Δομές Δεδομένων και Αλγόριθμοι

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Δομές Δεδομένων και Αλγόριθμοι"

Transcript

1 Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου, Τμήμα Μηχανικών Πληροφορικής ΤΕ Χειμερινό Εξάμηνο (Παρουσίαση 5) 1 / 17

2 Απόδοση προγραμμάτων Συχνά χρειάζεται να εκτιμηθεί η απόδοση ενός προγράμματος δηλαδή πόσο γρήγορα εκτελείται και πόσους πόρους (μνήμη, αποθηκευτικό χώρο σε δευτερεύουσα μνήμη, εύρος ζώνης κα) απαιτεί Μπορεί να χρειαστεί να συγκριθεί ένα πρόγραμμα με ένα άλλο πρόγραμμα που επιλύει το ίδιο πρόβλημα και να επιλεγεί το καλύτερο H απόδοση ενός προγράμματος μπορεί να εξαρτάται από το είδος του υπολογιστή στο οποίο εκτελείται Η απόδοση ενός προγράμματος συνήθως εξαρτάται από το μέγεθος αλλά και την μορφή της εισόδου Η απόδοση ενός προγράμματος μπορεί να μετρηθεί πειραματικά ή θεωρητικά 2 / 17

3 Πειραματική μέτρηση απόδοσης προγράμματος Πειραματική - εμπειρική μέτρηση Καταστρώνεται ένα πείραμα κατά το οποίο το πρόγραμμα εκτελείται για διάφορα μεγέθη εισόδου και καταγράφεται ο χρόνος εκτέλεσης σε κάθε περίπτωση Τα αποτελέσματα συνήθως απεικονίζονται διαγραμματικά και δείχνουν την συμπεριφορά του προγράμματος καθώς το μέγεθος του προβλήματος αυξάνεται Αν υπάρχουν περισσότερα του ενός υποψήφια εναλλακτικά προγράμματα μπορούν να προκύψουν συγκριτικά στοιχεία που να υποδεικνύουν το καταλληλότερο ανάμεσα τους 3 / 17

4 Αναλυτική μέτρηση απόδοσης προγράμματος Θεωρητικό μοντέλο Η/Υ Το πρόγραμμα εκτελείται σε ένα θεωρητικό μοντέλο υπολογιστή για το οποίο υποθέτουμε ότι οι βασικές λειτουργίες (αριθμητικές πράξεις, σύγκριση, μεταφορά) απαιτούν κάποιον χρόνο που μπορεί να θεωρηθεί σταθερός για κάθε μια στοιχειώδη ενέργεια 4 / 17

5 Πολυπλοκότητα χώρου / χρόνου Η πολυπλοκότητα χώρου αφορά τον απαιτούμενο χώρο που συνεπάγεται η εκτέλεση του προγράμματος Ο απαιτούμενος χώρος ενός προγράμματος αποτελείται από: Χώρο εντολών Χώρο δεδομένων Χώρο στοίβας περιβάλλοντος εκτέλεσης Η πολυπλοκότητα χρόνου έχει να κάνει με την καταμέτρηση των λειτουργιών που γίνονται κατά την εκτέλεση του προγράμματος Αυτό που ενδιαφέρει είναι ο ρυθμός αύξησης του χώρου ή του χρόνου που απαιτεί η εκτέλεση ενός προγράμματος καθώς το μέγεθος του προβλήματος αυξάνεται 5 / 17

6 Αριθμός εκτελέσεων εντολών σε μια απλή for for ( int i = 0; i < 10; i++) { command1 } for ( int i = a; i < b; i++) { command2 } Στο πρώτο τμήμα κώδικα η συνθήκη i<10 θα εξεταστεί 11 φορές και η εντολή command1 θα εκτελεστεί 10 φορές Στο δεύτερο τμήμα κώδικα η συνθήκη i<b θα εξεταστεί b a + 1 φορές και η εντολή command2 θα εκτελεστεί b a φορές 6 / 17

7 Ανάλυση χρόνου εκτέλεσης find_max (1/2) Το πρόβλημα που επιλύει η find_max Βρίσκει τη μεγαλύτερη τιμή ενός πίνακα n θέσεων template<class T> T find_max(t a[], int n) { T max = a[0]; // c1 for ( int i = 1; i < n; i++) { // c2 if (a[ i ] > max) // c3 max = a[i ]; // c4 } return max; // c5 } c1 έως c5 είναι οι χρόνοι εκτέλεσης των εντολών κάθε φορά που εκτελούνται 7 / 17

8 Ανάλυση χρόνου εκτέλεσης find_max (2/2) template<class T> T find_max(t a[], int n) { T max = a[0]; // c1 for ( int i = 1; i < n; i++) { // c2 if (a[ i ] > max) // c3 max = a[i ]; // c4 } return max; // c5 } Η εντολή με χρόνο εκτέλεσης c1 εκτελείται 1 φορά Η εντολή με χρόνο εκτέλεσης c2 εκτελείται n φορές Η εντολή με χρόνο εκτέλεσης c3 εκτελείται n-1 φορές Η εντολή με χρόνο εκτέλεσης c4 εκτελείται n-1 φορές Η εντολή με χρόνο εκτέλεσης c5 εκτελείται 1 φορά Εξετάζουμε το χρόνο της χειρότερης περίπτωσης T(n) = c1 + c2n + c3(n 1) + c4(n 1) + c5 = (c2 + c3 + c4)n + (c1 c3 c4 + c5) an + b a = (c2 + c3 + c4), b = (c1 c3 c4 + c5) Άρα ο χρόνος εκτέλεσης T(n) είναι an + b δηλαδή περιγράφεται από μια γραμμική συνάρτηση του μεγέθους n της ακολουθίας εισόδου 8 / 17

9 Ο αλγόριθμος ταξινόμησης με επιλογή (selection_sort) Περιγραφή λειτουργίας Ο αλγόριθμος εντοπίζει το μικρότερο στοιχείο του πίνακα και το αντιμεταθέτει με το πρώτο στοιχείο του Στη συνέχεια εντοπίζει το μικρότερο στοιχείο από το δεύτερο μέχρι το τελευταίο στοιχείο του πίνακα και το αντιμεταθέτει με το στοιχείο που βρίσκεται στην δεύτερη θέση Η διαδικασία συνεχίζεται εντοπίζοντας στην εναπομείνασα ακολουθία κάθε φορά το μικρότερο στοιχείο και κάνοντας αντιμετάθεση με το αριστερότερο στοιχείο της ακολουθίας που εξετάστηκε για εύρεση του μικρότερου template<class T> void selection_sort(t a [], int n) { for ( int i = 0; i < n 1; i++) { // c1 int pmin = i; // c2 for ( int j = i + 1; j < n; j++) // c3 if (a[ j ] < a[pmin]) // c4 pmin = j; // c5 swap(a[i], a[pmin]); // c6 } } c1 έως c6 είναι οι χρόνοι εκτέλεσης των εντολών κάθε φορά που εκτελούνται 9 / 17

10 Παράδειγμα εκτέλεσης του αλγορίθμου selection_sort Η ταξινόμηση προχωρά ως εξής: 16, 22, 11, 9, 7, / 17

11 Παράδειγμα εκτέλεσης του αλγορίθμου selection_sort Η ταξινόμηση προχωρά ως εξής: 16, 22, 11, 9, 7, 18 7, 22, 11, 9, 16, / 17

12 Παράδειγμα εκτέλεσης του αλγορίθμου selection_sort Η ταξινόμηση προχωρά ως εξής: 16, 22, 11, 9, 7, 18 7, 22, 11, 9, 16, 18 7, 9, 11, 22, 16, / 17

13 Παράδειγμα εκτέλεσης του αλγορίθμου selection_sort Η ταξινόμηση προχωρά ως εξής: 16, 22, 11, 9, 7, 18 7, 22, 11, 9, 16, 18 7, 9, 11, 22, 16, 18 7, 9, 11, 22, 16, / 17

14 Παράδειγμα εκτέλεσης του αλγορίθμου selection_sort Η ταξινόμηση προχωρά ως εξής: 16, 22, 11, 9, 7, 18 7, 22, 11, 9, 16, 18 7, 9, 11, 22, 16, 18 7, 9, 11, 22, 16, 18 7, 9, 11, 16, 22, / 17

15 Παράδειγμα εκτέλεσης του αλγορίθμου selection_sort Η ταξινόμηση προχωρά ως εξής: 16, 22, 11, 9, 7, 18 7, 22, 11, 9, 16, 18 7, 9, 11, 22, 16, 18 7, 9, 11, 22, 16, 18 7, 9, 11, 16, 22, 18 7, 9, 11, 16, 18, / 17

16 Ανάλυση χρόνου εκτέλεσης της ταξινόμησης με επιλογή selection_sort (1/2) template<class T> void selection_sort(t a [], int n) { for ( int i = 0; i < n 1; i++) { // c1 int pmin = i; // c2 for ( int j = i + 1; j < n; j++) // c3 if (a[ j ] < a[pmin]) // c4 pmin = j; // c5 swap(a[i], a[pmin]); // c6 } } Η εντολή με χρόνο εκτέλεσης c1 εκτελείται n φορές Η εντολή με χρόνο εκτέλεσης c2 εκτελείται n 1 φορές Η εντολή με χρόνο εκτέλεσης c3 εκτελείται n 2 i=0 n (i + 1) + 1 = n 2 i=0 n i φορές Η εντολή με χρόνο εκτέλεσης c4 εκτελείται n 2 i=0 n (i + 1) = n 2 i=0 n i 1 φορές Η εντολή με χρόνο εκτέλεσης c5 εκτελείται n 2 i=0 n (i + 1) = n 2 i=0 n i 1 φορές Η εντολή με χρόνο εκτέλεσης c6 εκτελείται n 1 φορές n 2 n(n + 1) n i = n + (n 1) + (n 2) = 1 = n n 2 1 i=0 n 2 (n 1)n n i 1 = (n 1) + (n 2) = = n2 2 2 n 2 i=0 T(n) = c1n + c2(n 1) + c3( n2 2 + n 2 1) + c4( n2 2 n 2 ) + c5( n2 2 n 2 ) + c6(n 1) = an2 + bn + c a = c3+c4+c5, b = (c1 + c2 + 2 c3 2 c4 2 c5 2 + c6), c = ( c2 c3 c6) 11 / 17

17 Ανάλυση χρόνου εκτέλεσης της ταξινόμησης με επιλογή selection_sort (2/2) Συνάρτηση χρόνου εκτέλεσης Άρα ο χρόνος εκτέλεσης T(n) είναι an 2 + bn + c δηλαδή περιγράφεται από μια τετραγωνική συνάρτηση του μεγέθους n της ακολουθίας εισόδου 12 / 17

18 Ο αλγόριθμος ταξινόμησης με εισαγωγή (insertion_sort) Περιγραφή λειτουργίας Ξεκινώντας από το αριστερό άκρο κάθε τιμή τοποθετείται στην σωστή θέση σε σχέση με αυτές που βρίσκονται αριστερά της template<class T> void insertion_sort (T a [], int n) { for ( int i = 1; i < n; i++) { // c1 T key = a[ i ]; // c2 int j = i 1; // c3 while (( j >= 0) && (key < a[j ]) ) { // c4 a[ j + 1] = a[ j ]; // c5 j ; // c6 } a[ j + 1] = key; // c7 } } c1 έως c7 είναι οι χρόνοι εκτέλεσης των εντολών κάθε φορά που εκτελούνται 13 / 17

19 Παράδειγμα εκτέλεσης του αλγορίθμου insertion_sort Η ταξινόμηση με εισαγωγή προχωρά ως εξής: 16, 22, 11, 9, 7, / 17

20 Παράδειγμα εκτέλεσης του αλγορίθμου insertion_sort Η ταξινόμηση με εισαγωγή προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 9, 7, / 17

21 Παράδειγμα εκτέλεσης του αλγορίθμου insertion_sort Η ταξινόμηση με εισαγωγή προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 9, 7, 18 16, 22, 11, 9, 7, / 17

22 Παράδειγμα εκτέλεσης του αλγορίθμου insertion_sort Η ταξινόμηση με εισαγωγή προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 9, 7, 18 16, 22, 11, 9, 7, 18 11, 16, 22, 9, 7, / 17

23 Παράδειγμα εκτέλεσης του αλγορίθμου insertion_sort Η ταξινόμηση με εισαγωγή προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 9, 7, 18 16, 22, 11, 9, 7, 18 11, 16, 22, 9, 7, 18 9, 11, 16, 22, 7, / 17

24 Παράδειγμα εκτέλεσης του αλγορίθμου insertion_sort Η ταξινόμηση με εισαγωγή προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 9, 7, 18 16, 22, 11, 9, 7, 18 11, 16, 22, 9, 7, 18 9, 11, 16, 22, 7, 18 7, 9, 11, 16, 22, / 17

25 Παράδειγμα εκτέλεσης του αλγορίθμου insertion_sort Η ταξινόμηση με εισαγωγή προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 9, 7, 18 16, 22, 11, 9, 7, 18 11, 16, 22, 9, 7, 18 9, 11, 16, 22, 7, 18 7, 9, 11, 16, 22, 18 7, 9, 11, 16, 18, / 17

26 Ανάλυση χρόνου εκτέλεσης της ταξινόμησης με εισαγωγή template<class T> void insertion_sort (T a [], int n) { for ( int i = 1; i < n; i++) { // c1 T key = a[ i ]; // c2 int j = i 1; // c3 while (( j >= 0) && (key < a[j ]) ) { // c4 a[ j + 1] = a[ j ]; // c5 j ; // c6 } a[ j + 1] = key; // c7 } } Η εντολή με χρόνο εκτέλεσης c1 εκτελείται n φορές Η εντολή με χρόνο εκτέλεσης c2 εκτελείται n 1 φορές Η εντολή με χρόνο εκτέλεσης c3 εκτελείται n 1 φορές Η εντολή με χρόνο εκτέλεσης c4 εκτελείται n 1 i=1 i + 1 φορές Η εντολή με χρόνο εκτέλεσης c5 εκτελείται n 1 i=1 i φορές Η εντολή με χρόνο εκτέλεσης c6 εκτελείται n 1 i=1 i φορές Η εντολή με χρόνο εκτέλεσης c7 εκτελείται n 1 φορές n 1 i=1 i + 1 = n i=2 i = n(n+1) 2 1 = n2 2 + n 2 1 n 1 i=1 i = (n 1)n 2 = n2 2 n 2 T(n) = c1n + c2(n 1) + c3(n 1) + c4 ( n n 1) + c5( n2 2 2 n ) + c6( n2 2 2 n ) + c7(n 1) = an 2 + bn + c, a = c4+c5+c6, b = (c1 + c2 + c3 + 2 c4 2 c5 2 c6 + c7), c = ( c2 c3 c4 c7) 2 15 / 17

27 Ο αλγόριθμος ταξινόμησης φυσαλίδας (bubble_sort) Περιγραφή λειτουργίας Γειτονικά στοιχεία συγκρίνονται από το τέλος προς την αρχή και αν δεν είναι στην ορθή σειρά αντιμετατίθενται Η διαδικασία επαναλαμβάνεται μέχρι να ταξινομηθούν όλα τα στοιχεία του πίνακα template<class T> void bubble_sort(t a [], int n) { for ( int i = 1; i < n; i++) for ( int j = n 1; j >= i ; j ) if (a[ j 1] > a[ j ]) swap(a[j], a[ j 1]); } 16 / 17

28 Παράδειγμα εκτέλεσης του αλγορίθμου bubble_sort Η ταξινόμηση φυσαλίδας προχωρά ως εξής: 16, 22, 11, 9, 7, / 17

29 Παράδειγμα εκτέλεσης του αλγορίθμου bubble_sort Η ταξινόμηση φυσαλίδας προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 7, 9, / 17

30 Παράδειγμα εκτέλεσης του αλγορίθμου bubble_sort Η ταξινόμηση φυσαλίδας προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 7, 9, 18 16, 22, 7, 11, 9, / 17

31 Παράδειγμα εκτέλεσης του αλγορίθμου bubble_sort Η ταξινόμηση φυσαλίδας προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 7, 9, 18 16, 22, 7, 11, 9, 18 16, 7, 22, 11, 9, / 17

32 Παράδειγμα εκτέλεσης του αλγορίθμου bubble_sort Η ταξινόμηση φυσαλίδας προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 7, 9, 18 16, 22, 7, 11, 9, 18 16, 7, 22, 11, 9, 18 7, 16, 22, 11, 9, / 17

33 Παράδειγμα εκτέλεσης του αλγορίθμου bubble_sort Η ταξινόμηση φυσαλίδας προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 7, 9, 18 16, 22, 7, 11, 9, 18 16, 7, 22, 11, 9, 18 7, 16, 22, 11, 9, 18 7, 16, 22, 9, 11, / 17

34 Παράδειγμα εκτέλεσης του αλγορίθμου bubble_sort Η ταξινόμηση φυσαλίδας προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 7, 9, 18 16, 22, 7, 11, 9, 18 16, 7, 22, 11, 9, 18 7, 16, 22, 11, 9, 18 7, 16, 22, 9, 11, 18 7, 16, 9, 22, 11, / 17

35 Παράδειγμα εκτέλεσης του αλγορίθμου bubble_sort Η ταξινόμηση φυσαλίδας προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 7, 9, 18 16, 22, 7, 11, 9, 18 16, 7, 22, 11, 9, 18 7, 16, 22, 11, 9, 18 7, 16, 22, 9, 11, 18 7, 16, 9, 22, 11, 18 7, 9, 16, 22, 11, / 17

36 Παράδειγμα εκτέλεσης του αλγορίθμου bubble_sort Η ταξινόμηση φυσαλίδας προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 7, 9, 18 16, 22, 7, 11, 9, 18 16, 7, 22, 11, 9, 18 7, 16, 22, 11, 9, 18 7, 16, 22, 9, 11, 18 7, 16, 9, 22, 11, 18 7, 9, 16, 22, 11, 18 7, 9, 16, 11, 22, / 17

37 Παράδειγμα εκτέλεσης του αλγορίθμου bubble_sort Η ταξινόμηση φυσαλίδας προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 7, 9, 18 16, 22, 7, 11, 9, 18 16, 7, 22, 11, 9, 18 7, 16, 22, 11, 9, 18 7, 16, 22, 9, 11, 18 7, 16, 9, 22, 11, 18 7, 9, 16, 22, 11, 18 7, 9, 16, 11, 22, 18 7, 9, 11,16, 22, / 17

38 Παράδειγμα εκτέλεσης του αλγορίθμου bubble_sort Η ταξινόμηση φυσαλίδας προχωρά ως εξής: 16, 22, 11, 9, 7, 18 16, 22, 11, 7, 9, 18 16, 22, 7, 11, 9, 18 16, 7, 22, 11, 9, 18 7, 16, 22, 11, 9, 18 7, 16, 22, 9, 11, 18 7, 16, 9, 22, 11, 18 7, 9, 16, 22, 11, 18 7, 9, 16, 11, 22, 18 7, 9, 11,16, 22, 18 7, 9, 11,16, 18, / 17

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 17 Σωροί (Heaps) έκδοση 10 1 / 19 Heap Σωρός Ο σωρός είναι μια μερικά ταξινομημένη δομή δεδομένων που υποστηρίζει

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 3: Ασυμπτωτικός συμβολισμός Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Ταξινόμηση. 1. Ταξινόμηση με Εισαγωγή 2. Ταξινόμηση με Επιλογή. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση. Ταξινόμηση με Εισαγωγή. Ταξινόμηση με Επιλογή Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Ταξινόμηση Η ταξινόμηση sortg τοποθετεί ένα σύνολο κόμβων ή εγγραφών σε μία συγκεκριμένη διάταξη

Διαβάστε περισσότερα

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου;

Α Ν Α Λ Τ Η Α Λ Γ Ο Ρ Ι Θ Μ Ω Ν Κ Ε Υ Α Λ Α Ι Ο 5. Πως υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 5.1 Επίδοση αλγορίθμων Μέχρι τώρα έχουμε γνωρίσει διάφορους αλγόριθμους (αναζήτησης, ταξινόμησης, κ.α.). Στο σημείο αυτό θα παρουσιάσουμε ένα τρόπο εκτίμησης της επίδοσης (performance) η της αποδοτικότητας

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ταξινόμηση. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Ταξινόμηση Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Το πρόβλημα Είσοδος n αντικείμενα a 1, a 2,..., a n με κλειδιά (συνήθως σε ένα πίνακα, ή λίστα, κ.τ.λ)

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra

Διαβάστε περισσότερα

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1

Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Quicksort 1 Quicksort [Hoare, 62] Στοιχείο διαχωρισµού (pivot), π.χ. πρώτο, τυχαίο, Αναδιάταξη και διαίρεση εισόδου σε δύο υπο-ακολουθίες:

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012

Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012 Πανεπιστήμιο Ιωαννίνων Τμήμα Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2012 Ενδεικτικές απαντήσεις 1 ου σετ ασκήσεων. Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του χρόνου εκτέλεσης τριών

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Ανάλυση Αλγορίθμων Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ανάλυση Αλγορίθμων Η ανάλυση αλγορίθμων περιλαμβάνει τη διερεύνηση του τρόπου

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 22 Counting sort, bucket sort και radix sort 1 / 16 Ιδιότητες αλγορίθμων ταξινόμησης ευστάθεια (stable

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 14 Στοίβες 1 / 14 Στοίβες Η στοίβα είναι μια ειδική περίπτωση γραμμικής λίστας στην οποία οι εισαγωγές

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 1: Εισαγωγή Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013

Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013 Πανεπιστήμιο Ιωαννίνων Τμήμα Μηχανικών Η/Υ και Πληροφορικής Δομές Δεδομένων [ΠΛΥ302] Χειμερινό Εξάμηνο 2013 Λυμένες Ασκήσεις Σετ Α: Ανάλυση Αλγορίθμων Άσκηση 1 Πραγματοποιήσαμε μια σειρά μετρήσεων του

Διαβάστε περισσότερα

Πληροφορική 2. Αλγόριθμοι

Πληροφορική 2. Αλγόριθμοι Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται

Διαβάστε περισσότερα

3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή

3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ. n! = 1*2*3*..(n-1)*n. n! = 1 αν n = 0, = n*(n-1)! αν n > ΑΝΑ ΡΟΜΗ Εισαγωγή 3 ΑΝΑ ΡΟΜΗ ΑΝΑΖΗΤΗΣΗ - ΤΑΞΙΝΟΜΗΣΗ 3.1 ΑΝΑ ΡΟΜΗ 3.1.1 Εισαγωγή ΕΦΑΡΜΟΣΜΕΝΗ ΠΛΗΡΟΦΟΡΙΚΗ ΙΙ Αναδροµή είναι η µέθοδος κατά την οποία, σε µία γλώσσα προγραµµατισµού, µία διαδικασία ή συνάρτηση έχει την δυνατότητα

Διαβάστε περισσότερα

Εργαστηριακή Άσκηση 1

Εργαστηριακή Άσκηση 1 Εργαστηριακή Άσκηση 1 Επανάληψη προγραμματισμού Βασικοί Αλγόριθμοι Είσοδος τιμών από το πληκτρολόγιο Σε όλα τα προγράμματα που θα γράψουμε στην συνέχεια του εξαμήνου θα χρειαστεί να εισάγουμε τιμές σε

Διαβάστε περισσότερα

Δοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης

Δοµές Δεδοµένων. 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι. Ε. Μαρκάκης Δοµές Δεδοµένων 9η Διάλεξη Ταξινόµηση - Στοιχειώδεις µέθοδοι Ε. Μαρκάκης Περίληψη Bubble Sort Selection Sort Insertion Sort Χαρακτηριστικά επιδόσεων Shellsort Ταξινόµηση συνδεδεµένων λιστών Δοµές Δεδοµένων

Διαβάστε περισσότερα

Ουρά Προτεραιότητας (priority queue)

Ουρά Προτεραιότητας (priority queue) Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει δύο βασικές λειτουργίες : Εισαγωγή στοιχείου με δεδομένο κλειδί. Επιστροφή ενός στοιχείου με μέγιστο (ή ελάχιστο) κλειδί και διαγραφή

Διαβάστε περισσότερα

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου

Ανάλυση αλγορίθμων. Χρόνος εκτέλεσης: Αναμενόμενη περίπτωση. - απαιτεί γνώση της κατανομής εισόδου Ανάλυση αλγορίθμων Παράμετροι απόδοσης ενός αλγόριθμου: Χρόνος εκτέλεσης Απαιτούμενοι πόροι, π.χ. μνήμη, επικοινωνία (π.χ. σε κατανεμημένα συστήματα) Προσπάθεια υλοποίησης Ανάλυση της απόδοσης Θεωρητική

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 3 Αλγόριθμοι Επιλογής Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Αλγόριθμοι Επιλογής Γνωρίζουμε

Διαβάστε περισσότερα

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα Αλγόριθµοι και Πολυπλοκότητα Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Πρόβληµα, Στιγµιότυπο, Αλγόριθµος Εργαλεία εκτίµησης πολυπλοκότητας: οι τάξεις Ο(n), Ω(n), Θ(n) Ανάλυση Πολυπλοκότητας Αλγορίθµων

Διαβάστε περισσότερα

Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3)

Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) Εισαγωγή στην Ανάλυση Αλγορίθμων (2-3) 3.1 Ασυμπτωτικός συμβολισμός (Ι) Οι ορισμοί που ακολουθούν μας επιτρέπουν να επιχειρηματολογούμε με ακρίβεια για την ασυμπτωτική συμπεριφορά. Οι f(n) και g(n) συμβολίζουν

Διαβάστε περισσότερα

ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

ΠΛΗ111. Ανοιξη Μάθηµα 9 ο. Ταξινόµηση. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 9 ο Ταξινόµηση Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Ταξινόµηση Εισαγωγή Selection sort Insertion sort Bubble sort

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2. Ε. Μαρκάκης Επικ. Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Αρχές Ανάλυσης Αλγορίθµων Κεφάλαιο 2 Ε. Μαρκάκης Επικ. Καθηγητής Περίληψη Εµπειρική ανάλυση αλγορίθµων Μαθηµατική ανάλυση αλγορίθµων Αύξηση συναρτήσεων Συµβολισµός µεγάλου όµικρον Παραδείγµατα

Διαβάστε περισσότερα

Διάλεξη 2η: Αλγόριθμοι και Προγράμματα

Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Διάλεξη 2η: Αλγόριθμοι και Προγράμματα Τμήμα Επιστήμης Υπολογιστών, Πανεπιστήμιο Κρήτης Εισαγωγή στην Επιστήμη Υπολογιστών Βασίζεται σε διαφάνειες του Κ Παναγιωτάκη Πρατικάκης (CSD) Αλγόριθμοι και Προγράμματα

Διαβάστε περισσότερα

Διαδικασιακός Προγραμματισμός

Διαδικασιακός Προγραμματισμός Τμήμα ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ Διαδικασιακός Προγραμματισμός Διάλεξη 12 η Αναζήτηση/Ταξινόμηση Πίνακα Οι διαλέξεις βασίζονται στο βιβλίο των Τσελίκη και Τσελίκα C: Από τη Θεωρία στην

Διαβάστε περισσότερα

Ερώτημα Α 1. Να γράψετε τις εντολές που πραγματοποιούν τα ακόλουθα:

Ερώτημα Α 1. Να γράψετε τις εντολές που πραγματοποιούν τα ακόλουθα: #2 Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Σχολή Τεχνολογικών Εφαρμογών Ακαδημαϊκό έτος 2016-2017 ΤΕΙ Ηπείρου - Άρτα Δομές Δεδομένων και Αλγόριθμοι (εργαστήριο) Γκόγκος Χρήστος Ερώτημα Α 1. Να γράψετε τις εντολές

Διαβάστε περισσότερα

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και

εισαγωγικές έννοιες Παύλος Εφραιμίδης Δομές Δεδομένων και Παύλος Εφραιμίδης 1 περιεχόμενα ενθετική ταξινόμηση ανάλυση αλγορίθμων σχεδίαση αλγορίθμων 2 ενθετική ταξινόμηση 3 ενθετική ταξινόμηση Βασική αρχή: Επιλέγει ένα-έναταστοιχείατηςμηταξινομημένης ακολουθίας

Διαβάστε περισσότερα

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές

Τι είναι αλγόριθμος; Υποπρογράμματα (υποαλγόριθμοι) Βασικές αλγοριθμικές δομές Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2015-16 Αλγόριθμοι και Δομές Δεδομένων (Ι) (εισαγωγικές έννοιες) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης Τι είναι

Διαβάστε περισσότερα

Κεφάλαιο 5 Ανάλυση Αλγορίθμων

Κεφάλαιο 5 Ανάλυση Αλγορίθμων Κεφάλαιο 5 Ανάλυση Αλγορίθμων 5.1 Επίδοση αλγορίθμων Τα πρωταρχικά ερωτήματα που προκύπτουν είναι: 1. πώς υπολογίζεται ο χρόνος εκτέλεσης ενός αλγορίθμου; 2. πώς μπορούν να συγκριθούν μεταξύ τους οι διάφοροι

Διαβάστε περισσότερα

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης

ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων. Λουκάς Γεωργιάδης ΠΛΕ075: Προηγμένη Σχεδίαση Αλγορίθμων και Δομών Δεδομένων Λουκάς Γεωργιάδης loukas@cs.uoi.gr www.cs.uoi.gr/~loukas Βασικές έννοιες και εφαρμογές Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου, Τμήμα Μηχανικών Πληροφορικής ΤΕ Χειμερινό Εξάμηνο 2014-2015 (Παρουσίαση 6) 1 / 20 Ρυθμοί αύξησης Γραμμικός ρυθμός αύξησης: n, 2n, Πολυωνυμικός

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο. Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΣΙΝΑΤΚΑΣ Ι. ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΜΑΘΗΜΑ 8 Ο Ταξινόμηση και Αναζήτηση Συναρτήσεις χειρισμού οθόνης ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ 2010-11 1 Εισαγωγή Η τακτοποίηση των δεδομένων με ιδιαίτερη σειρά είναι πολύ σημαντική λειτουργία που ονομάζεται

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα Φώτης Ε. Ψωμόπουλος, Περικλής Α. Μήτκας

Αλγόριθμοι και Πολυπλοκότητα Φώτης Ε. Ψωμόπουλος, Περικλής Α. Μήτκας ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Τομέας Ηλεκτρονικής και Υπολογιστών Εργαστήριο Επεξεργασίας Πληροφορίας και Υπολογισμών Καθηγητής: Περικλής

Διαβάστε περισσότερα

5.1. Προσδοκώμενα αποτελέσματα

5.1. Προσδοκώμενα αποτελέσματα 5.1. Προσδοκώμενα αποτελέσματα Όταν θα έχεις ολοκληρώσει τη μελέτη αυτού του κεφαλαίου θα έχεις κατανοήσει τις τεχνικές ανάλυσης των αλγορίθμων, θα μπορείς να μετράς την επίδοση των αλγορίθμων με βάση

Διαβάστε περισσότερα

Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Ορθότητα Χωρική αποδοτικότητα. Βελτιστότητα. Θεωρητική ανάλυση Εμπειρική ανάλυση. Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Ανάλυση Αλγορίθμων Θέματα Θέματα: Ορθότητα Χρονική αποδοτικότητα Χωρική αποδοτικότητα Βελτιστότητα Προσεγγίσεις: Θεωρητική ανάλυση Εμπειρική ανάλυση Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Θεωρητική

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 2 : Αλγόριθμοι. Δρ. Γκόγκος Χρήστος

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Πληροφορική II. Ενότητα 2 : Αλγόριθμοι. Δρ. Γκόγκος Χρήστος 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Πληροφορική II Ενότητα 2 : Αλγόριθμοι Δρ. Γκόγκος Χρήστος 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Χρηματοοικονομικής & Ελεγκτικής

Διαβάστε περισσότερα

Εργαστήριο 2: Πίνακες

Εργαστήριο 2: Πίνακες Εργαστήριο 2: Πίνακες Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Επεξεργασία Πινάκων - Υλοποίηση της Δυαδικής Αναζήτησης σε πίνακες - Υλοποίηση της Ταξινόμησης με Επιλογής σε πίνακες ΕΠΛ035

Διαβάστε περισσότερα

Ουρά Προτεραιότητας (priority queue)

Ουρά Προτεραιότητας (priority queue) Ουρά Προτεραιότητας (priority queue) Δομή δεδομένων που υποστηρίζει τις ακόλουθες λειτουργίες PQinsert : εισαγωγή στοιχείου PQdelmax : επιστροφή του στοιχείου με το μεγαλύτερο* κλειδί και διαγραφή του

Διαβάστε περισσότερα

Αναζήτηση και ταξινόμηση

Αναζήτηση και ταξινόμηση Αναζήτηση και ταξινόμηση Περιεχόμενα Αναζήτηση (searching): εύρεση ενός στοιχείου σε έναν πίνακα Ταξινόμηση (sorting): αναδιάταξη των στοιχείων ενός πίνακα ώστε να είναι τοποθετημένα με μια καθορισμένη

Διαβάστε περισσότερα

Αναδρομικοί Αλγόριθμοι

Αναδρομικοί Αλγόριθμοι Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας ένα ή περισσότερα στιγμιότυπα του ίδιου προβλήματος. Αναδρομικός αλγόριθμος (recursive algorithm) Επιλύει ένα πρόβλημα λύνοντας

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 3 1. Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή 2. Δυναμικές είναι οι δομές που αποθηκεύονται σε συνεχόμενες θέσεις μνήμης 3. Ένας πίνακας

Διαβάστε περισσότερα

int Α[] = {4, 16, 22, 12, 9, 15, 10}; { 4, 9, 10, 12, 15, 16, 22 } Α[0]=4, Α[1]=9, Α[2]=10 { 4, 16,22, 12, 9, 15, 10} { 4, 12, 16, 22, 9, 15,16, 22 }

int Α[] = {4, 16, 22, 12, 9, 15, 10}; { 4, 9, 10, 12, 15, 16, 22 } Α[0]=4, Α[1]=9, Α[2]=10 { 4, 16,22, 12, 9, 15, 10} { 4, 12, 16, 22, 9, 15,16, 22 } ΤΑΞΙΝΟΜΗΣΗ- ΑΣΚΗΣΕΙΣ Οι μέθοδοι ταξινόμησης INSERTION, SELECTION και BUBBLE SORT με την ολοκλήρωσή τους θα έχουν σε κάθε θέση του πίνακα το σωστό στοιχείο x (ταξινόμηση με αύξουσα σειρά δηλ. στην θέση

Διαβάστε περισσότερα

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του

Διαβάστε περισσότερα

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Προγραμματισμός Ι. Ενότητα 8 : Πίνακες IΙ. Αλέξανδρος Τζάλλας

Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου. Προγραμματισμός Ι. Ενότητα 8 : Πίνακες IΙ. Αλέξανδρος Τζάλλας 1 Ελληνική Δημοκρατία Τεχνολογικό Εκπαιδευτικό Ίδρυμα Ηπείρου Προγραμματισμός Ι Ενότητα 8 : Πίνακες IΙ Αλέξανδρος Τζάλλας 2 Ανοιχτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ηπείρου Τμήμα Μηχανικών Πληροφορικής Τ.Ε

Διαβάστε περισσότερα

Ταξινόμηση. Παύλος Εφραιμίδης. Δομές Δεδομένων Ταξινόμηση 1

Ταξινόμηση. Παύλος Εφραιμίδης. Δομές Δεδομένων Ταξινόμηση 1 Ταξινόμηση Παύλος Εφραιμίδης Δομές Δεδομένων Ταξινόμηση 1 Το πρόβλημα της ταξινόμησης Δομές Δεδομένων Ταξινόμηση 2 Ταξινόμηση Δίνεται πολυ-σύνολο Σ με στοιχεία από κάποιο σύμπαν U (πχ. U = το σύνολο των

Διαβάστε περισσότερα

Δομές Δεδομένων. Ενότητα 1 - Εισαγωγή. Χρήστος Γκουμόπουλος. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων

Δομές Δεδομένων. Ενότητα 1 - Εισαγωγή. Χρήστος Γκουμόπουλος. Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Δομές Δεδομένων Ενότητα 1 - Εισαγωγή Χρήστος Γκουμόπουλος Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Αντικείμενο μαθήματος Δομές Δεδομένων (ΔΔ): Στην επιστήμη υπολογιστών

Διαβάστε περισσότερα

ΗΥ240: οµές εδοµένων

ΗΥ240: οµές εδοµένων ΗΥ240: οµές εδοµένων ιδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθηµα 2ου έτους Τµήµα Επιστήµης Υπολογιστών Πανεπιστήµιο Κρήτης Ενότητα 1 Εισαγωγή ΗΥ240 - Παναγιώτα Φατούρου 2 Εισαγωγικά Θέµατα Αντικείµενο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΘΕΩΡΗΤΙΚΗ ΑΣΚΗΣΗ 2 ΛΥΣΕΙΣ Γραμμικές Δομές Δεδομένων, Ταξινόμηση Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου

Διαβάστε περισσότερα

Αναδρομή Ανάλυση Αλγορίθμων

Αναδρομή Ανάλυση Αλγορίθμων Αναδρομή Ανάλυση Αλγορίθμων Παράδειγμα: Υπολογισμός του παραγοντικού Ορισμός του n! n! = n x (n - 1) x x 2 x 1 Ο παραπάνω ορισμός μπορεί να γραφεί ως n! = 1 αν n = 0 n x (n -1)! αλλιώς Παράδειγμα (συνέχ).

Διαβάστε περισσότερα

Εισαγωγή στον Προγραμματισμό

Εισαγωγή στον Προγραμματισμό Εισαγωγή στον Προγραμματισμό Ενότητα 6 Πίνακες Πανεπιστήμιο Αιγαίου Τμήμα Μηχανικών Πληροφοριακών και Επικοινωνιακών Συστημάτων Τύπος πίνακα (array) Σύνθετος τύπος δεδομένων Αναπαριστά ένα σύνολο ομοειδών

Διαβάστε περισσότερα

ΗΥ240 - Παναγιώτα Φατούρου 2

ΗΥ240 - Παναγιώτα Φατούρου 2 Ενότητα 8 Ταξινόµηση ΗΥ0 - Παναγιώτα Φατούρου Ταξινόµηση Θεωρούµε έναν πίνακα Α[0..n-] µε n στοιχεία στα οποία έχει ορισθεί µια γραµµική διάταξη, δηλαδή ζεύγος στοιχείων x,y του Α, είτε x < y, ή x > y

Διαβάστε περισσότερα

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Η διαδικασία PercolateDown, Δημιουργία Σωρού O Αλγόριθμος Ταξινόμησης HeapSort Υλοποίηση, Παραδείγματα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 035: οµές εδοµένων και Αλγόριθµοι για Ηλεκτρολόγους Μηχανικούς και Μηχανικούς Υπολογιστών Ακαδηµαϊκό έτος 2010 2011, Χειµερινό εξάµηνο Παρασκευή - 17/12/10 (08:30-11:30)

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ 2 ο ΣΕΤ ΑΣΚΗΣΕΩΝ Οι ασκήσεις αυτού του φυλλαδίου καλύπτουν τα παρακάτω θέματα: Συναρτήσεις (κεφάλαιο Functions)

Διαβάστε περισσότερα

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ AM: Δοµές Δεδοµένων Πτυχιακή Εξεταστική Ιούλιος 2014 Διδάσκων : Ευάγγελος Μαρκάκης 09.07.2014 ΥΠΟΓΡΑΦΗ ΕΠΟΠΤΗ: Διάρκεια εξέτασης : 2 ώρες

Διαβάστε περισσότερα

Ανάλυση Αλγορίθµων. Σύντοµη επανάληψη (ΕΠΛ 035).

Ανάλυση Αλγορίθµων. Σύντοµη επανάληψη (ΕΠΛ 035). Ανάλυση Αλγορίθµων Σύντοµη επανάληψη (ΕΠΛ 035). Περίληψη Ανάλυση αλγορίθµων Ο, Θ, Ω Ανάλυση µη αναδροµικών αλγόριθµων Ανάλυση αναδροµικών αλγόριθµων Εµπειρική Ανάλυση Visualization Απόδοση Αλγορίθµων Απόδοση

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2014-2015 Επιμέλεια: Ομάδα Διαγωνισμάτων από το Στέκι των Πληροφορικών Θέμα Α Α1. α. Να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

ΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ

ΑΛΓΟΡΙΘΜΟΙ  Άνοιξη I. ΜΗΛΗΣ ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2016 - I. ΜΗΛΗΣ ΠΑΡΑΔΕΙΓΜΑΤΑ ΑΛΓΟΡΙΘΜΩΝ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑΣ ΑΛΓΟΡΙΘΜΟΙ - ΑΝΟΙΞΗ 2016 - Ι. ΜΗΛΗΣ - 03 - EXAMPLES ALG & COMPL 1 Example: GCD συνάρτηση

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Αποτελεσματικότητα αλγορίθμων

ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Αποτελεσματικότητα αλγορίθμων ΠΛΗΡΟΦΟΡΙΚΗ Ι Ενότητα 6: Αποτελεσματικότητα αλγορίθμων Μιχάλης Δρακόπουλος Σχολή Θετικών επιστημών Τμήμα Μαθηματικών Αποτελεσµατικότητα αλγορίθµων 127 Αποτελεσµατικότητα αλγορίθµων Ενας σωστός αλγόριθµος

Διαβάστε περισσότερα

Σχεδίαση & Ανάλυση Αλγορίθμων

Σχεδίαση & Ανάλυση Αλγορίθμων Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 1 Αλγόριθμοι και Πολυπλοκότητα Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Εισαγωγή Ας ξεκινήσουμε

Διαβάστε περισσότερα

ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ

ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ ΤΕΙ ΙΟΝΙΩΝ ΝΗΣΩΝ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ - ΕΙΣ. ΚΑΤΕΥΘΥΝΣΗ ΔΙΟΙΚΗΣΗΣ ΤΟΥΡΙΣΤΙΚΩΝ ΕΠΙΧΕΙΡΗΣΕΩΝ ΚΑΙ ΕΠΙΧΕΙΡΗΣΕΩΝ ΦΙΛΟΞΕΝΙΑΣ Πληροφορική I "Προγραμματισμός" B. Φερεντίνος

Διαβάστε περισσότερα

ΗΥ240 - Παναγιώτα Φατούρου 2

ΗΥ240 - Παναγιώτα Φατούρου 2 Ενότητα 9 Ταξινόµηση ΗΥ0 - Παναγιώτα Φατούρου Ταξινόµηση Θεωρούµε έναν πίνακα Α[0..n-] µε n στοιχεία στα οποία έχει ορισθεί µια γραµµική διάταξη, δηλαδή ζεύγος στοιχείων x,y του Α, είτε x < y, ή x > y

Διαβάστε περισσότερα

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η

Έστω ένας πίνακας με όνομα Α δέκα θέσεων : 1 η 2 η 3 η 4 η 5 η 6 η 7 η 8 η 9 η 10 η Μονοδιάστατοι Πίνακες Τι είναι ο πίνακας γενικά : Πίνακας είναι μια Στατική Δομή Δεδομένων. Δηλαδή συνεχόμενες θέσεις μνήμης, όπου το πλήθος των θέσεων είναι συγκεκριμένο. Στις θέσεις αυτές καταχωρούμε

Διαβάστε περισσότερα

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο ιαίρει-και-βασίλευε Γενική μέθοδος σχεδιασμού αλγορίθμων: ιαίρεση σε ( 2) υποπροβλήματα

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος εδοµένα οµές δεδοµένων και αλγόριθµοι Τα δεδοµένα είναι ακατέργαστα γεγονότα. Η συλλογή των ακατέργαστων δεδοµένων και ο συσχετισµός τους δίνει ως αποτέλεσµα την πληροφορία. Η µέτρηση, η κωδικοποίηση,

Διαβάστε περισσότερα

#4. Heaps (σωροί), η ταξινόμηση HeapSort, η δομή std::priority_queue της STL

#4. Heaps (σωροί), η ταξινόμηση HeapSort, η δομή std::priority_queue της STL Τμήμα Μηχανικών Πληροφορικής Τ.Ε. Σχολή Τεχνολογικών Εφαρμογών Ακαδημαϊκό έτος 2016-2017 ΤΕΙ Ηπείρου - Άρτα Δομές Δεδομένων και Αλγόριθμοι (εργαστήριο) Γκόγκος Χρήστος #4. Heaps (σωροί), η ταξινόμηση HeapSort,

Διαβάστε περισσότερα

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Όρια Αλγόριθμων Ταξινόμησης. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Όρια Αλγόριθμων Ταξινόμησης Μέχρι στιγμής εξετάσθηκαν μέθοδοι ταξινόμησης µε πολυπλοκότητα της τάξης Θ ) ή Θlog ). Τι εκφράζει

Διαβάστε περισσότερα

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος

Εισαγωγή στους Αλγόριθµους. Αλγόριθµοι. Ιστορικά Στοιχεία. Ο πρώτος Αλγόριθµος. Παραδείγµατα Αλγορίθµων. Τι είναι Αλγόριθµος Εισαγωγή στους Αλγόριθµους Αλγόριθµοι Τι είναι αλγόριθµος; Τι µπορεί να υπολογίσει ένας αλγόριθµος; Πως αξιολογείται ένας αλγόριθµος; Παύλος Εφραιµίδης pefraimi@ee.duth.gr Αλγόριθµοι Εισαγωγικές Έννοιες

Διαβάστε περισσότερα

ιαφάνειες παρουσίασης #4

ιαφάνειες παρουσίασης #4 ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΕΣ ΤΕΧΝΙΚΕΣ http://www.softlab.ntua.gr/~nickie/courses/progtech/ ιδάσκοντες: Γιάννης Μαΐστρος (maistros@cs.ntua.gr) Στάθης Ζάχος (zachos@cs.ntua.gr) (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης

Διαβάστε περισσότερα

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.:

ΠΡΟΣ: Τηλέφωνο: 210-3443422 Ινστιτούτο Εκπαιδευτικής Πολιτικής ΚΟΙΝ.: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- Βαθμός Ασφαλείας: Να διατηρηθεί μέχρι: Βαθ. Προτεραιότητας: ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ,

Διαβάστε περισσότερα

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 2. Πίνακες 45 23 28 95 71 19 30 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 21/10/2016

Διαβάστε περισσότερα

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find)

Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης (Union-Find) Ενότητα 9 Ξένα Σύνολα που υποστηρίζουν τη (Union-Find) ΗΥ240 - Παναγιώτα Φατούρου 1 Ξένα Σύνολα που υποστηρίζουν τη λειτουργία της Ένωσης Έστω ότι S 1,, S k είναι ξένα υποσύνολα ενός συνόλου U, δηλαδή

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 6α: Αναζήτηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commos. Για εκπαιδευτικό

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 1η: Εισαγωγή Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 1η: Εισαγωγή Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 1η: Εισαγωγή Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ240: Δομές Δεδομένων Διδάσκουσα: Παναγιώτα Φατούρου Υποχρεωτικό Μάθημα 2ου

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Σ Β Σύνολο από προγράμματα για τη διαχείριση της Β Επεξεργασία Ερωτήσεων Αρχεία ευρετηρίου Κατάλογος συστήματος Αρχεία δεδομένων ΒΑΣΗ Ε ΟΜΕΝΩΝ Σύστημα Βάσεων εδομένων (ΣΒ ) Βάσεις Δεδομένων 2007-2008

Διαβάστε περισσότερα

Δομές Δεδομένων (Data Structures)

Δομές Δεδομένων (Data Structures) Δομές Δεδομένων (Data Structures) Ανάλυση - Απόδοση Αλγορίθμων Έλεγχος Αλγορίθμων. Απόδοση Προγραμμάτων. Χωρική/Χρονική Πολυπλοκότητα. Ασυμπτωτικός Συμβολισμός. Παραδείγματα. Αλγόριθμοι: Βασικές Έννοιες

Διαβάστε περισσότερα

Ταξινόμηση. Σαλτογιάννη Αθανασία

Ταξινόμηση. Σαλτογιάννη Αθανασία Ταξινόμηση Σαλτογιάννη Αθανασία Ταξινόμηση Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ταξινόμηση Τι εννοούμε όταν λέμε ταξινόμηση; Ποια είδη αλγορίθμων ταξινόμησης υπάρχουν; Ταξινόμηση Τι εννοούμε όταν

Διαβάστε περισσότερα

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Αναζήτηση. 1. Σειριακή αναζήτηση 2. Δυαδική Αναζήτηση. Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Αναζήτηση. Σειριακή αναζήτηση. Δυαδική Αναζήτηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Παραδοχή Στη συνέχεια των διαφανειών (διαλέξεων) η ασυμπτωτική έκφραση (συμβολισμός Ο, Ω, Θ) του χρόνου

Διαβάστε περισσότερα

Για τις λύσεις των προβλημάτων υπάρχει τρόπος εκτίμησης της επίδοσης (performance) και της αποδοτικότητας (efficiency). Ερωτήματα για την επίδοση

Για τις λύσεις των προβλημάτων υπάρχει τρόπος εκτίμησης της επίδοσης (performance) και της αποδοτικότητας (efficiency). Ερωτήματα για την επίδοση Επίδοση Αλγορίθμων Για τις λύσεις των προβλημάτων υπάρχει τρόπος εκτίμησης της επίδοσης (performance) και της αποδοτικότητας (efficiency). Ερωτήματα για την επίδοση πώς υπολογίζεται ο χρόνος εκτέλεσης

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Γ Τάξη ΓΕ.Λ.

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Γ Τάξη ΓΕ.Λ. ΥΠΟΥΡΓΕΙΟ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Κωτσάκης Σ., Ταταράκη Α. ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ Τάξη ΓΕ.Λ. ΠΑΡΑΡΤΗΜΑ Α ΟΔΗΓΙΕΣ ΜΕΛΕΤΗΣ ΜΑΘΗΤΗ

Διαβάστε περισσότερα

Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο

Επιλογή. ημήτρης Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών. Εθνικό Μετσόβιο Πολυτεχνείο Επιλογή ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Πρόβλημα Επιλογής Πίνακας Α[]με n στοιχεία (όχι ταξινομημένος). Αριθμός k, 1 k n. Υπολογισμός

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Μέρος 4ο ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 1 ΟΙ ΤΕΛΕΣΤΕΣ ΣΥΓΚΡΙΣΗΣ Με τους τελεστές σύγκρισης, συγκρίνουμε τις

Διαβάστε περισσότερα

Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση

Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση Προγραµµατισµός 1 Ταξινόµηση - Αναζήτηση 1 Ταξινόµηση! Δεδοµένα: Δίνεται ένας πίνακας data από N ακεραίους! Ζητούµενο: Να ταξινοµηθούν τα περιεχόµενα σε αύξουσα αριθµητική σειρά:!i : 0 data[i]

Διαβάστε περισσότερα

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ

ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Οικονοµικό Πανεπιστήµιο Αθηνών Τµήµα ιοικητικής Επιστήµης & Τεχνολογίας ΠΛΗΡΟΦΟΡΙΑΚΑ & ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ Κεφάλαιο 8 Προχωρηµένα Θέµατα Προγραµµατισµού C Γιώργος Γιαγλής Περίληψη Κεφαλαίου 8 Προχωρηµένα

Διαβάστε περισσότερα

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C

Εισαγωγή στην C. Μορφή Προγράµµατος σε γλώσσα C Εισαγωγή στην C Μορφή Προγράµµατος σε γλώσσα C Τµήµα Α Με την εντολή include συµπεριλαµβάνω στο πρόγραµµα τα πρότυπα των συναρτήσεων εισόδου/εξόδου της C.Το αρχείο κεφαλίδας stdio.h είναι ένας κατάλογος

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

Επεξεργασία Ερωτήσεων

Επεξεργασία Ερωτήσεων Εισαγωγή Επεξεργασία Ερωτήσεων ΜΕΡΟΣ 1 Γενική Εικόνα του Μαθήματος 1. Μοντελοποίηση (Μοντέλο Ο/Σ, Σχεσιακό, Λογικός Σχεδιασμός) 2. Προγραμματισμός (Σχεσιακή Άλγεβρα, SQL) ημιουργία/κατασκευή Εισαγωγή εδομένων

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ 20-03-2012 Α. ίνεται το παρακάτω τμήμα αλγόριθμου: Ψευδής Αν Ε mod 4 = 0 τότε Αληθής Αν Ε mod 100 = 0 τότε Ψευδής Αν Ε

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΥΠΟΛΟΓΙΣΤΩΝ & ΥΠΟΛΟΓΙΣΤΙΚΗ ΦΥΣΙΚΗ Μέρος 5ο ΝΙΚΟΛΑΟΣ ΣΤΕΡΓΙΟΥΛΑΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ 1 Η ΕΝΤΟΛΗ for Με την εντολή for δημιουργούμε βρόχους επανάληψης σε

Διαβάστε περισσότερα

Δομές Δεδομένων. Λουκάς Γεωργιάδης.

Δομές Δεδομένων. Λουκάς Γεωργιάδης. Δομές Δεδομένων http://www.cs.uoi.gr/~loukas/courses/data_structures/ Λουκάς Γεωργιάδης email: loukas@cs.uoi.gr Αλγόριθμος: Μέθοδος για την επίλυση ενός προβλήματος Δομή Δεδομένων: Μέθοδος αποθήκευσης

Διαβάστε περισσότερα

Δομές δεδομένων (2) Αλγόριθμοι

Δομές δεδομένων (2) Αλγόριθμοι Δομές δεδομένων (2) Αλγόριθμοι Παράγωγοι τύποι (struct) σύνοψη προηγουμένων Πίνακες: πολλές μεταβλητές ίδιου τύπου Παράγωγοι τύποι ή Δομές (struct): ομαδοποίηση μεταβλητών διαφορετικού τύπου struct Student

Διαβάστε περισσότερα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα Αλγόριθμοι και Πολυπλοκότητα Διαίρει και Βασίλευε Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Διαίρει και Βασίλευε Divide and Conquer Η τεχνική διαίρει και βασίλευε αναφέρεται

Διαβάστε περισσότερα

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Μάθημα 7ο Τμήμα Διοίκησης Επιχειρήσεων Παλαιό ΕΠΔΟ α εξάμηνο Β. Φερεντίνος Δείκτες (Pointers) (1) 142 Κάθε μεταβλητή, εκτός από την τιμή της, έχει και μία συγκεκριμένη διεύθυνση

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Ταξινόµηση Mergesort Κεφάλαιο 8. Ε. Μαρκάκης Επίκουρος Καθηγητής ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Ταξινόµηση Mergesort Κεφάλαιο 8 Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Ταξινόµηση µε συγχώνευση Αλγόριθµος Mergesort Διµερής συγχώνευση Αφηρηµένη επιτόπου συγχώνευση Αναλυτική ταξινόµηση

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΙΝΣΤΙΤΟΥΤΟ ΕΚΠΑΙΔΕΥΤΙΚΗΣ ΠΟΛΙΤΙΚΗΣ Γώγουλος Γ., Κοτσιφάκης Γ., Κυριακάκη Γ., Παπαγιάννης Α., Φραγκονικολάκης Μ., Χίνου Π. ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ

Διαβάστε περισσότερα

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1

Εισαγωγή στην Επεξεργασία Ερωτήσεων. Βάσεις Δεδομένων Ευαγγελία Πιτουρά 1 Εισαγωγή στην Επεξεργασία Ερωτήσεων Βάσεις Δεδομένων 2013-2014 Ευαγγελία Πιτουρά 1 Επεξεργασία Ερωτήσεων Θα δούμε την «πορεία» μιας SQL ερώτησης (πως εκτελείται) Ερώτηση SQL Ερώτηση ΣΒΔ Αποτέλεσμα Βάσεις

Διαβάστε περισσότερα

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα.

Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Ας δούμε λίγο την θεωρία με την οποία ασχοληθήκαμε μέχρι τώρα. Είδαμε τι είναι πρόβλημα, τι είναι αλγόριθμος και τέλος τι είναι πρόγραμμα. Πρέπει να μπορείτε να ξεχωρίζετε αυτές τις έννοιες και να αντιλαμβάνεστε

Διαβάστε περισσότερα

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Εισαγωγή. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Δομές Δεδομένων Εισαγωγή Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Βιβλιογραφία Robert Sedgewick, Αλγόριθμοι σε C, Μέρη 1-4 (Θεμελιώδεις Έννοιες, Δομές Δεδομένων, Ταξινόμηση,

Διαβάστε περισσότερα

Ο αλγόριθμος Quick-Sort. 6/14/2007 3:42 AM Quick-Sort 1

Ο αλγόριθμος Quick-Sort. 6/14/2007 3:42 AM Quick-Sort 1 Ο αλγόριθμος Quick-Sort 7 4 9 6 2 2 4 6 7 9 4 2 2 4 7 9 7 9 2 2 9 9 6/14/2007 3:42 AM Quick-Sort 1 Κύρια σημεία για μελέτη Quick-sort ( 4.3) Αλγόριθμος Partition step Δέντρο Quick-sort Παράδειγμα εκτέλεσης

Διαβάστε περισσότερα