ 1 ο Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ ο Στι ερωτήσει - 4 να γράψετε στο τετράδιό σα τον αριθµό των ερώτηση και δίπλα σε κάθε αριθµό το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Τροχό κυλίεται πάνω σε οριζόντιο

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ.

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ. 2.2.21. Έργο και µέγιστη Κινητική Ενέργεια. Ένα σώµα µάζας 2kg κινείται σε οριζόντιο επίπεδο και σε µια στιγµή περνά από την θέση x=0 έχοντας ταχύτητα υ 0 =8m/s,

Διαβάστε περισσότερα

Ασκήσεις Επαγωγής. i) Να υπολογιστεί η ροή που περνά από το πλαίσιο τη χρονική στιγµή t 1 =0,5s καθώς και η ΗΕ από

Ασκήσεις Επαγωγής. i) Να υπολογιστεί η ροή που περνά από το πλαίσιο τη χρονική στιγµή t 1 =0,5s καθώς και η ΗΕ από Ασκήσεις ς 1) Ο νόμος της επαγωγής. Σε οριζόντιο επίπεδο βρίσκεται ένα τετράγωνο αγώγιµο πλαίσιο εµβαδού Α=0,5m 2 µέσα σε ένα κατακόρυφο µαγνητικό πεδίο, η ένταση του οποίου µεταβάλλεται όπως στο διπλανό

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας

ΚΕΦΑΛΑΙΑ 3,4. Συστήµατα ενός Βαθµού ελευθερίας. k Για E 0, η (1) ισχύει για κάθε x. Άρα επιτρεπτή περιοχή είναι όλος ο άξονας ΚΕΦΑΛΑΙΑ,4. Συστήµατα ενός Βαθµού ελευθερίας. Να βρεθούν οι επιτρεπτές περιοχές της κίνησης στον άξονα ' O για την απωστική δύναµη F, > και για ενέργεια Ε. (α) Είναι V και οι επιτρεπτές περιοχές της κίνησης

Διαβάστε περισσότερα

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ).

Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ). 1 ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ ΘΕΜΑ 1 Ο Να χαρακτηρίσετε τις προτάσεις που ακολουθούν σαν σωστές (Σ) ή λάθος (Λ). Ποιες από τις παρακάτω προτάσεις είναι σωστές (Σ) και ποιες είναι λάθος (Λ). *1. Μια κίνηση είναι

Διαβάστε περισσότερα

Διασπορά Ρύπων. (pollutant dispersion) Ν. Ανδρίτσος. Διασπορά ρύπων (συν.)

Διασπορά Ρύπων. (pollutant dispersion) Ν. Ανδρίτσος. Διασπορά ρύπων (συν.) Διασπορά Ρύπων (plltant dispersin) Ν. Ανδρίτσος Cper & Alley: Κεφάλαιο 0 /4 (συν.) Από το 70 και μετά υπήρξε ιδιαίτερο ενδιαφέρον για την παρουσία χημικών στο περιβάλλον (διασπορά ρύπων σε αέρα, νερό και

Διαβάστε περισσότερα

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014

minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/2014 minimath.eu Φυσική A ΛΥΚΕΙΟΥ Περικλής Πέρρος 1/1/014 minimath.eu Περιεχόμενα Κινηση 3 Ευθύγραμμη ομαλή κίνηση 4 Ευθύγραμμη ομαλά μεταβαλλόμενη κίνηση 5 Δυναμικη 7 Οι νόμοι του Νεύτωνα 7 Τριβή 8 Ομαλη κυκλικη

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο πρώτος

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 ÈÅÌÅËÉÏ

Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 ÈÅÌÅËÉÏ Ζήτηµα ο Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο πρώτος κανόνας

Διαβάστε περισσότερα

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΠΑΤΡΩΝ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΚΑΙ ΑΕΡΟΝΑΥΠΗΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΡΓΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΤΩΝ ΡΕΥΣΤΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΑΥΤΗΣ Διευθυντής: Διονύσιος-Ελευθ. Π. Μάργαρης, Αναπλ. Καθηγητής ΕΡΓΑΣΤΗΡΙΑΚΗ

Διαβάστε περισσότερα

Κεφάλαιο 4: Θεμελιώδης εξίσωση της Μηχανικής

Κεφάλαιο 4: Θεμελιώδης εξίσωση της Μηχανικής Κεφάλαιο 4: Θεμελιώδης εξίσωση της Μηχανικής Σύνοψη Διερεύνηση με τη βοήθεια της μηχανής του Atwood της σχέσης μεταξύ δύναμης και επιτάχυνσης, καθώς και προσδιορισμός της επιτάχυνσης της βαρύτητας. Προαπαιτούμενη

Διαβάστε περισσότερα

Ασκήσεις Επαγωγής. 1) Ο νόμος της επαγωγής. 2) Επαγωγή σε τετράγωνο πλαίσιο. 1

Ασκήσεις Επαγωγής. 1) Ο νόμος της επαγωγής. 2) Επαγωγή σε τετράγωνο πλαίσιο.  1 Ασκήσεις ς 1) Ο νόμος της επαγωγής. Σε οριζόντιο επίπεδο βρίσκεται ένα τετράγωνο αγώγιµο πλαίσιο εµβαδού Α=0,5m 2 µέσα σε ένα κατακόρυφο µαγνητικό πεδίο, η ένταση του οποίου µεταβάλλεται όπως στο διπλανό

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΕΠΙΦΑΝΕΙΑΚΑ ΚΥΜΑΤΑ (Κύματα στην Επιφάνεια Υγρού Θαλάσσια Κύματα)

ΕΠΙΦΑΝΕΙΑΚΑ ΚΥΜΑΤΑ (Κύματα στην Επιφάνεια Υγρού Θαλάσσια Κύματα) ΕΠΙΦΑΝΕΙΑΚΑ ΚΥΜΑΤΑ (Κύματα στην Επιφάνεια Υγρού Θαλάσσια Κύματα) Εκτός από τα εγκάρσια και τα διαμήκη κύματα υπάρχουν και τα επιφανειακά κύματα τα οποία συνδυάζουν τα χαρακτηριστικά των δυο προαναφερθέντων

Διαβάστε περισσότερα

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5.1 Καταστατική Εξίσωση, συντελεστές σ t, και σ θ Η πυκνότητα του νερού αποτελεί καθοριστικό παράγοντα για την κίνηση των θαλασσίων µαζών και την κατακόρυφη

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

6 ο Εργαστήριο Τεχνολογία αερισμού

6 ο Εργαστήριο Τεχνολογία αερισμού 6 ο Εργαστήριο Τεχνολογία αερισμού 1 Στόχος του εργαστηρίου Στόχος του εργαστηρίου είναι να γνωρίσουν οι φοιτητές: - μεθόδους ελέγχου υγρασίας εντός του κτηνοτροφικού κτηρίου - τεχνικές αερισμού - εξοπλισμό

Διαβάστε περισσότερα

A Λυκείου 9 Μαρτίου 2013

A Λυκείου 9 Μαρτίου 2013 Θεωρητικό Μέρος A Λυκείου 9 Μαρτίου 2013 Θέμα 1 ο Στις ερωτήσεις A1, A2, A3, A4 και Β μία μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές.

Θέµα 1 ο. iv) πραγµατοποιεί αντιστρεπτές µεταβολές. ΜΑΘΗΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ Θέµα 1 ο α) Ορισµένη ποσότητα ιδανικού αερίου πραγµατοποιεί µεταβολή AB από την κατάσταση A (p, V, T ) στην κατάσταση B (p, V 1, T ). i) Ισχύει V 1 = V. ii) Η µεταβολή παριστάνεται

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης)

ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) Θέµα 1 ο ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ Φυσική Γ Λυκείου (Θετικής & Τεχνολογικής κατεύθυνσης) 1.1 Πολλαπλής επιλογής A. Ελαστική ονοµάζεται η κρούση στην οποία: α. οι ταχύτητες των σωµάτων πριν και µετά την κρούση

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.

ΕΚΦΩΝΗΣΕΙΣ. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. Επαναληπτικά Θέµατα ΟΕΦΕ 008 1 Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΚΦΩΝΗΣΕΙΣ ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που

Διαβάστε περισσότερα

Θερμοδυναμική του ατμοσφαιρικού αέρα

Θερμοδυναμική του ατμοσφαιρικού αέρα 6 Θερμοδυναμική του ατμοσφαιρικού αέρα 6. Θερμοδυναμικό σύστημα Κάθε ποσότητα ύλης που περιορίζεται από μια κλειστή (πραγματική ή φανταστική) επιφάνεια. Ανοικτό σύστημα: Αν από την οριακή αυτή επιφάνεια

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ

ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Τράπεζα θεμάτων. Β Θέμα ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΜΑΝΩΛΗ ΡΙΤΣΑ ΦΥΣΙΚΗ Β ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Τράπεζα θεμάτων Β Θέμα ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ 16114 Η σφαίρα του σχήματος εκτοξεύεται δύο φορές με διαφορετικές αρχικές ταχύτητες εκτελώντας οριζόντια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΒΙΟΜΗΧΑΝΙΚΗ ΠΛΑΤΦΟΡΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΑΣΦΑΛΕΙΑΣ Η ΝΕΑ Ο ΗΓΙΑ SEVESO ΙΙΙ

ΕΛΛΗΝΙΚΗ ΒΙΟΜΗΧΑΝΙΚΗ ΠΛΑΤΦΟΡΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΑΣΦΑΛΕΙΑΣ Η ΝΕΑ Ο ΗΓΙΑ SEVESO ΙΙΙ ΕΛΛΗΝΙΚΗ ΒΙΟΜΗΧΑΝΙΚΗ ΠΛΑΤΦΟΡΜΑ ΒΙΟΜΗΧΑΝΙΚΗΣ ΑΣΦΑΛΕΙΑΣ Η ΝΕΑ Ο ΗΓΙΑ SEVESO ΙΙΙ ΕΚΤΙΜΗΣΗ ΕΠΙΠΤΩΣΕΩΝ ΑΠΟ ΤΗΝ ΕΚ ΗΛΩΣΗ ΦΩΤΙΑΣ Μ.Ν. Χριστόλη, Περιβαλλοντολόγου DEA Ν.Χ. Μαρκάτου, Kαθηγητή ΕΜΠ & τ. Πρύτανη Μονάδα

Διαβάστε περισσότερα

Εξισώσεις Κίνησης (Equations of Motion)

Εξισώσεις Κίνησης (Equations of Motion) Εξισώσεις Κίνησης (Equations of Motion) Αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Η εφαρμογή της ρευστομηχανικής στην ωκεανογραφία βασίζεται στη Νευτώνεια

Διαβάστε περισσότερα

όπου η µεταβλητή Α µπορεί να είναι συνάρτηση του χρόνου, του χώρου ή και των δύο.

όπου η µεταβλητή Α µπορεί να είναι συνάρτηση του χρόνου, του χώρου ή και των δύο. 4 Θεωρία Βαθµωτής Μεταφοράς Όπως αναφέρθηκε στο πρώτο κεφάλαιο, η διάυση των ρύπων περιορίζεται κυρίως µέσα στο αµηλότερο τµήµα της τροπόσφαιρας, το στρώµα ανάµειξης. Το σηµαντικότερο αρακτηριστικό του

Διαβάστε περισσότερα

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ

Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ÍÅÏ ÖÑÏÍÔÉÓÔÇÑÉÏ ΕΚΦΩΝΗΣΕΙΣ 1 Α' ΤΑΞΗ ΓΕΝ. ΛΥΚΕΙΟΥ ΘΕΜΑ 1 o ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση. 1. Η ορµή ενός σώµατος

Διαβάστε περισσότερα

ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ

ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ ΜΕΛΕΤΗ ΣΤΑΣΙΜΩΝ ΚΥΜΑΤΩΝ ΣΕ ΣΩΛΗΝΑ ΠΡΟΣΔΙΟΡΙΣΜΟΣ ΤΗΣ ΤΑΧΥΤΗΤΑΣ ΤΟΥ ΗΧΟΥ ΣΤΟΝ ΑΕΡΑ ΣΚΟΠΟΙ Η αισθητοποίηση του φαινοµένου του ηχητικού συντονισµού Η κατανόηση της αρχής λειτουργίας των πνευστών οργάνων ΥΛΙΚΑ-ΟΡΓΑΝΑ

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2008 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1o A Λυκείου 22 Μαρτίου 28 Στις ερωτήσεις Α,Β,Γ,Δ,E μια μόνο απάντηση είναι σωστή. Γράψτε στο τετράδιό σας το κεφαλαίο γράμμα της ερώτησης και το μικρό γράμμα της σωστής απάντησης.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U A A N A B P Y T A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Σωλήνας U Γ U= B Θ.Ι. B Κατακόρυφος ισοπαχής σωλήνας σχήματος U περιέχει ιδανικό υγρό, δηλαδή, υγρό που σε κάθε επιφάνεια ασκεί δυνάμεις κάθετες στην

Διαβάστε περισσότερα

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ.

2. Ασκήσεις Θερμοδυναμικής. Ομάδα Γ. . σκήσεις ς. Ομάδα..1. Ισοβαρής θέρμανση και έργο. Ένα αέριο θερμαίνεται ισοβαρώς από θερμοκρασία Τ 1 σε θερμοκρασία Τ, είτε κατά την μεταβολή, είτε κατά την μεταβολή Δ. i) Σε ποια μεταβολή παράγεται περισσότερο

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα.

ΘΕΜΑ Α Παράδειγμα 1. Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. ΘΕΜΑ Α Παράδειγμα 1 Α1. Ο ρυθμός μεταβολής της ταχύτητας ονομάζεται και α. μετατόπιση. β. επιτάχυνση. γ. θέση. δ. διάστημα. Α2. Για τον προσδιορισμό μιας δύναμης που ασκείται σε ένα σώμα απαιτείται να

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2012 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος B Λυκείου B Λυκείου Θεωρητικό Μέρος Θέμα ο 0 Μαρτίου 0 A. Ποια από τις παρακάτω προτάσεις για μια μπαταρία είναι σωστή; Να εξηγήσετε πλήρως την απάντησή σας. α) Η μπαταρία εξαντλείται πιο γρήγορα όταν τη συνδέσουμε

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

Επιβεβαίωση του μηχανισμού ανάπτυξης της θαλάσσιας αύρας.

Επιβεβαίωση του μηχανισμού ανάπτυξης της θαλάσσιας αύρας. Επιβεβαίωση του μηχανισμού ανάπτυξης της θαλάσσιας αύρας. Οδυσσέας - Τρύφων Κουκουβέτσιος Γενικό Λύκειο «Ο Απόστολος Παύλος» OdyKouk@gmail.com Επιβλέπουσα Καθηγήτρια: Ελένη Βουκλουτζή Φυσικός - Περιβαλλοντολόγος

Διαβάστε περισσότερα

Lasers και Εφαρµογές τους στη Βιοϊατρική και το Περιβάλλον» ο ΜΕΡΟΣ. Lasers και Εφαρµογές τους στο Περιβάλλον» 9 ο Εξάµηνο

Lasers και Εφαρµογές τους στη Βιοϊατρική και το Περιβάλλον» ο ΜΕΡΟΣ. Lasers και Εφαρµογές τους στο Περιβάλλον» 9 ο Εξάµηνο ΣΕΜΦΕ Ε.Μ.Πολυτεχνείο Lasers και Εφαρµογές τους στη Βιοϊατρική και το Περιβάλλον» 2003-2004 2 ο ΜΕΡΟΣ Lasers και Εφαρµογές τους στο Περιβάλλον» 9 ο Εξάµηνο ιδάσκων: Α. Παπαγιάννης ΚΕΦΑΛΑΙΟ 1 1. οµή και

Διαβάστε περισσότερα

V. ΜΙΞΗ ΣΕ ΛΙΜΝΕΣ ΤΑΜΙΕΥΤΗΡΕΣ. 1. Εποχιακός Κύκλος

V. ΜΙΞΗ ΣΕ ΛΙΜΝΕΣ ΤΑΜΙΕΥΤΗΡΕΣ. 1. Εποχιακός Κύκλος V. ΜΙΞΗ ΣΕ ΛΙΜΝΕΣ ΤΑΜΙΕΥΤΗΡΕΣ 1. Εποχιακός Κύκλος Οι διαδικασίες µίξης σε λίµνες και ταµιευτήρες διέπονται κυρίως απο τη δράση του ανέµου, απο τις θερµικές ανταλλαγές στην επιφάνεια λόγω ηλιακής ακτινοβολίας

Διαβάστε περισσότερα

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m

ΘΕΜΑ Α : α. 3000 V/m β. 1500 V/m γ. 2000 V/m δ. 1000 V/m ΑΡΧΗ 1 ΗΣ ΣΕΛΙ ΑΣ Γ ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΑ ΘΕΩΡΙΑ ΚΑΙ ΠΡΑΞΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΙΑΓΩΝΙΣΜΑ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α : Για να απαντήσετε στις παρακάτω ερωτήσεις πολλαπλής επιλογής αρκεί να γράψετε

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3)

L = T V = 1 2 (ṙ2 + r 2 φ2 + ż 2 ) U (3) ΥΠΟΛΟΓΙΣΤΙΚΗ ΑΣΤΡΟΔΥΝΑΜΙΚΗ 3): Κινήσεις αστέρων σε αστρικά συστήματα Βασικές έννοιες Θεωρούμε αστρικό σύστημα π.χ. γαλαξία ή αστρικό σμήνος) αποτελούμενο από μεγάλο αριθμό αστέρων της τάξης των 10 8 10

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ

ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ Β ΓΥΜΝΑΣΙΟΥ ΙΑΓΩΝΙΣΜΑ ΘΕΜΑ 1 Α) Τί είναι µονόµετρο και τί διανυσµατικό µέγεθος; Β) Τί ονοµάζουµε µετατόπιση και τί τροχιά της κίνησης; ΘΕΜΑ 2 Α) Τί ονοµάζουµε ταχύτητα ενός σώµατος και ποιά η µονάδα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Β ΦΑΣΗ Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 6 Ε_3.Φλ(ε) ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 4 Απριλίου 6 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α Α4 να γράψετε στο απαντητικό

Διαβάστε περισσότερα

Γεωστροφική Εξίσωση. Στην εξίσωση κίνησης θεωρούμε την απλούστερη λύση της. Έστω ότι το ρευστό βρίσκεται σε ακινησία. Και παραμένει σε ακινησία

Γεωστροφική Εξίσωση. Στην εξίσωση κίνησης θεωρούμε την απλούστερη λύση της. Έστω ότι το ρευστό βρίσκεται σε ακινησία. Και παραμένει σε ακινησία Γεωστροφική Εξίσωση Στο εσωτερικό του ωκεανού, η οριζόντια πιεσοβαθμίδα προκαλεί την εμφάνιση οριζόντιων ρευμάτων αλλά στη συνέχεια αντισταθμίζεται από τη δύναμη Coriolis, η οποία προκύπτει από τα οριζόντια

Διαβάστε περισσότερα

6. Να βρείτε ποια είναι η σωστή απάντηση.

6. Να βρείτε ποια είναι η σωστή απάντηση. 12ΑΣΚΗΣΕΙΣ ΔΥΝΑΜΙΚΗΣ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Να βρείτε ποια είναι η σωστή απάντηση. Το όργανο μέτρησης του βάρους ενός σώματος είναι : α) το βαρόμετρο, β) η ζυγαριά, γ) το δυναμόμετρο, δ) ο αδρανειακός ζυγός.

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ ÅÐÉËÏÃÇ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 15 ΤΑΞΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Α ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 1 Μαΐου 15 ιάρκεια Εξέτασης: ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε στο τετράδιό σας τον αριθµό

Διαβάστε περισσότερα

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ

20 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 0 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Β ΛΥΚΕΙΟΥ Κυριακή, 19 Μαρτίου, 006 Ώρα: 10:30-13:30 Θέµα 1 0 (µονάδες 10) α ) Το βέλος δέχεται σταθερή επιτάχυνση για όλη τη διάρκεια της κίνησης (

Διαβάστε περισσότερα

Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός.

Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος. Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός. Συνταγολόγιο Φυσικής Μηχανική Στερεού Σώµατος Επιµέλεια: Μιχάλης Ε. Καραδηµητρίου, MSc Φυσικός http://perifysikhs.wordpress.com 1 Κίνηση Ράβδου σε κατακόρυφο επίπεδο Εστω µια οµογενής ϱάβδος ΟΑ µάζας Μ

Διαβάστε περισσότερα

Η ΓΛΩΣΣΑ ΤΗΣ ΕΝΕΡΓΕΙΑΣ. 4. Σε ποια θέση η χορδή μιας κιθάρας έχει τη μικρότερη δυναμική ενέργεια και σε ποια τη μικρότερη κινητική ενέργεια;

Η ΓΛΩΣΣΑ ΤΗΣ ΕΝΕΡΓΕΙΑΣ. 4. Σε ποια θέση η χορδή μιας κιθάρας έχει τη μικρότερη δυναμική ενέργεια και σε ποια τη μικρότερη κινητική ενέργεια; Ερωτήσεις σύντομης απάντησης Η ΓΛΩΣΣΑ ΤΗΣ ΕΝΕΡΓΕΙΑΣ 1. Αναφέρετε δύο περιπτώσεις κατά τις οποίες ασκείται δύναμη πάνω σε ένα σώμα αλλά δεν παράγεται έργο. 2. Δύο παιδιά ίδιας μάζας βρίσκονται στην κορυφή

Διαβάστε περισσότερα

Ειδικά θέµατα Ατµοσφαιρικοί. Μηχανισµοί Αποµάκρυνσης Ρύπων Χηµικοί Βαρυτική. Αβεβαιότητας των Μοντέλων Θυσάνου του Gauss. Πηγές

Ειδικά θέµατα Ατµοσφαιρικοί. Μηχανισµοί Αποµάκρυνσης Ρύπων Χηµικοί Βαρυτική. Αβεβαιότητας των Μοντέλων Θυσάνου του Gauss. Πηγές Ειδικά θέµατα Ατµοσφαιρικοί Μηχανισµοί Αποµάκρυνσης Ρύπων Χηµικοί µετασχηµατισµοί Βαρυτική καθίζηση σωµατιδίων Ξηρή εναπόθεση Υγρή εναπόθεση Πηγές Αβεβαιότητας των Μοντέλων Θυσάνου του Gauss Ατµοσφαιρικοί

Διαβάστε περισσότερα

ΑΤΜΟΣΦΑΙΡΑ. Aτµόσφαιρα της Γης - Η σύνθεση της ατµόσφαιρας Προέλευση του Οξυγόνου - Προέλευση του Οξυγόνου

ΑΤΜΟΣΦΑΙΡΑ. Aτµόσφαιρα της Γης - Η σύνθεση της ατµόσφαιρας Προέλευση του Οξυγόνου - Προέλευση του Οξυγόνου ΑΤΜΟΣΦΑΙΡΑ Aτµόσφαιρα της Γης - Η σύνθεση της ατµόσφαιρας Προέλευση του Οξυγόνου - Προέλευση του Οξυγόνου ρ. Ε. Λυκούδη Αθήνα 2005 Aτµόσφαιρα της Γης Ατµόσφαιρα είναι η αεριώδης µάζα η οποία περιβάλλει

Διαβάστε περισσότερα

5. Κατακόρυφη θερµοϋγροµετρική δοµή και στατική της ατµόσφαιρας

5. Κατακόρυφη θερµοϋγροµετρική δοµή και στατική της ατµόσφαιρας 5. Κατακόρυφη θερµοϋγροµετρική δοµή και στατική της ατµόσφαιρας Ν. Καλτσουνίδης, Ε. Μποσιώλη, Β. Νοταρίδου,. εληγιώργη 5.1. Αδιαβατικές µεταβολές στην ατµόσφαιρα Ο ατµοσφαιρικός αέρας µπορεί να θεωρηθεί

Διαβάστε περισσότερα

α. 16 m/s 2 β. 8 m/s 2 γ. 4 m/s 2 δ. 2 m/s 2

α. 16 m/s 2 β. 8 m/s 2 γ. 4 m/s 2 δ. 2 m/s 2 3 ο ΓΕΛ ΧΑΝΑΝ ΡΙΟΥ ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ-ΙΟΥΝΙΟΥ 2011 ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Τάξη: Α Λυκείου 17/5/2011 Ονοµατεπώνυµο: ΘΕΜΑ 1 ο Α. Στις ερωτήσεις από 1 έως 3 επιλέξτε το γράµµα µε τη σωστή απάντηση.

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΙΑΓΡΑΜΜΑΤΑ ΣΤΙΣ ΕΥΘΥΓΡΑΜΜΕΣ ΚΙΝΗΣΕΙΣ 1) Το διπλανό διάγραµµα παριστά τη θέση ενός σώµατος που κινείται σε ευθύγραµµα, σε συνάρτηση µε το χρόνο. i) Μεγαλύτερη ταχύτητα

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς από τις παρακάτω προτάσεις Α1 έως Α3 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση: Α1. Το μέτρο της

Διαβάστε περισσότερα

(βλ. σελ. 174 του βιβλίου ΚΣ). Το y έχει τεθεί για τη διόρθωση λόγω μη KΕΦΑΛΑΙΟ 12: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ

(βλ. σελ. 174 του βιβλίου ΚΣ). Το y έχει τεθεί για τη διόρθωση λόγω μη KΕΦΑΛΑΙΟ 12: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ KΕΦΑΛΑΙΟ 1: ΠΛΑΝΗΤΕΣ ΚΑΙ ΠΛΑΝΗΤΗΣ ΓΗ Σελ. : 03 έως 16 του βιβλίου ΚΣ 0 ο VIDO, 11013 0λ έως 8:40λ : Σχόλια στα αποτελέσματα της εξέτασης προόδου 8:40λ έως το τέλος: Σε ένα πλανήτη η βαρυτική του αυτοενέργεια

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α (Στο θέμα Α να χαρακτηρίσετε τις προτάσεις ως σωστές με το γράμμα Σ ή ως λανθασμένες με το γράμμα Λ, χωρίς αιτιολόγηση.) A1. Δύο σώματα Κ και Λ εκτοξεύονται οριζόντια

Διαβάστε περισσότερα

υ r 1 F r 60 F r A 1

υ r 1 F r 60 F r A  1 2.2. Ασκήσεις Έργου-Ενέργειας. 4.2.1. Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ. Ένα σώµα µάζας m=2kg ηρεµεί σε οριζόντιο επίπεδο. Σε µια στιγµή δέχεται την επίδραση οριζόντιας δύνα- µης, το µέτρο

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Η απλή αρµονική ταλάντωση είναι κίνηση : (δ) ευθύγραµµη περιοδική Α.2. Σώµα εκτελεί απλή αρµονική

Διαβάστε περισσότερα