Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη"

Transcript

1 ΤΑΛΑΝΤΩΣΕΙΣ (µερικές σηµειώσεις...) Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη διεύθυνση της κίνησης, µέτρο ανάλογο της αποµάκρυνσης από τη θέση ισορροπίας και φορά αντίθετη της αποµάκρυνσης. ΣFx=-D.x (0) Η ΣFx ονοµάζεται και δύναµη επαναφοράς, και έχει κατεύθυνση πάντα προς τη θέση ισορροπίας. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΕΓΕΘΗ ΣΤΗ Γ.Α.Τ. Αποµάκρυνση x Πλάτος A Περίοδος Τ Συχνότητα f Κυκλική συχνότητα ω Φάση φ Τ=1/f f=1/τ ω=2πf=2π/τ φ=ωt+φο όπου φο η αρχική φάση ΕΞΙΣΩΣΕΙΣ Γ.Α.Τ. Οι εξισώσεις της Γ.Α.Τ. µπορούν να προκύψουν από τον κύκλο αναφοράς. Θεωρούµε ότι σώµα Σ µάζας m εκτελεί Ο.Κ.Κ. σε κύκλο ακτίνας A µε σταθερή γωνιακή ταχύτητα ω. Η προβολή Π του Σ σε µια διάµετρο του κύκλου, εκτελεί Γ.Α.Τ.. Αποµάκρυνσης Ταχύτητας επιτάχυνσης δύναµης x=aηµωt (1) u=uοσυνωt (2) a=-aοηµωt (3) F=-maοηµωt (4) u=ωaσυνωt a=-ω²aηµωt F=-mω²Aηµωt u=uοηµ(ωt+π/2) a=aοηµ(ωt+π) F=maοηµ(ωt+π) u=ωaηµ(ωt+π/2) a=ω²aηµ(ωt+π) F=mω²Aηµ(ωt+π) Οι παραπάνω σχέσεις ισχύουν όταν φο=0, δηλαδή όταν η αρχική φάση είναι µηδέν. Αν υπάρχει αρχική φάση, τότε πρέπει να την προσθέσουµε στη φάση ωt, οπότε οι παραπάνω σχέσεις παίρνουν τη µορφή: x=aηµ(ωt+φο) u=uοσυν(ωt+φο) a=-aοηµ(ωt+φο) F=-maοηµ(ωt+φο) Από τις παραπάνω σχέσεις παρατηρούµε ότι: Βαγγέλης Κολτσάκης Σελίδα 1 από 6

2 Η διαφορά φάσης ταχύτητας - αποµάκρυνσης είναι φ=π/2 Η διαφορά φάσης επιτάχυνσης - ταχύτητας είναι φ=π/2 Η διαφορά φάσης επιτάχυνσης -αποµάκρυνσης είναι φ=π Από τις (1) και (2) προκύπτει: u=±ω (A²-x²) (5) Από τις (2) και (3) προκύπτει: a=±ω (uο²-u²), (6) άρα και F=±mω (uο²-u²) (7) Από τις (1) και (3) προκύπτει: a=-ω²x Από τις (1) και (4) προκύπτει: F=-mω²x (8) Από τις (0) και (8) προκύπτει: D=mω² (9) Από την (9) προκύπτει: Τ=2π (m/d) (10) Η D ονοµάζεται σταθερά επαναφοράς (µονάδα µέτρησης: N/m). (Παρατηρούµε από την σχ. 10 ότι η περίοδος της Γ.Α.Τ. εξαρτάται από τη σταθερά επαναφοράς D και από τη µάζα m του ταλαντωτή, ενώ είναι ανεξάρτητη από το πλάτος A της ταλάντωσης). ΕΥΡΕΣΗ ΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΜΕΓΕΘΩΝ ΣΤΗΝ Γ.Α.Τ. Όταν γνωρίζουµε την εξίσωση της αποµάκρυνσης: αντιστοιχούµε την εξίσωση που µας δίνεται µε την γενική εξίσωση x=aηµ(ωt+φο). Αν η εξίσωση που έχουµε δεν έχει τέτοια µορφή, τη µετασχηµατίζουµε έτσι ώστε να πάρει τη µορφή αυτή. Με ανάλογο τρόπο δουλεύουµε όταν µας δίνεται όχι η εξίσωση της αποµάκρυνσης, αλλά η εξίσωση κάποιου άλλου χαρακτηριστικού µεγέθους (πχ ταχύτητας, επιτάχυνσης, δύναµης). ΕΛΕΓΧΟΣ ΚΑΙ ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΑΡΧΙΚΗΣ ΦΑΣΗΣ φο. Η αρχική φάση παίρνει τιµές 0 φο 2π. Πιθανώς να αναφέρεται άµεσα ή έµµεσα στην εκφώνηση αν υπάρχει αρχική φάση. Μπορούµε να διαπιστώσουµε ότι υπάρχει αρχική φάση και να την υπολογίσουµε, αν συµβαίνει ένα από τα ακόλουθα: Αναφέρεται άµεσα στην εκφώνηση ότι υπάρχει αρχική φάση. Η εξίσωση κάποιου χαρακτηριστικού µεγέθους σε συνάρτηση µε το χρόνο δεν έχει ακριβώς την ίδια µορφή µε τη γενική µορφή της εξίσωσης του µεγέθους αυτού. Βαγγέλης Κολτσάκης Σελίδα 2 από 6

3 Η αποµάκρυνση δεν είναι µηδέν τη χρονική στιγµή t=0. Στην περίπτωση αυτή µπορεί να δίνεται περιορισµός για κάποιο άλλο µέγεθος, ή ακόµη και κάποια στιγµιαία τιµή κάποιου άλλου µεγέθους. Η επιτάχυνση δεν είναι µηδέν τη χρονική στιγµή µηδέν. Η ταχύτητα δεν είναι µέγιστη τη χρονική στιγµή µηδέν. Η δυναµική ενέργεια του ταλαντωτή δεν είναι µηδέν τη χρονική στιγµή µηδέν. Η κινητική ενέργεια του ταλαντωτή δεν είναι µέγιστη τη χρονική στιγµή µηδέν. Μπορούµε να δουλέψουµε µε δυο τρόπους: α' τρόπος: µε τριγωνοµετρικές εξισώσεις Χρησιµοποιούµε την εξίσωση κάποιου µεγέθους που µας δίνεται η αλγεβρική του τιµή για τη χρονική στιγµή t=0. Προκύπτει έτσι µια τριγωνοµετρική εξίσωση, που µας δίνει όλες τις δυνατές τιµές της αρχικής φάσης φο. Συνήθως υπάρχουν και κάποιοι περιορισµοί (όπως πχ πρόσηµο κάποιου χαρακτηριστικού µεγέθους), τους οποίους λαµβάνουµε υπόψη. Απορρίπτουµε έτσι κάποιες από τις τιµές τις φο και βρίσκουµε µια δεκτή τιµή. Αν δεν υπάρχει περιορισµός για κάποιο άλλο µέγεθος, πρέπει να κάνουµε δεκτές όλες τις τιµές τις φο, και να δουλέψουµε στη συνέχει µε πάνω από µια περιπτώσεις. Μπορεί επίσης να δίνονται οι τιµές δυο χαρακτηριστικών µεγεθών για τη χρονική στιγµή t=0. ουλεύοντας όπως παραπάνω, βρίσκουµε τιµές για τη φο από δυο τριγωνοµετρικές εξισώσεις, οπότε δεκτή τιµή είναι αυτή για την οποία οι δυο εξισώσεις συναληθεύουν. β' τρόπος: µε τον κύκλο αναφοράς Μπορούµε να εφαρµόσουµε τα δεδοµένα στον κύκλο αναφοράς, ως εξής: από µια εξίσωση που µας δίνεται, τοποθετούµε όλες τις πιθανές φο στον κύκλο αναφοράς, και σε συνδυασµό µε τα υπόλοιπα δεδοµένα, απορρίπτουµε κάποιες από αυτές και βρίσκουµε µια δεκτή. ΕΝΕΡΓΕΙΑ ΣΤΗ Γ.Α.Τ. υναµική ενέργεια ταλάντωσης: U=1/2 Dx²=1/2 muο²-1/2 mu²=1/2 DA²ηµ²ωt Κινητική ενέργεια ταλάντωσης: Βαγγέλης Κολτσάκης Σελίδα 3 από 6

4 K=1/2 mu²=1/2 DA²-1/2 Dx²=1/2 muο²συν²ωt Ολική (µηχανική) ενέργεια ταλάντωσης: Εολική (ταλάντωσης) = Εσε τυχαία θέση = Εσε ακραία θέση = Εστη Θ.Ι. = ΣΤΑΘΕΡΗ δηλ. Εολ=U+K=Umax=Kmax = ΣΤΑΘΕΡΗ δηλ. Εολ=1/2 Dx² + 1/2 mu² = 1/2 DA² = 1/2 muο² = ΣΤΑΘΕΡΗ Ρυθµός µεταβολής κινητικής ενέργειας: K/ t=σfu=-dxu Ρυθµός µεταβολής δυναµικής ενέργειας: U/ t=- Εκιν/ t=-σfu=dxu ηλ. Οι δυο ρυθµοί είναι αντίθετοι, αφού U+K=ΣΤΑΘ. Παρατήρηση: η ολική µηχανική ενέργεια ενός σώµατος που εκτελεί Γ.Α.Τ. δεν ταυτίζεται πάντα µε την ενέργεια ταλάντωσης του σώµατος. Η ολική µηχανική ενέργεια µπορεί να είναι µεταβλητή, λόγω της βαρύτητας, ενώ η ενέργεια ταλάντωσης παραµένει σταθερή. Χαρακτηριστικό παράδειγµα είναι το σώµα που ταλαντώνεται κατακόρυφα ενωµένο σε ελατήριο. Η ενέργεια ταλάντωσης του συστήµατος σώµα - ελατήριο παραµένει σταθερή, ενώ η ολική µηχανική ενέργεια του σώµατος µεταβάλλεται, επειδή µεταβάλλεται η λόγω βαρύτητας δυναµική του ενέργεια. Προσοχή, δεν πρέπει να συγχέουµε την δυναµική ενέργεια ταλάντωσης ½ Dx² µε την δυναµική ενέργεια ελατηρίου 1/2K l², αφού αυτές δεν ταυτίζονται πάντα. Στην πρώτη περίπτωση, µε x παριστάνεται η αποµάκρυνση, δηλαδή η απόσταση από τη Θ.Ι, ενώ στην δεύτερη περίπτωση µε l παριστάνεται η επιµήκυνση ή η συσπείρωση του ελατηρίου (διαφορά από το φυσικό του µήκος). Στις ασκήσεις που δουλεύουµε µε Α..Ε. Στις ασκήσεις αυτές χρησιµοποιούµε την Α..Ε. εννοώντας ως ενέργεια την ενέργεια ταλάντωσης (δηλαδή δεν λαµβάνουµε υπόψη άλλες τυχόν µορφές ενέργειας που έχει το ταλαντούµενο σώµα, εκτός και αν µας ζητείται κάτι τέτοιο). Εντοπίζουµε τη Θ.Ι. του σώµατος. Εφαρµόζουµε τη σχέση Εσε τυχαία θέση = Εσε ακραία θέση = Εστη Θ.Ι. Βαγγέλης Κολτσάκης Σελίδα 4 από 6

5 ΠΩΣ ΑΠΟ ΕΙΚΝΥΟΥΜΕ ΟΤΙ ΕΝΑ ΣΩΜΑ ΕΚΤΕΛΕΙ Γ.Α.Τ. (ΚΑΙ ΠΩΣ ΒΡΙΣΚΟΥΜΕ ΤΗΝ ΠΕΡΙΟ Ο) 1. Κάνουµε ένα σχήµα, µε το σώµα σε δυο θέσεις: στη θέση ισορροπίας της ταλάντωσης (Θ.Ι.Τ.) και σε τυχαία θέση, όπου το σώµα που ταλαντώνεται έχει αποµάκρυνση x. Σηµειώνουµε τις δυνάµεις που ασκούνται στο σώµα στη θέση ισορροπίας της ταλάντωσης και στην τυχαία θέση. 2. Αναλύουµε τις δυνάµεις σε άξονες, έτσι ώστε ο άξονας x να έχει τη διεύθυνση της ταλάντωσης (παράλληλος στην τροχιά του σώµατος) και θετική φορά ίδια µε τη φορά της αποµάκρυνσης. 3. Εφαρµόζοντας τη συνθήκη ΣFx=0 στη Θ.Ι.Τ. συνήθως προκύπτει µια σχέση δυνάµεων που τη χρησιµοποιούµε στη συνέχεια. 4. Στην τυχαία θέση προσπαθούµε να δείξουµε ότι ΣFx=-Dx (χρησιµοποιώντας ίσως και τη σχέση που βρήκαµε παραπάνω), όπου D είναι συνάρτηση σταθερών µεγεθών. 5. Έχοντας πλέον αποδείξει ότι το σώµα εκτελεί Γ.Α.Τ., έχουµε συγχρόνως βρει και την σταθερά ταλάντωσης D, οπότε µπορούµε να υπολογίσουµε και την περίοδο της ταλάντωσης από τη σχέση T=2π (m/d). Παρατηρήσεις Όταν έχουµε σώµα δεµένο σε ελατήριο, το σώµα εκτελεί ταλάντωση µε D=κ, όπως και να εκτραπεί το ελατήριο από τη Θ.Ι.Τ.. Όταν έχουµε σύστηµα ελατηρίων, όπου κ χρησιµοποιούµε το κολ του ισοδύναµου ελατήριου. Στην παράλληλη σύνδεση Κολ=Κ1+Κ2+. ενώ στην κατά σειρά σύνδεση 1/Κολ=1/Κ1+1/Κ2+. Όταν έχουµε ταλάντωση για πολύ µικρές τιµές πλάτους, στην απόδειξη του ότι εκτελείται Γ.Α.Τ. πρέπει να κάνουµε κάποιες αναγκαίες προσεγγίσεις, όπως: Αν έχουµε πολύ µικρή γωνία φ, τότε ηµφ 0 και συνφ 1. Αν έχουµε πολύ µικρή αποµάκρυνση x, τότε x² 0 και α+βx α. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΚΡΟΥΣΗΣ Αν έχουµε ελαστική ή ηµιελαστική κρούση χωρίς να µεταβάλλεται η µάζα του ταλαντωτή, τότε η Θ.Ι του συστήµατος παραµένει η ίδια. Αν έχουµε πλαστική κρούση, και γενικότερα αν µεταβάλλεται η µάζα του ταλαντωτή, τότε αλλάζει και η Θ.Ι., εκτός αν έχουµε πλαστική κρούση σε λείο οριζόντιο επίπεδο. Όταν αλλάζει η Θ.Ι., πρέπει και πάλι να εφαρµόσουµε τη σχέση ΣFx=0 για τη νέα Θ.Ι.. Προσοχή, όταν µεταβάλλεται η µάζα του ταλαντωτή, τότε µεταβάλλεται και η περίοδός του. Επίσης η Θ.Ι. αλλάζει και στην περίπτωση που έχουµε διάσπαση συστήµατος σωµάτων. Βαγγέλης Κολτσάκης Σελίδα 5 από 6

6 Γενικά, αν έχουµε κρούση, τότε η στιγµή αµέσως µετά την κρούση είναι η στιγµή t=0 της ΑΑΤ. (πρέπει να δείξω ότι το σώµα θα εκτελέσει ΑΑΤ και να υπολογίσω την D) Από την Α Ο βρίσκω την ταχύτητα του σώµατος τη στιγµή t=0. Βρίσκω την ΘΙΤ, οπότε, αφού γνωρίζω που βρίσκεται το σώµα την t=0 (στη θέση της κρούσης), γνωρίζω και την αποµάκρυνση τη στιγµή t=0. Από τη σχέση 1/2 Dx² + 1/2 mu² = 1/2 DA² βρίσκω το πλάτος της ταλάντωσης. Μπορώ πλέον να βρω την αρχική φάση, τις εξισώσεις κίνησης κλπ. Η ΠΕΡΙΠΤΩΣΗ ΣΩΜΑΤΟΣ ΣΕ ΕΠΑΦΗ ΜΕ ΕΠΙΦΑΝΕΙΑ ***Έστω σώµα πάνω σε δίσκο που ταλαντώνεται κατακόρυφα. Σε κάθε θέση ισχύει ΣF=-Dx N-B=-Dx. Επαφή χάνεται όταν Ν=0. Αυτό µπορεί να συµβεί µόνο όταν το σύστηµα κινείται πάνω από τη θέση ισορροπίας, αφού: πάνω από τη Θ.Ι. ισχύει ΣF=-Dx N-B=-Dx Ν=B-Dx και η επαφή χάνεται όταν Ν=0 Β=Dx x=b/d. κάτω από τη Θ.Ι. ισχύει ΣF=-Dx N-B=-D(-x) Ν=B+Dx και η επαφή δεν χάνεται ποτέ. Επίσης, από τα παραπάνω προκύπτει ότι Nmin=B-DA, Nmax=B+DA. ***Προσοχή, σε περιπτώσεις ως την προηγούµενη, το σώµα, ο δίσκος και όλο το σύστηµα έχουν διαφορετικές σταθερές ταλάντωσης D. Έχουν όµως κοινή περίοδο Τ. Ισχύει: Dσώµατος=mσώµατοςω², Dδίσκου=mδίσκουω², Dσυστήµατος =mσυστήµατοςω², Στις περιπτώσεις αυτές χρησιµοποιούµε τη σχέση ΣF=ma ΣF=mω²x, όπου m η µάζα του σώµατος ή του δίσκου ή όλου του συστήµατος, δηλ. Του σώµατος στο οποίο αναφέρονται οι δυνάµεις. Στην εφαρµογή των παραπάνω θέσεων η θετική φορά επιλέγεται προς τη Θ.Ι.. ***Έστω σώµα πάνω σε επιφάνεια η οποία ταλαντώνεται οριζόντια. Σε κάθε θέση, η δύναµη επαναφοράς για το σώµα είναι η στατική τριβή Τσ, που έχει πάντα κατεύθυνση προς τη Θ.Ι. και µέτρο ΣFx=ma Τσ=mω²x. Η µέγιστη τιµή της είναι Τσ,max=mω²A. Το σώµα χάνει την επαφή του µε την επιφάνεια στη θέση που η στατική τριβή γίνεται ίση µε την οριακή τριβή, η οποία θεωρείται ίση µε την τριβή ολίσθησης. ηλαδή η επαφή χάνεται όταν mω²x=nn. Βαγγέλης Κολτσάκης Σελίδα 6 από 6

Πρόχειρες Λύσεις. Θέµα Α

Πρόχειρες Λύσεις. Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις Πρόχειρες Λύσεις Θέµα Α Α.1 Σε µια εξαναγκασµένη ταλάντωση η συχνότητα του διεγέρτη είναι µεγαλύτερη της ιδιοσυχνότητας του ταλαντωτή. Αν µειώνουµε συνεχώς

Διαβάστε περισσότερα

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α.

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α. ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη Αυγούστου 05 Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Οµάδα Α Θέµα Α Α.. Σε µια απλή αρµονική ταλάντωση η αποµάκρυνση και η επιτάχυνση την ίδια

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ Σώμα είναι τοποθετημένο πάνω σε ορίζοντα δίσκο.ο δίσκος τιθεται σε οριζόντια αρμονικη ταλάντωση με συχνότητα f.αν ο συντελεστης μέγιστης στατικης τριβής μεταξύ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση ,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 2011-2012 1 Απλή Αρµονική Ταλάντωση 1.1 Περιοδικά Φαινόµενα

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ Μ.ΤΕΤΑΡΤΗ 0 ΑΠΡΙΛΙΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ - ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 ο 1. γ. γ 3. α 4. δ 5. α) Λ β) Σ γ)

Διαβάστε περισσότερα

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος:

1. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: ΙΙΑΓΓΩΝΙΙΣΜΑ ΦΦΥΥΣΙΙΚΚΗΣ ΚΚΑΤΕΕΥΥΘΥΥΝΣΗΣ ΓΓ ΛΥΥΚΚΕΕΙΙΟΥΥ 0077 -- 00 Θέμα ο. Ένα σώμα εκτελεί ΑΑΤ πλάτους Α. Η ταχύτητα του σώματος: α. έχει την ίδια φάση με την επιτάχυνση α. β. είναι μέγιστη στις ακραίες

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΟΥ ΜΕΤΑΤΡΕΠΕΤΑΙ ΣΕ ΦΘΙΝΟΥΣΑ Ένα σώμα Σ μάζας m=2kg είναι δεμένο στο ένα άκρο οριζόντιου ιδανικού ελατηρίου σταθεράς k=50n/m, το άλλο άκρο του οποίου είναι Θ.Φ.Μ στερεωμένο σε ακλόνητο

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Η απλή αρµονική ταλάντωση είναι κίνηση : (δ) ευθύγραµµη περιοδική Α.2. Σώµα εκτελεί απλή αρµονική

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΙΑΑΓΓΩΝΝΙΙΣΣΜΑΑ ΦΦΥΥΣΣΙΙΚΚΗΗΣΣ ΚΚΑΑΤΤΕΕΥΥΘΘΥΥΝΝΣΣΗΗΣΣ ΑΑΠΟΟΦΦΟΟΙΙΤΤΩΝΝ 0055 -- -- 00 Θέμα ο. Ένα σημειακό αντικείμενο που εκτελεί ΑΑΤ μεταβαίνει από τη θέση ισορροπίας του σε ακραία θέση σε χρόνο s. Η

Διαβάστε περισσότερα

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι.

7. Ένα σώμα εκτελεί Α.Α.Τ. Η σταθερά επαναφοράς συστήματος είναι. ΚΕΦΑΛΑΙΟ 1 ο : ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΝΟΤΗΤΑ 1.2: ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ (ΕΝΕΡΓΕΙΑΚΗ ΠΡΟΣΕΓΓΙΣΗ, ΑΡΧΙΚΗ ΦΑΣΗ, ΣΥΣΤΗΜΑ ΕΛΑΤΗΡΙΟΥ ΣΩΜΑΤΟΣ, ΟΡΜΗ) 6α. Σφαίρα μάζας ισορροπεί δεμένη στο πάνω άκρο κατακόρυφου

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση Ι - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση Ι - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση Ι - Κρούσεις Ενδεικτικές Λύσεις Θέµα Α Α.1. Μια µικρή σφαίρα προσκρούει ελαστικά στην επίπεδη επιφάνεια ενός κατακόρυφου τοίχου. Αν η σφαίρα κτυπήσει

Διαβάστε περισσότερα

1ο ιαγώνισµα - Λύσεις Απλή Αρµονική Ταλάντωση. Θέµα 2ο

1ο ιαγώνισµα - Λύσεις Απλή Αρµονική Ταλάντωση. Θέµα 2ο 1ο ιαγώνισµα - Λύσεις Απλή Αρµονική Ταλάντωση Θέµα 1ο 1.1. Η εξίσωση της αποµάκρυνσης ενός υλικού σηµείου, που εκτελεί απλή αρµονική ταλάντωση πλάτους Α και γωνιακής συχνότητας ω, είναι της µορφής x =

Διαβάστε περισσότερα

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα.

1. Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα. Γενικές ασκήσεις Θέματα εξετάσεων από το 1ο κεφάλαιο ΚΕΦΑΛΑΙΟ 1 1 Ένα σώμα m=1kg εκτελεί απλή αρμονική ταλάντωση και η μεταβολή της επιτάχυνσής του σε συνάρτηση με το χρόνο, φαίνεται στο σχήμα α Να βρείτε

Διαβάστε περισσότερα

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Παρασκευή 4 Σεπτέµβρη 2015 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Λύσεις. Θέµα Α

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Παρασκευή 4 Σεπτέµβρη 2015 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Λύσεις. Θέµα Α 2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Παρασκευή 4 Σεπτέµβρη 2015 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις Λύσεις Θέµα Α Α.1. Απλός αρµονικός ταλαντωτής εκτελεί ταλάντωση πλάτους Α. ιατηρούµε σταθερό το πλάτος

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα.. Σώμα μάζας = 0,5 g έχει το ένα άκρο στερεωμένο σε οριζόντιο ιδανικό ελατήριο σταθεράς = 50 / και το άλλο άκρο του βρίσκεται

Διαβάστε περισσότερα

ΘΕΜΑ Α. Α.1. Ένα σύστηµα ελατηρίου-µάζας εκτελεί απλή αρµονική ταλάντωση πλάτους Α.

ΘΕΜΑ Α. Α.1. Ένα σύστηµα ελατηρίου-µάζας εκτελεί απλή αρµονική ταλάντωση πλάτους Α. ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α 1 Α 6 να γράψετε στο τετράδιο σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση, η οποία τη συμπληρώνει σωστά. Α.1. Ένα σύστηµα ελατηρίου-µάζας

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΠΛΑΓΙΑ ΚΡΟΥΣΗ.. Σώμα που κινείται με κάποια ταχύτητα που σχηματίζει γωνία ως προς το κεκλιμένο επίπεδο συγκρούεται πλαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Ξύλινο

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ - ΑΠΑΝΤΗΣΕΙΣ ΗΜΕΡΟΜΗΝΙΑ: 25/09/6 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/09/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ.

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. Θα μελετήσουμε τώρα συστήματα που διεγείρονται σε ταλάντωση μέσω εξωτερικής ς που μπορεί να είναι (όπως θα δούμε παρακάτω) σταθερή, μεταβλητού

Διαβάστε περισσότερα

Α. Για ποιο από τα δυο σώματα καταναλώσαμε περισσότερη ενέργεια;

Α. Για ποιο από τα δυο σώματα καταναλώσαμε περισσότερη ενέργεια; 1. Στην κάτω άκρη ενός ιδανικού ελατήριου είναι δεμένο ένα σώμα που έχει μάζα m 1 = m και ισορροπεί. Στην κάτω άκρη ενός άλλου ομοίου ελατήριου είναι δεμένο ένα άλλο σώμα που έχει μάζα m 2 = 4m και ισορροπεί.

Διαβάστε περισσότερα

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σε όλες τις περιπτώσεις που θα εξετάσουμε το δάπεδο είναι λείο. Επίσης τα σύμβολα των διανυσματικών μεγεθών αντιπροσωπεύουν τις αλγεβρικές τους τιμές. Α. Η επιφάνεια

Διαβάστε περισσότερα

Ημερομηνία: Τετάρτη 26 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Τετάρτη 26 Οκτωβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 6/0/06 ΕΩΣ 30/0/06 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τετάρτη 6 Οκτωβρίου 06 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

12ο ΓΕΛ ΠΕΙΡΑΙΑ 12/10/2010 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗΝ ΑΑΤ

12ο ΓΕΛ ΠΕΙΡΑΙΑ 12/10/2010 ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗΝ ΑΑΤ 1ο ΓΕΛ ΠΕΙΡΑΙΑ 1/10/010 Ονοµατεπώνυµο: Τµήµα: Γθετ ΟΜΑΔΑ Α Διάρκεια: 45 min ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗΝ ΑΑΤ Ένα ιδανικό κατακόρυφο ελατήριο, έχει σταθερά k=400ν/m και στηρίζεται µε

Διαβάστε περισσότερα

Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή

Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή μεταξύ τους. Η επαφή αυτή μπορεί να υπάρχει στη διάρκεια της ταλάντωσης είτε να

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ

ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ ΤΑΛΑΝΤΩΣΗ ΚΑΙ ΚΡΟΥΣΗ 1. Κατακόρυφο ελατήριο σταθεράς k=1000 N /m έχει το κάτω άκρο του στερεωμένο σε ακίνητο σημείο. Στο πάνω άκρο του ελατηρίου έχει προσδεθεί σώμα Σ 1 μάζας m 1 =8 kg, ενώ ένα δεύτερο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 3-0-0 ΧΕΙΜΕΡΙΝΑ ΘΕΜΑ ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Ποια μπορεί να είναι η κίνηση μετά την κρούση;

Ποια μπορεί να είναι η κίνηση μετά την κρούση; Ποια μπορεί να είναι η κίνηση μετά την κρούση; ή Η επιτάχυνση και ο ρυθµός µεταβολής του µέτρου της ταχύτητας. Ένα σώµα Σ ηρεµεί, δεµένο στο άκρο ενός ελατηρίου. Σε µια στιγµή συγκρούεται µε ένα άλλο κινούµενο

Διαβάστε περισσότερα

Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 13 Νοέµβρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α

Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 13 Νοέµβρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Ταλαντώσεις Σύνολο Σελίδων: οκτώ (8) - ιάρκεια Εξέτασης: 3 ώρες Κυριακή 13 Νοέµβρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις Α.1 Α.4 να γράψετε

Διαβάστε περισσότερα

1 η χρονική στιγμή της

1 η χρονική στιγμή της ΩΘΗΣΗ ΚΑΙ.ΑΠΟ ΤΟ ΖΕΝΙΘ ΣΤΟ ΝΑΔΙΡ Ένα σώμα μάζας είναι στερεωμένο στο κάτω άκρο κατακόρυφου ιδανικού ελατηρίου φυσικού μήκους και σταθεράς σκληρότητας, το πάνω άκρο του οποίου είναι στερεωμένο σε οροφή.

Διαβάστε περισσότερα

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σε όλες τις περιπτώσεις που θα εξετάσουμε το δάπεδο είναι λείο. Επίσης τα σύμβολα των διανυσματικών μεγεθών αντιπροσωπεύουν τις αλγεβρικές τους τιμές. Α. Η επιφάνεια

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17-10-11 ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ Α Θέµα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς

Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς Ε ρ ω τ ή σ ε ι ς σ τ ι ς μ η χ α ν ι κ έ ς τ α λ α ν τ ώ σ ε ι ς 1. Δύο σώματα ίδιας μάζας εκτελούν Α.Α.Τ. Στο διάγραμμα του σχήματος παριστάνεται η συνισταμένη δύναμη που ασκείται σε κάθε σώμα σε συνάρτηση

Διαβάστε περισσότερα

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλαντώσεις Ονοματεπώνυμο Μαθητή: Ημερομηνία: 7-11-2016 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

Α1 γ, Α2 γ, Α3 β, Α4 α, Α5 α Σ, β Λ, γ Λ, δ Σ, ε Λ. άρα. p. Έχοντας ίσες μάζες

Α1 γ, Α2 γ, Α3 β, Α4 α, Α5 α Σ, β Λ, γ Λ, δ Σ, ε Λ. άρα. p. Έχοντας ίσες μάζες Λύσεις διαγωνίσματος 5 Θέμα Α Α γ, Α γ, Α β, Α4 α, Α5 α Σ, β Λ, γ Λ, δ Σ, ε Λ Θέμα Β Β. Σωστή απάντηση είναι η (γ). Στην η περίπτωση αφού το συσσωμάτωμα μετά την κρούση παραμένει ακίνητο τα σώματα πριν

Διαβάστε περισσότερα

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 9/0/06 ΘΕΜΑ Α Στις ερωτήσεις 7 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Mια μικρή σφαίρα προσκρούει

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ. ΣΥΣΤΗΜΑΤΑ ΠΟΥ ΕΚΤΕΛΟΥΝ ΓΡΑΜΜΙΚΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ. Για να δείξω ότι ένα σώμα εκτελεί γραμμική αρμονική ταλάντωση ακολουθώ τον εξής τρόπο. Ι. Σχεδιάζω το σχήμα και τοποθετώ τις δυνάμεις

Διαβάστε περισσότερα

2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1 ο Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 016 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 11/09/2016 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα

Διαβάστε περισσότερα

Απλή Αρµονική Ταλάντωση 1ο Σετ Ασκήσεων - Καλοκαίρι 2012

Απλή Αρµονική Ταλάντωση 1ο Σετ Ασκήσεων - Καλοκαίρι 2012 Απλή Αρµονική Ταλάντωση - Καλοκαίρι 2012 Επιµέλεια: Μιχάλης Ε. Καραδηµητριου, M Sc Φυσικός http://perifysikhs.wordpress.com Α. Ερωτήσεις πολλαπλής επιλογής Α.1.Σηµειακό αντικειµενο εκτελει απλή αρµονική

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

Μηχανικές ταλαντώσεις

Μηχανικές ταλαντώσεις ο ΘΕΜΑ Μηχανικές ταλαντώσεις Α. Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Η εξίσωση

Διαβάστε περισσότερα

1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου.

1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ.. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Σώμα μάζας = g κινείται σε λείο οριζόντιο επίπεδο με ταχύτητα υ μέτρου υ = 5 /s συγκρούεται

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ)

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ) α (cm/s ) ΚΕΦΑΛΑΙΟ 3 Κατηγορία Α ΤΑΛΑΝΤΩΣΕΙΣ (3 ΠΕΡΙΟΔΟΙ) 1. Να προσδιορίσετε ποια από τα πιο κάτω φυσικά μεγέθη μπορεί να έχουν την ίδια κατεύθυνση για ένα απλό αρμονικό ταλαντωτή: α. θέση και ταχύτητα,

Διαβάστε περισσότερα

Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Ημερομηνία: Τρίτη 27 Δεκεμβρίου 2016 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ 8//06 ΕΩΣ 05/0/07 η ΕΞΕΤΑΣΤΙΚΗ ΠΕΡΙΟΔΟΣ ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Ημερομηνία: Τρίτη 7 Δεκεμβρίου 06 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις.

1.1. Μηχανικές Ταλαντώσεις. 1.1. Μηχανικές. 1) Εξισώσεις ΑΑΤ Ένα υλικό σηµείο κάνει α.α.τ. µε πλάτος 0,1m και στην αρχή των χρόνων, βρίσκεται σε σηµείο Μ µε απο- µάκρυνση 5cm, αποµακρυνόµενο από τη θέση ισορροπίας. Μετά από 1s περνά

Διαβάστε περισσότερα

Σάββατο 12 Νοεμβρίου Απλή Αρμονική Ταλάντωση - Κρούσεις. Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες. Θέμα Α.

Σάββατο 12 Νοεμβρίου Απλή Αρμονική Ταλάντωση - Κρούσεις. Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες. Θέμα Α. Γ Τάξης Γενικού Λυκείου Σάββατο 1 Νοεμβρίου 016 Απλή Αρμονική Ταλάντωση - Κρούσεις Σύνολο Σελίδων: Επτά (7) - Διάρκεια Εξέτασης: 3 ώρες Ονοματεπώνυμο: Θέμα Α. Στις ημιτελείς προτάσεις Α.1 Α.4 να γράψετε

Διαβάστε περισσότερα

Κυλιόµενος κύλινδρος πέφτει πάνω σε οριζόντιο στερεωµένο ελατήριο. 3 m/sec. Να εξετάσετε στην περίπτωση αυτή αν, τη

Κυλιόµενος κύλινδρος πέφτει πάνω σε οριζόντιο στερεωµένο ελατήριο. 3 m/sec. Να εξετάσετε στην περίπτωση αυτή αν, τη Κυλιόµενος κύλινδρος πέφτει πάνω σε οριζόντιο στερεωµένο ελατήριο m υ ο k R Α Ο οµογενής κύλινδρος του σχήµατος έχει µάζα m = 8 kg, ακτίνα R και κυλίεται χωρίς να ολισθαίνει στο οριζόντιο επίπεδο έτσι

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 ÈÅÌÅËÉÏ

Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου 2000 ÈÅÌÅËÉÏ Ζήτηµα ο Θέµατα Φυσικής Θετικής & Τεχν.Κατ/νσης Γ Λυκείου Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο πρώτος κανόνας

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο πρώτος

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 01 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ 01 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Σελίδα από ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ () ΘΕΜΑ Α Α. Με την πάροδο του χρόνου και καθώς τα αμορτισέρ ενός αυτοκινήτου παλιώνουν και φθείρονται:

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) 10 01-011 Θέμα 1 ο (Μονάδες 5) 1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια θέση ισορροπίας, προκύπτει μια νέα

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Α ΦΑΣΗ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 7 ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Πέµπτη 5 Ιανουαρίου 7 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Στις ηµιτελείς προτάσεις Α Α4

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. 3.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων;

ΟΡΟΣΗΜΟ. 3.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων; ΚΕΦΑΛΑΙΟ 1 Σύνθεση ταλαντώσεων 3.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων; 3. Να γίνει η σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας, ίδ ιας διεύθυνσης, διαφοράς φάσης μεταξύ τους φ,

Διαβάστε περισσότερα

Ταλαντώσεις σώματος αλλά και συστήματος.

Ταλαντώσεις σώματος αλλά και συστήματος. σώματος αλλά και συστήματος. Μια καλοκαιρινή περιπλάνηση. Τα δυο σώµατα Α και Β µε ίσες µάζες g, ηρεµούν όπως στο σχήµα, ό- που το ελατήριο έχει σταθερά 00Ν/, ενώ το Α βρίσκεται σε ύψος h0,45 από το έδαφος.

Διαβάστε περισσότερα

5 Σύνθεση Ταλαντώσεων

5 Σύνθεση Ταλαντώσεων Πρόχειρες Σηµειώσεις 011-01 5 Σύνθεση Ταλαντώσεων Ενα σώµα µπορει να εκτελεί ταυτόχρονα δυο αρµονικές ταλαντώσεις, οι οποίες µπορεί να έχουν οποιαδήποτε διεύθυνση. Το αποτέλεσµα είναι, γενικά, µια πολύπλοκη

Διαβάστε περισσότερα

ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Μηχανικές & Ηλεκτρικές Ταλαντώσεις ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 3ο: (Ιούλιος 2010 - Ηµερήσιο) Σώµα Σ 1

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις

ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Απλή Αρµονική Ταλάντωση ΙΙ - Κρούσεις Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Σάββατο 24 Σεπτέµβρη 2016 Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς προτάσεις

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΤΑΛΑΝΤΩΣΕΙΣ Θέµα ο ) Ενώ ακούµε ένα ραδιοφωνικό σταθµό που εκπέµπει σε συχνότητα 00MHz, θέλουµε να ακούσουµε το σταθµό που εκπέµπει σε 00,4MHz.

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ. Θα μελετήσουμε τώρα συστήματα που η ταλάντωση ξεκινά εξαιτίας μίας κρούσης ή έχουμε ήδη μία ταλάντωση και κάπου στην πορεία συμβαίνει και μία κρούση.. Σώμα που κινείται με κάποια

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 6-0- ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

t N N f = t α) t=t/12 β) t=t/6

t N N f = t α) t=t/12 β) t=t/6 Εισαγωγικές έννοιες. ΤΑΛΑΝΤΩΣΕΙΣ Περιοδική κίνηση ονοµάζεται η κίνηση η οποία επαναλαµβάνεται σε ίσα χρονικά διαστήµατα. Περίοδος Τ µιας περιοδικής κίνησης είναι ο χρόνος που απαιτείται για να ολοκληρωθεί

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση Πρόχειρες Σηµειώσεις 011-01,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 011-01 1 Απλή Αρµονική Ταλάντωση

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου Ταλαντώσεις Κρούσεις (θέματα Πανελληνίων)

Διαγώνισμα Φυσικής Γ Λυκείου Ταλαντώσεις Κρούσεις (θέματα Πανελληνίων) Διαγώνισμα Φυσικής Γ Λυκείου Ταλαντώσεις Κρούσεις (θέματα Πανελληνίων) ~Διάρκεια 3 ώρες~ Θέμα Α 1) Σε μια φθίνουσα ταλάντωση στην οποία το πλάτος μειώνεται εκθετικά με το χρόνο: i) Η περίοδος δε διατηρείται

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ 1 Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 015 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

Θέμα 1 ο. Θέμα 2 ο. Η ιδιοσυχνότητα του συστήματος δίνεται από τη σχέση:

Θέμα 1 ο. Θέμα 2 ο. Η ιδιοσυχνότητα του συστήματος δίνεται από τη σχέση: ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) Θέμα 1 ο 1100 11 -- 001111 1. α. γ 3. β 4. γ 5. α) Λ β) Σ γ) Λ δ) Σ ε) Λ 1. Α. ΣΣωωσσττόό ττοο αα.. Θέμα ο Η ιδιοσυχνότητα του συστήματος

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ 5 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Πρώτη Φάση) Κυριακή, 6 Ιανουαρίου, Προτεινόμενες Λύσεις Πρόβλημα - ( μονάδες) Ένα όχημα, μαζί με ένα κανόνι που είναι ακλόνητο πάνω σε αυτό,

Διαβάστε περισσότερα

Φυσική για Μηχανικούς

Φυσική για Μηχανικούς Φυσική για Μηχανικούς Απλή Αρμονική Ταλάντωση Εικόνα: Σταγόνες νερού που πέφτουν από ύψος επάνω σε μια επιφάνεια νερού προκαλούν την ταλάντωση της επιφάνειας. Αυτές οι ταλαντώσεις σχετίζονται με κυκλικά

Διαβάστε περισσότερα

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ Προτεινόµενα Θέµατα Γ Λυκείου Ιούλιος 1 Φυσική ΘΕΜΑ Α Στις ερωτήσεις από 1-4 να βρείτε την σωστή απάντηση. 1. Η περίοδος της απλής αρμονικής ταλάντωσης ενός σώματος: Α. είναι ανεξάρτητη της μάζας του ταλαντούμενου

Διαβάστε περισσότερα

1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια

1. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) 9 0-0 Θέμα ο. Κατά τη σύνθεση δύο ΑΑΤ, που γίνονται στην ίδια διεύθυνση και γύρω από την ίδια θέση ισορροπίας, προκύπτει μια νέα ΑΑΤ σταθερού πλάτους,

Διαβάστε περισσότερα

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΦΡΟΝΤΙΣΤΗΡΙΟ ΓΝΩΣΗ ΘΕΜΑ 1 1. Σε μια ελαστική κρούση δύο σωμάτων διατηρείται: α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

Διαβάστε περισσότερα

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΚΡΙΤΗΡΙΟ ΑΞΙΟΛΟΓΗΣΗΣ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Αντικείμενο: Ταλαντώσεις Χρόνος Εξέτασης: 3 ώρες Θέμα 1ο Στις παρακάτω ερωτήσεις 1-5 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις 2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς

Διαβάστε περισσότερα

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας

Διαβάστε περισσότερα

5. Δείξτε με λεκτικούς ισχυρισμούς ότι ο χρόνος κίνησης από τη θέση x = + A στην θέση

5. Δείξτε με λεκτικούς ισχυρισμούς ότι ο χρόνος κίνησης από τη θέση x = + A στην θέση Στα μεγέθη και στις περιγραφές των κινήσεων που ακολουθούν δεν γίνεται λεπτομερής ορισμός. Θεωρούνται καλώς ορισμένα (για τους σχετικούς φυσικά). Γενικά οι περιγραφές είναι σχετικά «χαλαρές» και επί της

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α:. Σωστό το B.. Σωστό το Γ. 3. Σωστό το Δ. 4. Σωστά τα Α, Β, Γ. 5. Σωστό το Δ. ΘΕΜΑ Β:. Σωστό το Β. Αιτιολόγηση: Έχουµε διαδοχικά:. Σωστό το Α. D D K E U =

Διαβάστε περισσότερα

Μηχανικές ταλαντώσεις

Μηχανικές ταλαντώσεις ο ΘΕΜΑ Μηχανικές ταλαντώσεις Α Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Η εξίσωση της

Διαβάστε περισσότερα

ΘΕΜΑ Α. (Μονάδες 5) (Μονάδες 5)

ΘΕΜΑ Α. (Μονάδες 5) (Μονάδες 5) ΘΕΜΑ Α 1) Σύστημα ελατηρίου-σώματος με μάζα m εκτελεί απλή αρμονική ταλάντωση με σταθερά επαναφοράς k. Αν η μάζα του σώματος τετραπλασιαστεί τότε: α/ το πλάτος της ταλάντωσης θα τετραπλασιαστεί β/ η περίοδος

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ.

ΚΕΦΑΛΑΙΟ 1ο: ΜΗΧΑΝΙΚΕΣ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ. ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα

Πριν λύσεις την εργασία σου διάβασε τα ποιο κάτω για να θυμηθείς. Η ενέργεια ταλάντωσης δεν είναι πάντα ιση με τη μηχανική ενέργεια συστήματος.

Πριν λύσεις την εργασία σου διάβασε τα ποιο κάτω για να θυμηθείς. Η ενέργεια ταλάντωσης δεν είναι πάντα ιση με τη μηχανική ενέργεια συστήματος. Πριν λύσεις την εργασία σου διάβασε τα ποιο κάτω για να θυμηθείς Η ενέργεια ταλάντωσης δεν είναι πάντα ιση με τη μηχανική ενέργεια συστήματος. Παράδειγμα : Έστω ένα σώμα αφήνεται από τη θέση φυσικού μήκους

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2013 Γ Λυκείου Θετική & Τεχνολογική Κατεύθυνση ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1. Σώμα

Διαβάστε περισσότερα