Γεωστροφική Εξίσωση. Στην εξίσωση κίνησης θεωρούμε την απλούστερη λύση της. Έστω ότι το ρευστό βρίσκεται σε ακινησία. Και παραμένει σε ακινησία

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Γεωστροφική Εξίσωση. Στην εξίσωση κίνησης θεωρούμε την απλούστερη λύση της. Έστω ότι το ρευστό βρίσκεται σε ακινησία. Και παραμένει σε ακινησία"

Transcript

1 Γεωστροφική Εξίσωση Στο εσωτερικό του ωκεανού, η οριζόντια πιεσοβαθμίδα προκαλεί την εμφάνιση οριζόντιων ρευμάτων αλλά στη συνέχεια αντισταθμίζεται από τη δύναμη Coriolis, η οποία προκύπτει από τα οριζόντια ρεύματα. Η ισορροπία αυτή καλείται γεωστροφική ισορροπία (geostrophic balance). Στην εξίσωση κίνησης θεωρούμε την απλούστερη λύση της. Έστω ότι το ρευστό βρίσκεται σε ακινησία Και παραμένει σε ακινησία

2 Και δεν λαμβάνουμε υπόψη τη τριβή Τότε η εξίσωση κίνησης γίνεται Όπου g είναι συνάρτηση του γεωγραφικού πλάτους και του υψομέτρου. Για τη κατανόηση της πιεσοβαθμίδας, απαιτείται να ορίσουμε στο εσωτερικό του ωκεανού, επιφάνειες ίσης πίεσης, οι οποίες καλούνται ισοβαρικές επιφάνειες (isobaric surfaces). Για να το κάνουμε αυτό ολοκληρώνουμε τη τελευταία εξίσωση, την υδροστατική εξίσωση Ώστε να πάρουμε τη πίεση σε κάθε βάθος h. Θεωρώντας τα g, ρ σταθερά έχουμε

3 Η γεωστροφική ισορροπία απαιτεί ότι η πιεσοβαθμίδα αντισταθμίζεται από τη δύναμη Coriolis. Οι γεωστροφικές εξισώσεις προέρχονται από τις εξισώσεις κίνησης, θεωρώντας ότι: το ρευστό δεν έχει επιτάχυνση οι οριζόντιες ταχύτητες είναι πολλές τάξεις μεγέθους μεγαλύτερες της κατακόρυφης ταχύτητας η μοναδική εξωτερική δύναμη είναι η βαρύτητα, και η τριβή είναι μικρή και αμελητέα. Κάτω από αυτές τις παραδοχές οι γεωστροφικές εξισώσεις είναι: Όπου f = 2 Ω sin φ

4 Οι εξισώσεις μπορούν να γραφούν και ως: Όπου p o είναι η ατμοσφαιρική πίεση στην επιφάνεια (z=0) και ζ είναι η ανύψωση της στάθμης της θάλασσας. Έτσι η στάθμη της θάλασσας σε κάθε θέση μπορεί να βρίσκεται υψηλότερα ή χαμηλότερα της ισοβαρικής επιφάνειας z=0, οπότε δημιουργείται πιεσοβαθμίδα και παράγεται επιφανειακό ρεύμα u s. Αντικαθιστώντας τη πίεση στις παραπάνω σχέσεις

5 Όμοια Προκύπτει ότι υπάρχουν δύο πιθανότητες: * Αν ο ωκεανός είναι ομοιόμορφης πυκνότητας, και η πυκνότητα και η βαρύτητα είναι σταθερές, τότε ο πρώτος όρος των παραπάνω εξισώσεων είναι μηδέν. Τότε η πιεσοβαθμίδα παράγεται λόγω μεταβολής της στάθμης της θάλασσας (βαροτροπικός ωκεανός). Επίσης, οι οριζόντιες πιεσοβαθμίδες στο εσωτερικό του ωκεανού είναι ίσες με τη πιεσοβαθμίδα που δημιουργείται στην επιφάνεια της θάλασσας (z=0).

6 Ζ=0

7 ΙΣΟΒΑΡΙΚΕΣ ΕΠΙΦΑΝΕΙΕΣ

8 * Αν ο ωκεανός είναι στρωματοποιημένος, τότε η οριζόντια πιεσοβαθμίδα έχει δύο όρους: έναν όρο λόγω της κλίσης της στάθμης της θάλασσας (βαροτροπικό όρο), και έναν επιπλέον όρο λόγω των οριζόντιων διαφορών πυκνότητας (βαροκλινικό όρο). Βαροκλινικός Όρος Βαροτροπικός Όρος Ο βαροκλινικός όρος ονομάζεται και σχετική ταχύτητα διότι ο υπολογισμός του προϋποθέτει τη γνώση της ταχύτητας ροής (u o,v o ) στην επιφάνεια της θάλασσαςή σε κάποιο άλλο βάθος.

9 Άρα Βαροτροπικός Ωκεανός Οι ισοβαρικές επιφάνειες είναι παράλληλες με τη στάθμης της θάλασσας, και οι ισόπυκνες επιφάνειες είναι παράλληλες με τις ισοβαρικές επιφάνειες. Τέτοιες συνθήκες επικρατούν σε καλά αναμεμιγμένα ωκεάνια στρώματα και σε ρηχές λεκάνες καλά αναμεμιγμένες λόγω παλιρροιακών ρευμάτων. Επίσης επικρατούν σε μεγάλα ωκεάνια βάθη, όπου η πυκνότητα και η πίεση μεταβάλλονται μόνο με το βάθος. Συμπέρασμα: στις βαροτροπικές συνθήκες οι ισόπυκνες και οι ισοβαρικές επιφάνειες είναι παράλληλες μεταξύ τους.

10

11 Βαροκλινικό Ωκεανό οι ισόπυκνες και οι ισοβαρικές επιφάνειες δεν είναι παράλληλες, αλλά τέμνονται λόγω των πλευρικών διαφορών πυκνότητας. Οι ισόπυκνες επιφάνειες τέμνουν και τη στάθμη της θάλασσας. Σε μικρά βάθη, οι ισοβαρικές επιφάνειες είναι σχεδόν παράλληλες με την επιφάνεια της θάλασσας. Με την αύξηση του βάθους, η κλίση των ισοβαρικών επιφανειών σταδιακά μειώνεται και οι ισοβαρικές γίνονται σχεδόν οριζόντιες.

12

13 Υπολογισμός Πίεσης σε υδάτινη στήλη με πυκνότητα μεταβαλλόμενη με το βάθος και σε υδάτινη στήλη σταθερής πυκνότητας.

14 Υπολογισμός Επιφανειακών Γεωστροφικών Ρευμάτων Η δύναμη της πιεσοβαθμίδας είναι Επιτάχυνση λόγω της πιεσοβαθμίδας g D είναι το Δυναμικό Ύψος (Dynamic Height, m 2 /s 2 ) Εκφράζει την ανύψωση της ισοβαρικής επιφάνειας από το πείπεδο αναφοράς κατά απόσταση D ενάντια στη βαρύτητα

15 Αντικατάσταση πιεσοβαθμίδας στη Γεωστροφική Εξίσωση g tan θ = V 2 Ω sin φ = V f Πιεσοβαθμίδα Ενεργεί προς τη κατεύθυνση της κλίσης Coriolis Ενεργεί ενάντια στη κατεύθυνση της κλίσης Άρα V = (g D) / (L 2 Ω sin φ) = (g D) / (L f) Όπου V η γεωστροφική ταχύτητα

16

17 Στο Β. Ημισφαίριο: ροή προς τα δεξιά της πιεσοβαθμίδας.

18 Γεωστροφική Ροή Κάτοψη ωκεανού (Βόρειο Ημισφαίριο) Τομές ωκεανού Όπως μία μπάλα που κυλά από την υψηλή προς τη χαμηλή πίεση, εκτρέπεται όμως προς τα δεξιά της κίνησής της λόγω Coriolis

19 Η γεωστροφική ταχύτητα στο βαροτροπικό και βαροκλινικό ωκεανό Στις βαροτροπικές συνθήκες Όπου θ είναι η κλίση των ισοβαρικών επιφανειών = κλίση των ισόπυκνων επιφανειών. Η γεωστροφική ταχύτητα στο βαροτροπικό ωκεανό είναι ανεξάρτητη του βάθους, άρα ομοιόμορφη με το βάθος. Στις βαροκλινικές συνθήκες η γεωστροφική ταχύτητα μεταβάλλεται (μειώνεται) με το βάθος. Αν σε κάποιο βάθος, η κλίση της ισοβαρικής επιφάνειας ή η γεωστροφική ταχύτητα είναι γνωστή, μπορούμε να χρησιμοποιήσουμε τη κατανομή της πυκνότητας για να προσδιορίσουμε την απόκλιση της κλίσης λόγω πυκνότητας, και άρα τη γεωστροφική ταχύτητα σε άλλα βάθη (σχετικές ταχύτητες).

20 Στις βαροτροπικές συνθήκες η κλίση των ισοβαρών είναι ομοιόμορφη με το βάθος (tanθ) και η γεωστροφική ταχύτητα είναι (g/f) tanθ σε κάθε βάθος. Στις βαροκλινικές συνθήκες, η κλίση των ισοβαρών μεταβάλλεται με το βάθος. Στο βάθος z 1 η ισοβαρική επιφάνεια έχει κλίση tan θ 1, ενώ στο βάθος z o η ισοβαρική επιφάνεια θεωρείται οριζόντια.

21 Βαροκλινικές Συνθήκες

22 Πως όμως προσδιορίζω τη κλίση των ισοβαρικών επιφανειών tanθ? Station A Station B Ισοβαρική Οριζόντιο Επίπεδο Ισοβαρική θ 1 z 1 u 1 = g/f tanθ 1 h A h B L tanθ 1 = (h B h A )/L οπότε z o Ισοβαρική Επίπεδο Αναφοράς u 1 = g/f tanθ 1 = g/f [(h B h A )/L]

23 Η υδροστατική πίεση μεταξύ των δύο ισοβαρικών επιφανειών είναι Αντικαθιστώντας στη γεωστροφική εξίσωση Η εξίσωση αυτή επιτρέπει το προσδιορισμό της γεωστροφικής ταχύτητας από τη κατανομή πυκνότητας στον ωκεανό.

24 Παράδειγμα Ατμοσφαιρικής Γεωστροφικής Κυκλοφορίας Κυκλώνας: γύρω από κέντρο χαμηλής πίεσης Αντι-κυκλώνας: γύρω από κέντρο υψηλής πίεσης Η κυκλωνική ροή είναι αντι-ωρολογιακή στο Β. ημισφαίριο και ωρολογιακή στο Ν. ημισφαίριο

25 Παράδειγμα Ωκεάνιας Γεωστροφικής Κυκλοφορίας Κατανομή στάθμης θάλασσας από δορυφόρο και προσδιορισμός γεωστροφικών ρευμάτων HIGH LOW Η κυκλοφορία είναι αντιωρολογιακή γύρω από το Χαμηλό Κέντρο (κυκλώνας) και ωρολογιακή γύρω από το Υψηλό Κέντρο (αντικυκλώνας). (Β. Ημισφαίριο). Reid, 1997

26 Υπολογισμός Επιφανειακών Γεωστροφικών Ρευμάτων από Δορυφόρο Στην επιφάνεια της θάλασσας (z=0), η γεωστροφική εξίσωση δίνει ότι τα επιφανειακά γεωστροφικά ρεύματα είναι ανάλογα της κλίσης της στάθμης της θάλασσας.

27 Warm rings rotate clockwise Cold rings rotate anti-clockwise

28

29 ΓΕΩΔΥΝΑΜΙΚΟ (GEOPOTENTIAL) Το Γεωειδές είναι μία επίπεδη επιφάνεια που θεωρείται μία επιφάνεια σταθερού γεωδυναμικού Το έργο που απαιτείται για να ανυψωθεί μία υδάτινη μάζα m κατά μία κάθετη απόσταση h είναι Και η μεταβολή της δυναμικής ενέργειας ανά μονάδα μάζας gh Άρα, οριζόντια επίπεδα είναι επίπεδα σταθερού γεωδυναμικού, όπου το γεωδυναμικό είναι

30 Υπολογισμός γεωστροφικών ρευμάτων από υδρογραφικά δεδομένα Η γεωστροφική εξίσωση χρησιμοποιείται για να προσδιορίζει τη ταχύτητα των ρευμάτων σε οποιοδήποτε βάθος. Για την εφαρμογή της γεωστροφικής εξίσωσης χρειαζόμαστε τον υπολογισμό της πιεσοβαθμίδας, ή οποία εκφράζεται από τη κλίση των ισόπυκνων ως προς τις ισοβαρικές επιφάνειες. Έχουμε πει ότι η κλίση αυτή εκφράζει την ανύψωση μίας υδάτινης μάζας ενάντια στη βαρύτητα. Ορίζουμε το γεωδυναμικό (geopotential) Καθώς το g μεταβάλλεται κατά την οριζόντια και κατακόρυφη διεύθυνση. Ορίζουμε το γεωδυναμικό ύψος Ως το μέτρο της ενέργειας που απαιτείται για να ανυψώσουμε μία υδάτινη μάζα κατά z ενάντια στη βαρύτητα

31 Χρησιμοποιούμε μία παραλλαγή της υδροστατικής εξίσωσης Όπου α ο ειδικός όγκος Διαφορίζουμε κατά τη x-διεύθυνση

32 Άρα για να λύσω τη γεωστροφική εξίσωση αρκεί να προσδιορίσω τον όρο Ολοκληρώνω μεταξύ δύο ισοβαρικών επιφανειών, οπότε στο σταθμό Α έχω Αλλά ο ειδικός όγκος γράφεται Ανωμαλία Ειδικού Όγκου Αντικαθιστώ και έχω Σταθερή Γεωδυναμική Απόσταση Γεωδυναμική Ανωμαλία

33 Η Σταθερή Γεωδυναμική Απόσταση είναι Η Γεωδυναμική Ανωμαλία είναι περίπου το 0.1% της Σταθερής Γεωδυναμικής Απόστασης Η κλίση της ισοβαρικής επιφάνειας δίνεται από Οπότε η γεωστροφική εξίσωση γράφεται Όπου V η γεωστροφική ταχύτητα της ανώτερης από το επίπεδο αναφοράς γεωδυναμικής επιφάνειας Εμπειρικός Νόμος Η γεωστροφική ροή είναι τέτοια ώστε να έχει πάντα στα δεξιά της το θερμότερο και ελαφρύτερο νερό.

34

35 Στην Άσκηση 3 είχατε υπολογίσει για κάθε προφίλ p,t,s και σε κάθε βάθος α) τη πυκνότητα ρ T,S,p και β) το σ T,S,p. Απλοποιημένη εξίσωση κατάστασης ρ ST,, p = [ a ( T 10) + b( S 35) + kp] όπου α= kg/m 3 ανά ο C, b = 0.78 kg/m 3 ανά psu, k = kg/m 3 ανά dbar. 1. Αντίστοιχα υπολογίζω τις τιμές των παραμέτρων ρ Τ,S,0 και σ Τ,S,0 μηδενίζοντας στη παραπάνω εξίσωση κατάστασης τη πίεση. 2. Υπολογίζω για κάθε βάθος τη παράμετρο Δ T,S S, T = + σ t m kg Θερμοστερική Ανωμαλία 3. Υπολογίζω τη μέση τιμή δ = (Δ S,T,p + Δ S,T,p-1 )/2 μεταξύ δύο διαδοχικών τιμών θερμοστερικής ανωμαλίας

36 4. Πολλαπλασιάζω τη μέση τιμή σε κάθε βάθος με τη διαφορά πίεσης δp δ Χ Δp = δ Χ Δd X Προσθέτω όλες τις τιμές δ Χ Δp, δηλ. Σ(δ Χ Δp). 6. Η τιμή του αθροίσματος αντιστοιχεί στη τιμή ΔΦ στην επιφάνεια της στήλης. 7. Για τον υπολογισμό του ΔΦ σε κάθε άλλο βάθος αφαιρώ από την επιφανειακή τιμή ΔΦ τη τιμή δ Χ Δp του συγκεκριμένου βάθους 8. Κάνω το ίδιο και για το δεύτερο προφίλ Τ,S,p και υπολογίζω τα γεωστροφικά ρεύματα σε κάθε βάθος μέσω της γεωστροφικής εξίσωσης.

37

38

39

40 Μειονεκτήματα Υπολογισμού Γεωστροφικών Ρευμάτων από Υδρογραφικά Δεδομένα Γεωστροφικά ρεύματα από υδρογραφικά δεδομένα υπολογίζονται για πολλά χρόνια, έως και τις αρχές του 20 ου αιώνα. Ωστόσο, υπάρχουν κάποιοι περιορισμοί: 1. Τα υδρογραφικά δεδομένα χρησιμοποιούνται μόνο για το προσδιορισμό των γεωστροφικών ρευμάτων σε σχέση με ένα άλλο επίπεδο αναφοράς. 2. Η παραδοχή του «επιπέδου μη-κίνησης» είναι κατάλληλη για τα βαθιά στρώματα του ωκεανού, αλλά δεν είναι καλή παραδοχή για τα ρηχά νερά. 3. Τα γεωστροφικά ρεύματα δεν μπορούν να υπολογισθούν από κοντινούς σε απόσταση υδρογραφικούς σταθμούς. Οι σταθμοί θα πρέπει να βρίσκονται αρκετές δεκάδες χλμ μακριά.

41 Περιορισμοί Χρήσης της Γεωστροφικής Εξίσωσης Η γεωστροφική εξίσωση δεν είναι τέλεια. Αν ήταν, τότε η ροή του ωκεανού δεν θα μεταβαλλόταν στο χρόνο, καθώς η γεωστροφική εξίσωση θεωρεί μηδενική επιτάχυνση. Υπάρχουν σημαντικοί περιορισμοί στη χρήση της: 1. Τα γεωστροφικά ρεύματα δεν μεταβάλλονται στο χρόνο, καθώς η εξίσωση αγνοεί την επιτάχυνση. Η επιτάχυνση επικρατεί σε οριζόντιες κλίμακες ροής μικρότερες από 50 χλμ και σε χρονική κλίμακα μερικών ημερών. Η επιτάχυνση είναι μικρή αλλά όχι μηδενική σε μεγαλύτερες χωρικές και χρονικές κλίμακες. 2. Η γεωστροφική ισορροπία δεν εφαρμόζεται πολύ κοντά στον Ισημερινό, όπου η Coriolis σχεδόν μηδενίζεται. 3. Η γεωστροφική ισορροπία αγνοεί τη τριβή.

ΓΕΩΣΤΡΟΦΙΚΗ ΚΥΚΛΟΦΟΡΙΑ (GEOSTROPHIC CIRCULATION)

ΓΕΩΣΤΡΟΦΙΚΗ ΚΥΚΛΟΦΟΡΙΑ (GEOSTROPHIC CIRCULATION) ΚΕΦΑΛΑΙΟ 5 ΓΕΩΣΤΡΟΦΙΚΗ ΚΥΚΛΟΦΟΡΙΑ (GEOSTROPHIC CIRCULATION) Αδρανειακή Κίνηση Αν θεωρήσουμε τις εξής παραδοχές : 1) δεν υπάρχει οριζόντια πιεσοβαθμίδα, ) οι δυνάμεις F είναι μηδενικές, και 3) η κατακόρυφη

Διαβάστε περισσότερα

Εξισώσεις Κίνησης (Equations of Motion)

Εξισώσεις Κίνησης (Equations of Motion) Εξισώσεις Κίνησης (Equations of Motion) Αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Η εφαρμογή της ρευστομηχανικής στην ωκεανογραφία βασίζεται στη Νευτώνεια

Διαβάστε περισσότερα

ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion)

ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion) ΚΕΦΑΛΑΙΟ 4 ΕΞΙΣΩΣΕΙΣ ΚΙΝΗΣΗΣ (Equations of Motion) Με τις Εξισώσεις Κίνησης αναλύουμε την απόκριση ενός ρευστού υπό την επίδραση εσωτερικών και εξωτερικών δυνάμεων. Οι εξισώσεις αυτές προκύπτουν από τη

Διαβάστε περισσότερα

ΑΝΕΜΟΓΕNΗΣ ΚΥΚΛΟΦΟΡΙΑ (Wind-induced circulation)

ΑΝΕΜΟΓΕNΗΣ ΚΥΚΛΟΦΟΡΙΑ (Wind-induced circulation) ΚΕΦΑΛΑΙΟ 6 ΑΝΕΜΟΓΕNΗΣ ΚΥΚΛΟΦΟΡΙΑ (Wind-induced circulation) Η γενική κυκλοφορία του επιφανειακού στρώματος του ωκεανού είναι ωρολογιακή στο Β. ημισφαίριο και αντι-ωρολογιακή στο Ν. ημισφαίριο. Τόσο η ανεμογενής

Διαβάστε περισσότερα

Μετεωρολογία. Ενότητα 7. Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ.

Μετεωρολογία. Ενότητα 7. Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ. Μετεωρολογία Ενότητα 7 Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ. Ενότητα 7: Η κίνηση των αέριων μαζών Οι δυνάμεις που ρυθμίζουν την κίνηση των αέριων μαζών (δύναμη

Διαβάστε περισσότερα

ΩΚΕΑΝΟΓΡΑΦΙΑ E ΕΞΑΜΗΝΟ

ΩΚΕΑΝΟΓΡΑΦΙΑ E ΕΞΑΜΗΝΟ ΩΚΕΑΝΟΓΡΑΦΙΑ E ΕΞΑΜΗΝΟ Θαλάσσια ρεύματα και Ωκεάνια κυκλοφορία Οι θαλάσσιες μάζες δεν είναι σταθερές ΑΙΤΙΑ: Υπάρχει (αλληλ)επίδραση με την ατμόσφαιρα (π.χ., ο άνεμος ασκεί τριβή στην επιφάνεια της θάλασσας,

Διαβάστε περισσότερα

Δυνάμεις που καθορίζουν την κίνηση των αέριων μαζών

Δυνάμεις που καθορίζουν την κίνηση των αέριων μαζών Κίνηση αερίων μαζών Πηγές: Fleae and Businer, An introduction to Atmosheric Physics Πρ. Ζάνης, Σημειώσεις, ΑΠΘ Π. Κατσαφάδος και Ηλ. Μαυροματίδης, Αρχές Μετεωρολογίας και Κλιματολογίας, Χαροκόπειο Παν/μιο.

Διαβάστε περισσότερα

Μετεωρολογία. Ενότητα 7. Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ.

Μετεωρολογία. Ενότητα 7. Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ. Μετεωρολογία Ενότητα 7 Δρ. Πρόδρομος Ζάνης Αναπληρωτής Καθηγητής, Τομέας Μετεωρολογίας-Κλιματολογίας, Α.Π.Θ. Ενότητα 7: Η κίνηση των αέριων μαζών Οι δυνάμεις που ρυθμίζουν την κίνηση των αέριων μαζών (δύναμη

Διαβάστε περισσότερα

Αρχές Μετεωρολογίας και Κλιματολογίας (Διαλέξεις 7&8)

Αρχές Μετεωρολογίας και Κλιματολογίας (Διαλέξεις 7&8) ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ ΕΛ. ΒΕΝΙΖΕΛΟΥ 70, 76 7 ΑΘΗΝΑ Αρχές Μετεωρολογίας και Κλιματολογίας (Διαλέξεις 7&8) Πέτρος Κατσαφάδος pkatsaf@hua.gr Τμήμα Γεωγραφίας Χαροκόπειο Πανεπιστήμιο Αθηνών

Διαβάστε περισσότερα

Ανεμογενής Κυκλοφορία

Ανεμογενής Κυκλοφορία Ρεύματα με Τριβή Ανεμογενής Κυκλοφορία - Έστω αναπτύσσεται μια επιφανειακή τάση F T - Η δύναμη αυτή προκαλεί τη κίνηση της μάζας νερού προς μία κατεύθυνση, οπότε ξεκινά να ενεργεί και η δύναμη Coriolis

Διαβάστε περισσότερα

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ

5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5. ΠΥΚΝΟΤΗΤΑ ΤΟΥ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ- ΘΑΛΑΣΣΙΕΣ ΜΑΖΕΣ 5.1 Καταστατική Εξίσωση, συντελεστές σ t, και σ θ Η πυκνότητα του νερού αποτελεί καθοριστικό παράγοντα για την κίνηση των θαλασσίων µαζών και την κατακόρυφη

Διαβάστε περισσότερα

Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό.

Theory Greek (Greece) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό. Q1-1 Δύο προβλήματα Μηχανικής (10 Μονάδες) Παρακαλώ διαβάστε τις Γενικές Οδηγίες που θα βρείτε σε ξεχωριστό φάκελο πριν ξεκινήσετε να εργάζεστε στο πρόβλημα αυτό. Μέρος A. Ο Κρυμμένος Δίσκος (3.5 Μονάδες)

Διαβάστε περισσότερα

Κεφάλαιο Δυναμική της Ατμόσφαιρας

Κεφάλαιο Δυναμική της Ατμόσφαιρας Κεφάλαιο 3 Σύνοψη Στο συγκεκριμένο κεφάλαιο περιγράφεται η δομή και εξέλιξη μεγάλης και συνοπτικής κλίμακας ατμοσφαιρικών κινήσεων. Αναλύονται, επίσης, οι φαινόμενες και πραγματικές δυνάμεις που επηρεάζουν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ

ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 166 Α. ΕΡΩΤΗΣΕΙΣ ΑΝΟΙΚΤΟΥ ΤΥΠΟΥ: ΚΕΦΑΛΑΙΟ 3 Ο ΡΕΥΣΤΑ ΣΕ ΚΙΝΗΣΗ 1. Να αναφέρεται παραδείγματα φαινομένων που μπορούν να ερμηνευτούν με την μελέτη των ρευστών σε ισορροπία. 2. Ποια σώματα ονομάζονται ρευστά;

Διαβάστε περισσότερα

Ακτομηχανική και λιμενικά έργα

Ακτομηχανική και λιμενικά έργα ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 10 η. Γεωστροφικός άνεμος, κυματισμοί, στατιστική ανάλυση και ενεργειακά φάσματα Θεοφάνης Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά. Τετάρτη 12 Απριλίου Θέμα 1ο

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά. Τετάρτη 12 Απριλίου Θέμα 1ο Διαγώνισμα Ρευστά Τετάρτη 12 Απριλίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Στον πυθμένα των δύο δοχείων 1 και 2 του διπλανού σχήματος, που

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α ΘΕΜΑ Β

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΘΕΜΑ Α ΘΕΜΑ Β 6 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 06: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 6 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ δ α 3 δ 4 β α) Σωστό β) Σωστό γ) Λάθος δ) Σωστό ε) Σωστό ΘΕΜΑ Α ΘΕΜΑ

Διαβάστε περισσότερα

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται:

2. Κατά την ανελαστική κρούση δύο σωμάτων διατηρείται: Στις ερωτήσεις 1-4 να επιλέξετε μια σωστή απάντηση. 1. Ένα πραγματικό ρευστό ρέει σε οριζόντιο σωλήνα σταθερής διατομής με σταθερή ταχύτητα. Η πίεση κατά μήκος του σωλήνα στην κατεύθυνση της ροής μπορεί

Διαβάστε περισσότερα

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος. Κυριακή 5 Μαρτίου Θέμα 1ο

Διαγώνισμα Γ Λυκείου Θετικού προσανατολισμού. Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος. Κυριακή 5 Μαρτίου Θέμα 1ο Διαγώνισμα Ρευστά - Μηχανική Στερεού Σώματος Κυριακή 5 Μαρτίου 2017 Θέμα 1ο Στις παρακάτω προτάσεις 1.1 1.4 να επιλέξτε την σωστή απάντηση (4 5 = 20 μονάδες ) 1.1. Στον πυθμένα των δύο δοχείων 1 και 2

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 09 Ροπή Αδρανείας Στροφορμή ΦΥΣ102 1 Υπολογισμός Ροπών Αδράνειας Η Ροπή αδράνειας

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΩΚΕΑΝΟΓΡΑΦΙΑΣ

ΕΡΓΑΣΤΗΡΙΟ ΩΚΕΑΝΟΓΡΑΦΙΑΣ ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Τ Μ Η Μ Α Γ Ε Ω Γ Ρ Α Φ Ι Α Σ ΕΛ. ΒΕΝΙΖΕΛΟΥ, 70 17671 ΚΑΛΛΙΘΕΑ-ΤΗΛ: 210-9549151 FAX: 210-9514759 ΕΡΓΑΣΤΗΡΙΟ ΩΚΕΑΝΟΓΡΑΦΙΑΣ E ΕΞΑΜΗΝΟ ΑΣΚΗΣΗ 3 ΠΥΚΝΟΤΗΤΑ ΘΑΛΑΣΣΙΝΟΥ ΝΕΡΟΥ ΘΑΛΑΣΣΙΕΣ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ. Σωλήνας U A A N A B P Y T A 9 5 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Σωλήνας U Γ U= B Θ.Ι. B Κατακόρυφος ισοπαχής σωλήνας σχήματος U περιέχει ιδανικό υγρό, δηλαδή, υγρό που σε κάθε επιφάνεια ασκεί δυνάμεις κάθετες στην

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ

ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΔΥΝΑΜΙΚΗ ΘΑΛΑΣΣΙΩΝ ΚΑΤΑΣΚΕΥΩΝ ΤΑΛΑΝΤΩΣΕΙΣ ΚΥΛΙΝΔΡΙΚΗΣ ΚΑΤΑΣΚΕΥΗΣ ΛΟΓΩ ΔΙΝΩΝ Γ. Σ. ΤΡΙΑΝΤΑΦYΛΛΟΥ ΚΑΘΗΓΗΤΗΣ ΕΜΠ Διατύπωση των εξισώσεων Θεωρούμε κύλινδρο διαμέτρου D, μήκους l, και μάζας m. Ο κύλινδρος συγκρατειται

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ

ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Κανάρη 36, Δάφνη Τηλ. 1 9713934 & 1 9769376 ΘΕΜΑ Α ΦΥΣΙΚΗ Ο.Π. ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Διαβάστε περισσότερα

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα: Μετεωρολογίας-Κλιματολογίας. Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου

ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Μάθημα: Μετεωρολογίας-Κλιματολογίας. Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 5. ΑΝΕΜΟΙ ΤΕΙ Καβάλας, Τμήμα Δασοπονίας και Διαχείρισης Φυσικού Περιβάλλοντος Υπεύθυνη : Δρ Μάρθα Λαζαρίδου Αθανασιάδου 1 5. ΑΝΕΜΟΙ Αέριες μάζες κινούνται από περιοχές υψηλότερης προς περιοχές χαμηλότερης

Διαβάστε περισσότερα

Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε.

Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 ΜΑΘΗΜΑ ΦΥΣΙΚΗ Ι Μαρούσι Καθηγητής Σιδερής Ε. Α.Σ.ΠΑΙ.Τ.Ε. / ΤΜΗΜΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΦΕΒΡΟΥΑΡΙΟΥ 2014 Μαρούσι 04-02-2014 Καθηγητής Σιδερής Ε. ΘΕΜΑ 1 ο (βαθμοί 4) (α) Θέλετε να κρεμάσετε μια ατσάλινη δοκό που έχει

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό

ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό δ. Λάθος ε. Σωστό ΘΕΜΑ B B1. Σωστή απάντηση είναι η

Διαβάστε περισσότερα

Διατήρηση της Ενέργειας - Εξίσωση Bernoulli. Α. Ερωτήσεις Πολλαπλής Επιλογής

Διατήρηση της Ενέργειας - Εξίσωση Bernoulli. Α. Ερωτήσεις Πολλαπλής Επιλογής Διατήρηση της Ενέργειας - Εξίσωση Bernoulli Α. Ερωτήσεις Πολλαπλής Επιλογής 1. Ένα ιδανικό ρευστό ρέει σε σωλήνα μεταβλητής διατομής. α. H παροχή του ρευστού μειώνεται όταν η διατομή του σωλήνα αυξάνεται.

Διαβάστε περισσότερα

μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2

μεταβάλλουμε την απόσταση h της μιας τρύπας από την επιφάνεια του υγρού (π.χ. προσθέτουμε ή αφαιρούμε υγρό) έτσι ώστε h 2 =2 Α 2 ΑΣΚΗΣΕΙΣ ΣΤΑ ΡΕΥΣΤΑ 1 Μια κυλινδρική δεξαμενή ακτίνας 6m και ύψους h=5m είναι γεμάτη με νερό, βρίσκεται στην κορυφή ενός πύργου ύψους 45m και χρησιμοποιείται για το πότισμα ενός χωραφιού α Ποια η παροχή

Διαβάστε περισσότερα

(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η

(1) ταχύτητα, v δεδομένη την πιο πάνω κατανομή θερμοκρασίας; 6. Γιατί είναι σωστή η προσέγγιση του ερωτήματος [2]; Ποια είναι η ΜΕΤΑΦΟΡΑ ΘΕΡΜΟΤΗΤΑΣ Σειρά Ασκήσεων σε Συναγωγή Θερμότητας Οι λύσεις θα παρουσιαστούν στις παραδόσεις του μαθήματος μετά την επόμενη εβδομάδα. Για να σας φανούν χρήσιμες στην κατανόηση της ύλης του μαθήματος,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

Ατμοσφαιρική Ρύπανση

Ατμοσφαιρική Ρύπανση ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Δυναμική της Ατμόσφαιρας Μουσιόπουλος Νικόλαος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΘΕΜΑ 1 Ο : Α1. Σε ένα υλικό σημείο ενεργούν τέσσερις δυνάμεις. Για να ισορροπεί το σημείο θα πρέπει: α. Το άθροισμα

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017

Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 Διαγώνισμα Φυσικής Γ Λυκείου 5/3/2017 ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ

ΚΕΦΑΛΑΙΟ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ o ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΘΕΩΡΙΑ.) Τ ι γνωρίζετε για την αρχή της ανεξαρτησίας των κινήσεων; Σε πολλές περιπτώσεις ένα σώμα εκτελεί σύνθετη κίνηση, δηλαδή συμμετέχει σε περισσότερες από μία κινήσεις. Για

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΜΑΘΗΜΑ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ.

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΜΑΘΗΜΑ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ. ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΣΤΟΙΧΕΙΑ ΜΑΘΗΤΗ ΤΑΞΗ Γ ΛΥΚΕΙΟΥ ΟΝΟΜ/ΜΟ: ΗΜΕΡ/ΝΙΑ 15-1-017 ΚΑΘ/ΤΕΣ ΓΙΑΡΕΝΟΠΟΥΛΟΣ Λ. ΚΟΥΣΟΥΛΗΣ Δ. ΒΑΘΜΟΣ: /100, /0 Θέμα 1ο 1. Αν η εξίσωση ενός αρμονικού κύματος είναι y =10ημ(6πt

Διαβάστε περισσότερα

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής

Ορμή και Δυνάμεις. Θεώρημα Ώθησης Ορμής 501 Ορμή και Δυνάμεις Θεώρημα Ώθησης Ορμής «Η μεταβολή της ορμής ενός σώματος είναι ίση με την ώθηση της δύναμης που ασκήθηκε στο σώμα» = ή Το θεώρημα αυτό εφαρμόζεται διανυσματικά. 502 Θεώρημα Ώθησης

Διαβάστε περισσότερα

ΥΔΡΟΣΤΑΤΙΚΗ ΡΕΥΣΤΑ ΤΟ ΝΕΡΟ

ΥΔΡΟΣΤΑΤΙΚΗ ΡΕΥΣΤΑ ΤΟ ΝΕΡΟ ΥΔΡΟΣΤΑΤΙΚΗ είναι ο επιστημονικός κλάδος γνώσεων της μηχανικής των ρευστών, που εξετάζει τα ρευστά που βρίσκονται σε στατική ισορροπία η μεταφέρονται μετατίθενται κινούμενα ως συμπαγή σώματα, χωρίς λόγου

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 3 ο : Εξίσωση

Διαβάστε περισσότερα

Παράκτια Ωκεανογραφία

Παράκτια Ωκεανογραφία ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 3η: Παράκτια Υδροδυναμική Κυκλοφορία Γιάννης Ν. Κρεστενίτης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

Ανεμογενείς Κυματισμοί

Ανεμογενείς Κυματισμοί Ανεμογενείς Κυματισμοί Γένεση Ανεμογενών Κυματισμών: Μεταφορά ενέργειας από τα κινούμενα κατώτερα ατμοσφαιρικά στρώματα στις επιφανειακές θαλάσσιες μάζες. Η ενέργεια αρχικά περνά από την ατμόσφαιρα στην

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ 6: ΕΡΜΗΝΕΙΑ ΕΠΙΦΑΝΕΙΑΚΩΝ ΚΑΙ ΚΑΤΑΚΟΡΥΦΩΝ ΚΑΤΑΝΟΜΩΝ

ΕΡΓΑΣΤΗΡΙΟ 6: ΕΡΜΗΝΕΙΑ ΕΠΙΦΑΝΕΙΑΚΩΝ ΚΑΙ ΚΑΤΑΚΟΡΥΦΩΝ ΚΑΤΑΝΟΜΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΦΥΣΙΚΩΝ ΠΟΡΩΝ ΕΡΓΑΣΤΗΡΙΑΚΕΣ ΑΣΚΗΣΕΙΣ ΠΑΡΑΚΤΙΑΣ ΩΚΕΑΝΟΓΡΑΦΙΑΣ ΕΡΓΑΣΤΗΡΙΟ 6: ΕΡΜΗΝΕΙΑ ΕΠΙΦΑΝΕΙΑΚΩΝ ΚΑΙ ΚΑΤΑΚΟΡΥΦΩΝ ΚΑΤΑΝΟΜΩΝ ΑΓΡΙΝΙΟ, 2016 ΑΣΚΗΣΗ 6:

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια

ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: ρέουν Υγρά Αέρια ΡΕΥΣΤΟΜΗΧΑΝΙΚΗ Ρευστά: Υλικά που δεν έχουν καθορισμένο σχήμα (ρέουν), αλλά παίρνουν εκείνο του δοχείου μέσα στο οποίο βρίσκονται. Υγρά (έχουν καθορισμένο όγκο) Αέρια (καταλαμβάνουν ολόκληρο τον όγκο που

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 2017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 5 o ΔΙΑΓΩΝΙΣΜΑ ΑΠΡΙΛΙΟΣ 017: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 5 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. γ. Α. δ. Α3. γ. Α4. γ. Α5. α. Λάθος β. Λάθος γ. Σωστό

Διαβάστε περισσότερα

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745.

Να υπολογίσετε τη μάζα 50 L βενζίνης. Δίνεται η σχετική πυκνότητά της, ως προς το νερό ρ σχ = 0,745. 1 Παράδειγμα 101 Να υπολογίσετε τη μάζα 10 m 3 πετρελαίου, στους : α) 20 ο C και β) 40 ο C. Δίνονται η πυκνότητά του στους 20 ο C ρ 20 = 845 kg/m 3 και ο συντελεστής κυβικής διαστολής του β = 9 * 10-4

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016 ΘΕΜΑ 1 Ο : Α1. Σε ένα υλικό σημείο ενεργούν τέσσερις δυνάμεις. Για να ισορροπεί το σημείο θα πρέπει: α. Το άθροισμα

Διαβάστε περισσότερα

Ατμοσφαιρική πίεση και άνεμοι

Ατμοσφαιρική πίεση και άνεμοι 9 Ατμοσφαιρική πίεση και άνεμοι 9.1 Ατμοσφαιρική πίεση Ατμοσφαιρική πίεση (atmospheric pressure) είναι η δύναμη ανά μονάδα επιφάνειας που ασκείται σε μια επιφάνεια από το βάρος του ατμοσφαιρικού αέρα πάνω

Διαβάστε περισσότερα

Θέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής.

Θέμα 1ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής. ΕΠΑΝΑΛΗΠΤΙΚΑ ΚΡΙΤΗΡΙΑ ΑΞΙΟΛΟΓΗΣΗΣ o ΕΠΑΝΑΛΗΠΤΙΚΟ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ Θέμα ο Να σημειώσετε τη σωστή απάντηση σε καθεμία από τις παρακάτω ερωτήσεις πολλαπλής επιλογής. ) Σώμα εκτελεί ταυτόχρονα δύο απλές

Διαβάστε περισσότερα

γραπτή εξέταση στο μάθημα

γραπτή εξέταση στο μάθημα 3η εξεταστική περίοδος από 9/03/5 έως 9/04/5 γραπτή εξέταση στο μάθημα ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ Τάξη: Α Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητής: Θ Ε Μ Α Α Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.

Διαβάστε περισσότερα

Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1,2 10 5 N / m 2 (ή Ρα).

Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά του δοχείου δείχνει πίεση Ρ1 = 1,2 10 5 N / m 2 (ή Ρα). 1. Το κυβικό δοχείο του σχήματος ακμής h = 2 m είναι γεμάτο με υγρό πυκνότητας ρ = 1,1 10³ kg / m³. Το έμβολο που κλείνει το δοχείο έχει διατομή Α = 100 cm². Το μανόμετρο (1) που βρίσκεται στην πάνω πλευρά

Διαβάστε περισσότερα

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 3 Αυγούστου 2014 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 3 Αυγούστου 2014 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις. Θέµα Α 1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 3 Αυγούστου 2014 Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Σε µια απλή αρµονική ταλάντωση η αποµάκρυνση και η επιτάχυνση την ίδια χρονική

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Γ έκδοση Α.1. Κατά την πλαστική κρούση δύο σωµάτων ισχύει ότι : (δ) η ορµή του συστήµατος των δύο σωµάτων παραµένει

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 12 ΙΟΥΝΙΟΥ 2017 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ 1 ΙΟΥΝΙΟΥ 017 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει σωστά την

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~

Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διαγώνισμα Φυσικής Γ Λυκείου ~~ Ρευστά ~~ Διάρκεια: 3 ώρες Θέμα Α 1) Το δοχείο του σχήματος 1 είναι γεμάτο με υγρό και κλείνεται με έμβολο Ε στο οποίο ασκείται δύναμη F. Όλα τα μανόμετρα 1,2,3,4 δείχνουν

Διαβάστε περισσότερα

Αρχές Μετεωρολογίας και Κλιματολογίας (Διάλεξη 9)

Αρχές Μετεωρολογίας και Κλιματολογίας (Διάλεξη 9) ΧΑΡΟΚΟΠΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΤΜΗΜΑ ΓΕΩΓΡΑΦΙΑΣ ΕΛ. ΒΕΝΙΖΕΛΟΥ 70, 76 7 ΑΘΗΝΑ Αρχές Μετεωρολογίας και Κλιματολογίας Διάλεξη 9 Πέτρος Κατσαφάδος katsaf@hua.r Τμήμα Γεωγραφίας Χαροκόπειο Πανεπιστήμιο Αθηνών 07 ΑΝΕΜΟΣ

Διαβάστε περισσότερα

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΟΡΙΑΚΟ ΣΤΡΩΜΑ ΜΕΛΕΤΗ ΣΤΡΩΤΟΥ ΟΡΙΑΚΟΥ ΣΤΡΩΜΑΤΟΣ ΕΠΑΝΩ ΑΠΟ ΑΚΙΝΗΤΗ ΟΡΙΖΟΝΤΙΑ ΕΠΙΠΕΔΗ ΕΠΙΦΑΝΕΙΑ Σκοπός της άσκησης Στην παρούσα εργαστηριακή άσκηση γίνεται μελέτη του Στρωτού Οριακού

Διαβάστε περισσότερα

Υπόγεια ροή. Παρουσίαση 1 από 4: Κατεύθυνση κίνησης υπόγειου νερού. Περιεχόμενα

Υπόγεια ροή. Παρουσίαση 1 από 4: Κατεύθυνση κίνησης υπόγειου νερού. Περιεχόμενα Υπόγεια ροή Παρουσίαση 1 από 4: Κατεύθυνση κίνησης υπόγειου νερού Περιεχόμενα 1) Εισαγωγή (κίνητρο μελέτης υπόγειας ροής) 2) Αναζήτηση απάντησης στην ερώτηση «προς τα πού κινείται το υπόγειο νερό» 1 Βασικό

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΧΗΜΙΚΗ ΓΕΩΛΟΓΙΚΗ ΒΙΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΗ

ΦΥΣΙΚΗ ΧΗΜΙΚΗ ΓΕΩΛΟΓΙΚΗ ΒΙΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΗ ΦΥΣΙΚΗ ΩΚΕΑΝΟΓΡΑΦΙΑ Αρχές και έννοιες της Ωκεανογραφίας, με ιδιαίτερη έμφαση στις φυσικές διεργασίες των ωκεάνιων συστημάτων. Φυσικές ιδιότητες και οι φυσικές παράμετροι του θαλασσινού νερού, και χωροχρονικές

Διαβάστε περισσότερα

ΜΑΘΗΜΑ 3. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΑΝΩΜΑΛΙΑ BOUGUER

ΜΑΘΗΜΑ 3. Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΑΝΩΜΑΛΙΑ BOUGUER ΜΑΘΗΜΑ 3 Βαρυτικές και Μαγνητικές Μέθοδοι Γεωφυσικής Διασκόπησης ΑΝΑΓΩΓΕΣ ΤΟΥ ΜΕΤΡΗΜΕΝΟΥ ΠΕΔΙΟΥ ΒΑΡΥΤΗΤΑΣ ΑΝΩΜΑΛΙΑ BOUGUER Υπολογισμός της ανωμαλίας Bouguer Ανωμαλία Bouguer = Μετρημένη Βαρύτητα - Μοντέλο

Διαβάστε περισσότερα

Ασκήσεις 6 ου Κεφαλαίου

Ασκήσεις 6 ου Κεφαλαίου Ασκήσεις 6 ου Κεφαλαίου 1. Μία ράβδος ΟΑ έχει μήκος l και περιστρέφεται γύρω από τον κατακόρυφο άξονα Οz, που είναι κάθετος στο άκρο της Ο με σταθερή γωνιακή ταχύτητα ω. Να βρεθεί r η επαγώμενη ΗΕΔ στη

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΚΑΤΑΣΤΑΤΙΚΗ ΕΞΙΣΩΣΗ ΑΕΡΙΩΝ Η εξίσωση που συνδέει την πίεση τον όγκο και την θερμοκρασία ενός ιδανικού αερίου που βρίσκεται σε κατάσταση ισορροπίας ονομάζεται καταστατική εξίσωση αερίου και δίνεται όπως

Διαβάστε περισσότερα

6. ΩΚΕΑΝΙΑ ΚΥΚΛΟΦΟΡΙΑ - ΘΑΛΑΣΣΙΑ ΡΕΥΜΑΤΑ

6. ΩΚΕΑΝΙΑ ΚΥΚΛΟΦΟΡΙΑ - ΘΑΛΑΣΣΙΑ ΡΕΥΜΑΤΑ 6. ΩΚΕΑΝΙΑ ΚΥΚΛΟΦΟΡΙΑ - ΘΑΛΑΣΣΙΑ ΡΕΥΜΑΤΑ 6.1 Γενικά Η επιφάνεια των ωκεανών βρίσκεται συνέχεια κάτω από την επίδραση των ατµοσφαιρικών συνθηκών, δηλαδή της τριβής που ασκεί ο άνεµος στην επιφάνεια, και

Διαβάστε περισσότερα

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ

Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ ΕΝΩΗ ΚΥΠΡΙΩΝ ΦΥΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑΔΑ ΦΥΙΚΗ Γ ΓΥΜΝΑΙΟΥ Κυριακή, 17 Μαίου, 2009 Ώρα: 10:00-12:30 ΠΡΟΣΕΙΝΟΜΕΝΕ ΛΤΕΙ 1. α) Ζεύγος δυνάμεων Δράσης Αντίδρασης είναι η δύναμη που ασκεί ο μαθητής στο έδαφος

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Θέμα Α. 1. β 2. α 3. γ 4. β 5. Λ,Λ,Λ,Λ,Λ.

ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ Θέμα Α. 1. β 2. α 3. γ 4. β 5. Λ,Λ,Λ,Λ,Λ. ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ- 07 Θέμα Α.. β. α 3. γ 4. β 5. Λ,Λ,Λ,Λ,Λ. Β Στην επιφάνεια ελαστικού μέσου υπάρχουν δύο πανομοιότυπες πηγές κυμάτων που ξεκινούν ταυτόχρονα την ταλάντωση τους. Σε

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΘΕΜΑ Α (Στο θέμα Α να χαρακτηρίσετε τις προτάσεις ως σωστές με το γράμμα Σ ή ως λανθασμένες με το γράμμα Λ, χωρίς αιτιολόγηση.) A1. Δύο σώματα Κ και Λ εκτοξεύονται οριζόντια

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας 1 Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανολογίας Πρόβλημα 1 Μηχανική Ρευστών Κεφάλαιο 1 Λυμένα Προβλήματα Μια αμελητέου πάχους επίπεδη πλάκα διαστάσεων (0 cm)x(0

Διαβάστε περισσότερα

Ακτομηχανική και λιμενικά έργα

Ακτομηχανική και λιμενικά έργα ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διάλεξη 12 η. Θαλάσσια ρεύματα, κυκλοφορία, μετεωρολογική παλίρροια Θεοφάνης Καραμπάς Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ

ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΠΕ ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ Γ. ΒΙΣΚΑΔΟΥΡΟΣ Ι. Φραγκιαδάκης Φ. Μαυροματάκης ΑΙΟΛΙΚΑ ΣΥΣΤΗΜΑΤΑ Ταχύτητα ανέμου Παράγοντες που την καθορίζουν Μεταβολή ταχύτητας ανέμου με το ύψος από το έδαφος Κατανομή

Διαβάστε περισσότερα

τα βιβλία των επιτυχιών

τα βιβλία των επιτυχιών Τα βιβλία των Εκδόσεων Πουκαμισάς συμπυκνώνουν την πολύχρονη διδακτική εμπειρία των συγγραφέων μας και αποτελούν το βασικό εκπαιδευτικό υλικό που χρησιμοποιούν οι μαθητές των φροντιστηρίων μας. Μέσα από

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Ο.Π / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 24/09/2017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 017-018 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΟΠ / Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 4/09/017 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ. Ρευστά. Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός. https://physicscourses.wordpress.com ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ Ρευστά Επιμέλεια: ΑΓΚΑΝΑΚΗΣ A.ΠΑΝΑΓΙΩΤΗΣ, Φυσικός https://physicscourses.wordpress.com Βασικές έννοιες Πρώτη φορά συναντήσαμε τη φυσική των ρευστών στη Β Γυμνασίου. Εκεί

Διαβάστε περισσότερα

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών.

Γρηγόρης Δρακόπουλος. Φυσικός Ελληνογαλλική Σχολή Καλαμαρί. Επιλεγμένες ασκήσεις στη. Μηχανική Ρευστών. νω ν Φυσικών. Γρηγόρης Δρακόπουλος Φυσικός Ελληνογαλλική Σχολή Καλαμαρί Επιλεγμένες ασκήσεις στη Μηχανική Ρευστών Έ ν ω σ η Ε λ λ ή νω ν Φυσικών Θεσσαλονίκη 06 Ισορροπία υγρού Α. Στο διπλανό σχήμα, φαίνεται δοχείο που

Διαβάστε περισσότερα

Κεφάλαιο 11. Μηχανική Φλεβών και Πλουμιών Ορισμός υποβρύχιας φλέβας και πλουμίου

Κεφάλαιο 11. Μηχανική Φλεβών και Πλουμιών Ορισμός υποβρύχιας φλέβας και πλουμίου Κεφάλαιο 11 Μηχανική Φλεβών και Πλουμιών Σύνοψη Διασύνδεση του παράκτιου υδροδυναμικού ομοιώματος με το ομοίωμα διασποράς ρύπων που εκρέουν από υποθαλάσσιο αγωγό. Εξηγούνται τα χαρακτηριστικά εκροής και

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : Φυσικη Α ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 28/02

ΜΑΘΗΜΑ / ΤΑΞΗ : Φυσικη Α ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 28/02 ΜΑΘΗΜΑ / ΤΑΞΗ : Φυσικη Α ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 28/02 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Η επιτάχυνση

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ

ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Τμήμα Δασολογίας & Διαχείρισης Περιβάλλοντος & Φυσικών Πόρων Εργαστήριο Διευθέτησης Ορεινών Υδάτων και Διαχείρισης Κινδύνου Προπτυχιακό Πρόγραμμα Σπουδών ΥΔΡΑΥΛΙΚΗ ΑΝΟΙΚΤΩΝ ΑΓΩΓΩΝ Κεφάλαιο 7 ο : Κρίσιμη

Διαβάστε περισσότερα

Μερικές εισαγωγικές ερωτήσεις στα ρευστά.

Μερικές εισαγωγικές ερωτήσεις στα ρευστά. Μερικές εισαγωγικές ερωτήσεις στα ρευστά. Αρχίζοντας τη μελέτη των ρευστών, ας δούμε εισαγωγικά μερικές έννοιες. Ερώτηση 1 η : Όταν σε δοχείο περιέχεται ένα αέριο, τότε σε κάθε σημείο υπάρχει πίεση. Αν

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΜΗΧΑΝΙΚΗ ΡΕΥΣΤΩΝ Στις παρακάτω ερωτήσεις Α-Α4 να σημειώσετε την σωστή απάντηση Α. Νερό διαρρέει έναν κυλινδρικό σωλήνα, ο οποίος στενεύει σε κάποιο σημείο του χωρίς να διακλαδίζεται. Ποια

Διαβάστε περισσότερα

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς 1. Δύο σώματα ίδιας μάζας εκτελούν Α.Α.Τ. Στο διάγραμμα του σχήματος παριστάνεται η συνισταμένη δύναμη που ασκείται σε κάθε σώμα σε συνάρτηση

Διαβάστε περισσότερα

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 4 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 4 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2018: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ 4 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 08: ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ 4 ο ΔΙΑΓΩΝΙΣΜΑ ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Αα. (γ) Αβ. (β) Αα. (β) Αβ. (γ) Α3α. (α) Α3β. (δ) Α4α. (δ) Α4β.

Διαβάστε περισσότερα

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος.

Ένωση Ελλήνων Φυσικών ΠΑΝΕΛΛΗΝΙΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΦΥΣΙΚΗΣ 2011 Πανεπιστήμιο Αθηνών Εργαστήριο Φυσικών Επιστημών, Τεχνολογίας, Περιβάλλοντος. Θεωρητικό Μέρος Θέμα 1 ο B Λυκείου 12 Μαρτίου 2011 A. Στα δύο όμοια δοχεία του σχήματος υπάρχουν ίσες ποσότητες νερού με την ίδια αρχική θερμοκρασία θ 0 =40 ο C. Αν στο αριστερό δοχείο η θερμοκρασία του

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 19/02/17 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 9/02/7 ΕΠΙΜΕΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων

Κεφάλαιο 5. 5 Συστήματα συντεταγμένων Κεφάλαιο 5 5 Συστήματα συντεταγμένων Στις Γεωεπιστήμες η μορφή της γήινης επιφάνειας προσομοιώνεται από μια επιφάνεια, που ονομάζεται γεωειδές. Το γεωειδές είναι μια ισοδυναμική επιφάνεια του βαρυτικού

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ( ) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΑΠΑΝΤΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ( ) ΚΕΦΑΛΑΙΟ 3 ΡΕΥΣΤΑ ΑΠΑΝΤΗΣΕΙΣ ΙΑΩΝΙΣΜΑ 4- ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (06-7) ΚΕΦΑΛΑΙΟ ΡΕΥΣΤΑ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ A Α. β Α. β Α.γ Α4. α Α5. α. Λ β.σ γ. Λ δ.λ ε.σ ΘΕΜΑ Β Β. Σωστή απάντηση είναι η (α). Tα έμβολα διατηρούνται ακίνητα, άρα για καθένα

Διαβάστε περισσότερα

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΞΑΝΘΗ ΥΔΡΑΥΛΙΚΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Αγγελίδης Π., Αναπλ. καθηγητής ΚΕΦΑΛΑΙΟ 1 ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΑΙ ΑΡΧΕΣ ΣΥΓΚΕΝΤΡΩΣΗ ΡΥΠΟΥ Έστω η συγκέντρωση

Διαβάστε περισσότερα

[50m/s, 2m/s, 1%, -10kgm/s, 1000N]

[50m/s, 2m/s, 1%, -10kgm/s, 1000N] ΚΕΦΑΛΑΙΟ 5 ο - ΜΕΡΟΣ Α : ΚΡΟΥΣΕΙΣ ΕΝΟΤΗΤΑ 1: ΚΡΟΥΣΕΙΣ 1. Σώμα ηρεμεί σε οριζόντιο επίπεδο. Βλήμα κινούμενο οριζόντια με ταχύτητα μέτρου και το με ταχύτητα, διαπερνά το σώμα χάνοντας % της κινητικής του

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις

Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις Διαγώνισμα Φυσικής Γ Λυκείου Απλή αρμονική ταλάντωση Κρούσεις ~ Διάρκεια: 3 ώρες ~ Θέμα Α Α1. Η ορμή συστήματος δύο σωμάτων που συγκρούονται διατηρείται: α. Μόνο στην πλάγια κρούση. β. Μόνο στην έκκεντρη

Διαβάστε περισσότερα

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΓΕΩΤΕΧΝΙΚΗ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Μ. Πανταζίδου, Αναπληρώτρια Καθηγήτρια ΕΜΠ Θεματική Ενότητα 4 Υπόγεια ροή Κατεύθυνση κίνησης υπόγειου νερού Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου Ταλαντώσεις-Κρούσεις-Κύματα-Ρευστά ~~ Διάρκεια 3 ώρες ~~

Διαγώνισμα Φυσικής Γ Λυκείου Ταλαντώσεις-Κρούσεις-Κύματα-Ρευστά ~~ Διάρκεια 3 ώρες ~~ Διαγώνισμα Φυσικής Γ Λυκείου Ταλαντώσεις-Κρούσεις-Κύματα-Ρευστά ~~ Διάρκεια 3 ώρες ~~ Θέμα Α A1. Ένα σώμα εκτελεί ταλάντωση που προέρχεται από τη σύνθεση δύο απλών αρμονικών ταλαντώσεων που γίνονται γύρω

Διαβάστε περισσότερα

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης 2013 ΘΕΜΑ Α Για τις ερωτήσεις 1 έως 4 γράψτε τον αριθμό τις ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Για ένα

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ 1. Ένα σώμα μάζας m= 2 kg εκτελεί απλή αρμονική ταλάντωση σε οριζόντια διεύθυνση. Στη θέση με απομάκρυνση x 1 =+2m το μέτρο της ταχύτητας του είναι u 1 =4m /s, ενώ στη θέση με απομάκρυνση

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑΤΙΚΑ Ι 4 ΟΚΤΩΒΡΙΟΥ 2016 ΓΡΑΜΜΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ ΕΙΣΑΓΩΓΗ Ι Κεντρική έννοια το μέτρο ή ρυθμός μεταβολής:

Διαβάστε περισσότερα

6 Εξαναγκασμένη ροή αέρα

6 Εξαναγκασμένη ροή αέρα 6 Εξαναγκασμένη ροή αέρα 6.1 Εισαγωγή Όταν θέτουμε σε κίνηση κάποια μόρια ενός ρευστού μέσω μιας αντλίας ή ενός φυσητήρα, η κίνηση μεταδίδεται και στα υπόλοιπα μόρια του ρευστού μέσω των αλληλεπιδράσεων

Διαβάστε περισσότερα

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας.

ΘΕΜΑ Α A1. Στις ερωτήσεις 1 9 να επιλέξετε το γράμμα που αντιστοιχεί στη σωστή απάντηση, χωρίς να αιτιολογήσετε την επιλογή σας. ΜΑΘΗΜΑ / Προσανατολισμός / ΤΑΞΗ ΑΡΙΘΜΟΣ ΦΥΛΛΟΥ ΕΡΓΑΣΙΑΣ: ΗΜΕΡΟΜΗΝΙΑ: ΤΜΗΜΑ : ΟΝΟΜΑΤΕΠΩΝΥΜΟ ΜΑΘΗΤΗ: ΦΥΣΙΚΗ/ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ / Γ ΛΥΚΕΙΟΥ 1 Ο ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ ( ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ) ΘΕΜΑ Α A1. Στις ερωτήσεις

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ A ΤΑΞΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ A ΤΑΞΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ A ΤΑΞΗΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΟΝΟΜΑΤΕΠΩΝΥΜΟ 1. Το έργο ως φυσικό µέγεθος εκφράζει: α) την ενέργεια που έχει ένα σώµα κατά τη διάρκεια της κίνησής του. β) το ρυθµό µε τον οποίο µια

Διαβάστε περισσότερα

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4 1. F 2 F 3 F 1 F 4 Στο σώμα του παραπάνω σχήματος βάρους Β = 20Ν ασκούνται οι δυνάμεις F 1 = 5Ν, F 2 = 10Ν, F 3 = 15Ν και F 4 = 10Ν. Αν το σώμα μετακινηθεί οριζόντια προς τα δεξιά κατά 2m να υπολογισθεί

Διαβάστε περισσότερα

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/09/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα