Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη"

Transcript

1 ΤΑΛΑΝΤΩΣΕΙΣ (µερικές σηµειώσεις...) Ικανή και αναγκαία συνθήκη για να εκτελεί ένα σώµα ή ένα υλικό σηµείο Γ.Α.Τ. είναι: η συνισταµένη των δυνάµεων που ασκούνται στο σώµα να έχει τη διεύθυνση της κίνησης, µέτρο ανάλογο της αποµάκρυνσης από τη θέση ισορροπίας και φορά αντίθετη της αποµάκρυνσης. ΣFx=-D.x (0) Η ΣFx ονοµάζεται και δύναµη επαναφοράς, και έχει κατεύθυνση πάντα προς τη θέση ισορροπίας. ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΜΕΓΕΘΗ ΣΤΗ Γ.Α.Τ. Αποµάκρυνση x Πλάτος A Περίοδος Τ Συχνότητα f Κυκλική συχνότητα ω Φάση φ Τ=1/f f=1/τ ω=2πf=2π/τ φ=ωt+φο όπου φο η αρχική φάση ΕΞΙΣΩΣΕΙΣ Γ.Α.Τ. Οι εξισώσεις της Γ.Α.Τ. µπορούν να προκύψουν από τον κύκλο αναφοράς. Θεωρούµε ότι σώµα Σ µάζας m εκτελεί Ο.Κ.Κ. σε κύκλο ακτίνας A µε σταθερή γωνιακή ταχύτητα ω. Η προβολή Π του Σ σε µια διάµετρο του κύκλου, εκτελεί Γ.Α.Τ.. Αποµάκρυνσης Ταχύτητας επιτάχυνσης δύναµης x=aηµωt (1) u=uοσυνωt (2) a=-aοηµωt (3) F=-maοηµωt (4) u=ωaσυνωt a=-ω²aηµωt F=-mω²Aηµωt u=uοηµ(ωt+π/2) a=aοηµ(ωt+π) F=maοηµ(ωt+π) u=ωaηµ(ωt+π/2) a=ω²aηµ(ωt+π) F=mω²Aηµ(ωt+π) Οι παραπάνω σχέσεις ισχύουν όταν φο=0, δηλαδή όταν η αρχική φάση είναι µηδέν. Αν υπάρχει αρχική φάση, τότε πρέπει να την προσθέσουµε στη φάση ωt, οπότε οι παραπάνω σχέσεις παίρνουν τη µορφή: x=aηµ(ωt+φο) u=uοσυν(ωt+φο) a=-aοηµ(ωt+φο) F=-maοηµ(ωt+φο) Από τις παραπάνω σχέσεις παρατηρούµε ότι: Βαγγέλης Κολτσάκης Σελίδα 1 από 6

2 Η διαφορά φάσης ταχύτητας - αποµάκρυνσης είναι φ=π/2 Η διαφορά φάσης επιτάχυνσης - ταχύτητας είναι φ=π/2 Η διαφορά φάσης επιτάχυνσης -αποµάκρυνσης είναι φ=π Από τις (1) και (2) προκύπτει: u=±ω (A²-x²) (5) Από τις (2) και (3) προκύπτει: a=±ω (uο²-u²), (6) άρα και F=±mω (uο²-u²) (7) Από τις (1) και (3) προκύπτει: a=-ω²x Από τις (1) και (4) προκύπτει: F=-mω²x (8) Από τις (0) και (8) προκύπτει: D=mω² (9) Από την (9) προκύπτει: Τ=2π (m/d) (10) Η D ονοµάζεται σταθερά επαναφοράς (µονάδα µέτρησης: N/m). (Παρατηρούµε από την σχ. 10 ότι η περίοδος της Γ.Α.Τ. εξαρτάται από τη σταθερά επαναφοράς D και από τη µάζα m του ταλαντωτή, ενώ είναι ανεξάρτητη από το πλάτος A της ταλάντωσης). ΕΥΡΕΣΗ ΤΩΝ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΜΕΓΕΘΩΝ ΣΤΗΝ Γ.Α.Τ. Όταν γνωρίζουµε την εξίσωση της αποµάκρυνσης: αντιστοιχούµε την εξίσωση που µας δίνεται µε την γενική εξίσωση x=aηµ(ωt+φο). Αν η εξίσωση που έχουµε δεν έχει τέτοια µορφή, τη µετασχηµατίζουµε έτσι ώστε να πάρει τη µορφή αυτή. Με ανάλογο τρόπο δουλεύουµε όταν µας δίνεται όχι η εξίσωση της αποµάκρυνσης, αλλά η εξίσωση κάποιου άλλου χαρακτηριστικού µεγέθους (πχ ταχύτητας, επιτάχυνσης, δύναµης). ΕΛΕΓΧΟΣ ΚΑΙ ΠΡΟΣ ΙΟΡΙΣΜΟΣ ΤΗΣ ΑΡΧΙΚΗΣ ΦΑΣΗΣ φο. Η αρχική φάση παίρνει τιµές 0 φο 2π. Πιθανώς να αναφέρεται άµεσα ή έµµεσα στην εκφώνηση αν υπάρχει αρχική φάση. Μπορούµε να διαπιστώσουµε ότι υπάρχει αρχική φάση και να την υπολογίσουµε, αν συµβαίνει ένα από τα ακόλουθα: Αναφέρεται άµεσα στην εκφώνηση ότι υπάρχει αρχική φάση. Η εξίσωση κάποιου χαρακτηριστικού µεγέθους σε συνάρτηση µε το χρόνο δεν έχει ακριβώς την ίδια µορφή µε τη γενική µορφή της εξίσωσης του µεγέθους αυτού. Βαγγέλης Κολτσάκης Σελίδα 2 από 6

3 Η αποµάκρυνση δεν είναι µηδέν τη χρονική στιγµή t=0. Στην περίπτωση αυτή µπορεί να δίνεται περιορισµός για κάποιο άλλο µέγεθος, ή ακόµη και κάποια στιγµιαία τιµή κάποιου άλλου µεγέθους. Η επιτάχυνση δεν είναι µηδέν τη χρονική στιγµή µηδέν. Η ταχύτητα δεν είναι µέγιστη τη χρονική στιγµή µηδέν. Η δυναµική ενέργεια του ταλαντωτή δεν είναι µηδέν τη χρονική στιγµή µηδέν. Η κινητική ενέργεια του ταλαντωτή δεν είναι µέγιστη τη χρονική στιγµή µηδέν. Μπορούµε να δουλέψουµε µε δυο τρόπους: α' τρόπος: µε τριγωνοµετρικές εξισώσεις Χρησιµοποιούµε την εξίσωση κάποιου µεγέθους που µας δίνεται η αλγεβρική του τιµή για τη χρονική στιγµή t=0. Προκύπτει έτσι µια τριγωνοµετρική εξίσωση, που µας δίνει όλες τις δυνατές τιµές της αρχικής φάσης φο. Συνήθως υπάρχουν και κάποιοι περιορισµοί (όπως πχ πρόσηµο κάποιου χαρακτηριστικού µεγέθους), τους οποίους λαµβάνουµε υπόψη. Απορρίπτουµε έτσι κάποιες από τις τιµές τις φο και βρίσκουµε µια δεκτή τιµή. Αν δεν υπάρχει περιορισµός για κάποιο άλλο µέγεθος, πρέπει να κάνουµε δεκτές όλες τις τιµές τις φο, και να δουλέψουµε στη συνέχει µε πάνω από µια περιπτώσεις. Μπορεί επίσης να δίνονται οι τιµές δυο χαρακτηριστικών µεγεθών για τη χρονική στιγµή t=0. ουλεύοντας όπως παραπάνω, βρίσκουµε τιµές για τη φο από δυο τριγωνοµετρικές εξισώσεις, οπότε δεκτή τιµή είναι αυτή για την οποία οι δυο εξισώσεις συναληθεύουν. β' τρόπος: µε τον κύκλο αναφοράς Μπορούµε να εφαρµόσουµε τα δεδοµένα στον κύκλο αναφοράς, ως εξής: από µια εξίσωση που µας δίνεται, τοποθετούµε όλες τις πιθανές φο στον κύκλο αναφοράς, και σε συνδυασµό µε τα υπόλοιπα δεδοµένα, απορρίπτουµε κάποιες από αυτές και βρίσκουµε µια δεκτή. ΕΝΕΡΓΕΙΑ ΣΤΗ Γ.Α.Τ. υναµική ενέργεια ταλάντωσης: U=1/2 Dx²=1/2 muο²-1/2 mu²=1/2 DA²ηµ²ωt Κινητική ενέργεια ταλάντωσης: Βαγγέλης Κολτσάκης Σελίδα 3 από 6

4 K=1/2 mu²=1/2 DA²-1/2 Dx²=1/2 muο²συν²ωt Ολική (µηχανική) ενέργεια ταλάντωσης: Εολική (ταλάντωσης) = Εσε τυχαία θέση = Εσε ακραία θέση = Εστη Θ.Ι. = ΣΤΑΘΕΡΗ δηλ. Εολ=U+K=Umax=Kmax = ΣΤΑΘΕΡΗ δηλ. Εολ=1/2 Dx² + 1/2 mu² = 1/2 DA² = 1/2 muο² = ΣΤΑΘΕΡΗ Ρυθµός µεταβολής κινητικής ενέργειας: K/ t=σfu=-dxu Ρυθµός µεταβολής δυναµικής ενέργειας: U/ t=- Εκιν/ t=-σfu=dxu ηλ. Οι δυο ρυθµοί είναι αντίθετοι, αφού U+K=ΣΤΑΘ. Παρατήρηση: η ολική µηχανική ενέργεια ενός σώµατος που εκτελεί Γ.Α.Τ. δεν ταυτίζεται πάντα µε την ενέργεια ταλάντωσης του σώµατος. Η ολική µηχανική ενέργεια µπορεί να είναι µεταβλητή, λόγω της βαρύτητας, ενώ η ενέργεια ταλάντωσης παραµένει σταθερή. Χαρακτηριστικό παράδειγµα είναι το σώµα που ταλαντώνεται κατακόρυφα ενωµένο σε ελατήριο. Η ενέργεια ταλάντωσης του συστήµατος σώµα - ελατήριο παραµένει σταθερή, ενώ η ολική µηχανική ενέργεια του σώµατος µεταβάλλεται, επειδή µεταβάλλεται η λόγω βαρύτητας δυναµική του ενέργεια. Προσοχή, δεν πρέπει να συγχέουµε την δυναµική ενέργεια ταλάντωσης ½ Dx² µε την δυναµική ενέργεια ελατηρίου 1/2K l², αφού αυτές δεν ταυτίζονται πάντα. Στην πρώτη περίπτωση, µε x παριστάνεται η αποµάκρυνση, δηλαδή η απόσταση από τη Θ.Ι, ενώ στην δεύτερη περίπτωση µε l παριστάνεται η επιµήκυνση ή η συσπείρωση του ελατηρίου (διαφορά από το φυσικό του µήκος). Στις ασκήσεις που δουλεύουµε µε Α..Ε. Στις ασκήσεις αυτές χρησιµοποιούµε την Α..Ε. εννοώντας ως ενέργεια την ενέργεια ταλάντωσης (δηλαδή δεν λαµβάνουµε υπόψη άλλες τυχόν µορφές ενέργειας που έχει το ταλαντούµενο σώµα, εκτός και αν µας ζητείται κάτι τέτοιο). Εντοπίζουµε τη Θ.Ι. του σώµατος. Εφαρµόζουµε τη σχέση Εσε τυχαία θέση = Εσε ακραία θέση = Εστη Θ.Ι. Βαγγέλης Κολτσάκης Σελίδα 4 από 6

5 ΠΩΣ ΑΠΟ ΕΙΚΝΥΟΥΜΕ ΟΤΙ ΕΝΑ ΣΩΜΑ ΕΚΤΕΛΕΙ Γ.Α.Τ. (ΚΑΙ ΠΩΣ ΒΡΙΣΚΟΥΜΕ ΤΗΝ ΠΕΡΙΟ Ο) 1. Κάνουµε ένα σχήµα, µε το σώµα σε δυο θέσεις: στη θέση ισορροπίας της ταλάντωσης (Θ.Ι.Τ.) και σε τυχαία θέση, όπου το σώµα που ταλαντώνεται έχει αποµάκρυνση x. Σηµειώνουµε τις δυνάµεις που ασκούνται στο σώµα στη θέση ισορροπίας της ταλάντωσης και στην τυχαία θέση. 2. Αναλύουµε τις δυνάµεις σε άξονες, έτσι ώστε ο άξονας x να έχει τη διεύθυνση της ταλάντωσης (παράλληλος στην τροχιά του σώµατος) και θετική φορά ίδια µε τη φορά της αποµάκρυνσης. 3. Εφαρµόζοντας τη συνθήκη ΣFx=0 στη Θ.Ι.Τ. συνήθως προκύπτει µια σχέση δυνάµεων που τη χρησιµοποιούµε στη συνέχεια. 4. Στην τυχαία θέση προσπαθούµε να δείξουµε ότι ΣFx=-Dx (χρησιµοποιώντας ίσως και τη σχέση που βρήκαµε παραπάνω), όπου D είναι συνάρτηση σταθερών µεγεθών. 5. Έχοντας πλέον αποδείξει ότι το σώµα εκτελεί Γ.Α.Τ., έχουµε συγχρόνως βρει και την σταθερά ταλάντωσης D, οπότε µπορούµε να υπολογίσουµε και την περίοδο της ταλάντωσης από τη σχέση T=2π (m/d). Παρατηρήσεις Όταν έχουµε σώµα δεµένο σε ελατήριο, το σώµα εκτελεί ταλάντωση µε D=κ, όπως και να εκτραπεί το ελατήριο από τη Θ.Ι.Τ.. Όταν έχουµε σύστηµα ελατηρίων, όπου κ χρησιµοποιούµε το κολ του ισοδύναµου ελατήριου. Στην παράλληλη σύνδεση Κολ=Κ1+Κ2+. ενώ στην κατά σειρά σύνδεση 1/Κολ=1/Κ1+1/Κ2+. Όταν έχουµε ταλάντωση για πολύ µικρές τιµές πλάτους, στην απόδειξη του ότι εκτελείται Γ.Α.Τ. πρέπει να κάνουµε κάποιες αναγκαίες προσεγγίσεις, όπως: Αν έχουµε πολύ µικρή γωνία φ, τότε ηµφ 0 και συνφ 1. Αν έχουµε πολύ µικρή αποµάκρυνση x, τότε x² 0 και α+βx α. Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΚΡΟΥΣΗΣ Αν έχουµε ελαστική ή ηµιελαστική κρούση χωρίς να µεταβάλλεται η µάζα του ταλαντωτή, τότε η Θ.Ι του συστήµατος παραµένει η ίδια. Αν έχουµε πλαστική κρούση, και γενικότερα αν µεταβάλλεται η µάζα του ταλαντωτή, τότε αλλάζει και η Θ.Ι., εκτός αν έχουµε πλαστική κρούση σε λείο οριζόντιο επίπεδο. Όταν αλλάζει η Θ.Ι., πρέπει και πάλι να εφαρµόσουµε τη σχέση ΣFx=0 για τη νέα Θ.Ι.. Προσοχή, όταν µεταβάλλεται η µάζα του ταλαντωτή, τότε µεταβάλλεται και η περίοδός του. Επίσης η Θ.Ι. αλλάζει και στην περίπτωση που έχουµε διάσπαση συστήµατος σωµάτων. Βαγγέλης Κολτσάκης Σελίδα 5 από 6

6 Γενικά, αν έχουµε κρούση, τότε η στιγµή αµέσως µετά την κρούση είναι η στιγµή t=0 της ΑΑΤ. (πρέπει να δείξω ότι το σώµα θα εκτελέσει ΑΑΤ και να υπολογίσω την D) Από την Α Ο βρίσκω την ταχύτητα του σώµατος τη στιγµή t=0. Βρίσκω την ΘΙΤ, οπότε, αφού γνωρίζω που βρίσκεται το σώµα την t=0 (στη θέση της κρούσης), γνωρίζω και την αποµάκρυνση τη στιγµή t=0. Από τη σχέση 1/2 Dx² + 1/2 mu² = 1/2 DA² βρίσκω το πλάτος της ταλάντωσης. Μπορώ πλέον να βρω την αρχική φάση, τις εξισώσεις κίνησης κλπ. Η ΠΕΡΙΠΤΩΣΗ ΣΩΜΑΤΟΣ ΣΕ ΕΠΑΦΗ ΜΕ ΕΠΙΦΑΝΕΙΑ ***Έστω σώµα πάνω σε δίσκο που ταλαντώνεται κατακόρυφα. Σε κάθε θέση ισχύει ΣF=-Dx N-B=-Dx. Επαφή χάνεται όταν Ν=0. Αυτό µπορεί να συµβεί µόνο όταν το σύστηµα κινείται πάνω από τη θέση ισορροπίας, αφού: πάνω από τη Θ.Ι. ισχύει ΣF=-Dx N-B=-Dx Ν=B-Dx και η επαφή χάνεται όταν Ν=0 Β=Dx x=b/d. κάτω από τη Θ.Ι. ισχύει ΣF=-Dx N-B=-D(-x) Ν=B+Dx και η επαφή δεν χάνεται ποτέ. Επίσης, από τα παραπάνω προκύπτει ότι Nmin=B-DA, Nmax=B+DA. ***Προσοχή, σε περιπτώσεις ως την προηγούµενη, το σώµα, ο δίσκος και όλο το σύστηµα έχουν διαφορετικές σταθερές ταλάντωσης D. Έχουν όµως κοινή περίοδο Τ. Ισχύει: Dσώµατος=mσώµατοςω², Dδίσκου=mδίσκουω², Dσυστήµατος =mσυστήµατοςω², Στις περιπτώσεις αυτές χρησιµοποιούµε τη σχέση ΣF=ma ΣF=mω²x, όπου m η µάζα του σώµατος ή του δίσκου ή όλου του συστήµατος, δηλ. Του σώµατος στο οποίο αναφέρονται οι δυνάµεις. Στην εφαρµογή των παραπάνω θέσεων η θετική φορά επιλέγεται προς τη Θ.Ι.. ***Έστω σώµα πάνω σε επιφάνεια η οποία ταλαντώνεται οριζόντια. Σε κάθε θέση, η δύναµη επαναφοράς για το σώµα είναι η στατική τριβή Τσ, που έχει πάντα κατεύθυνση προς τη Θ.Ι. και µέτρο ΣFx=ma Τσ=mω²x. Η µέγιστη τιµή της είναι Τσ,max=mω²A. Το σώµα χάνει την επαφή του µε την επιφάνεια στη θέση που η στατική τριβή γίνεται ίση µε την οριακή τριβή, η οποία θεωρείται ίση µε την τριβή ολίσθησης. ηλαδή η επαφή χάνεται όταν mω²x=nn. Βαγγέλης Κολτσάκης Σελίδα 6 από 6

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α.

1ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη 12 Αυγούστου 2015 Απλή Αρµονική Ταλάντωση - Κρούσεις. Ενδεικτικές Λύσεις - Οµάδα Α. ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Τετάρτη Αυγούστου 05 Απλή Αρµονική Ταλάντωση - Κρούσεις Ενδεικτικές Λύσεις - Οµάδα Α Θέµα Α Α.. Σε µια απλή αρµονική ταλάντωση η αποµάκρυνση και η επιτάχυνση την ίδια

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ

ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ ΤΑΛΑΝΤΩΣΗ ΣΕ ΟΡΙΖΟΝΤΙΟ ΕΠΙΠΕΔΟ ΜΕ ΔΥΟ ΣΩΜΑΤΑ Σώμα είναι τοποθετημένο πάνω σε ορίζοντα δίσκο.ο δίσκος τιθεται σε οριζόντια αρμονικη ταλάντωση με συχνότητα f.αν ο συντελεστης μέγιστης στατικης τριβής μεταξύ

Διαβάστε περισσότερα

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2.

ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ. Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ-ΕΛΑΤΗΡΙΟ-ΚΡΟΥΣΗ Σε όσες ασκήσεις απαιτείται δίνεται επιτάχυνση βαρύτητας g=10 m/s 2. ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ 1. Η δύναμη επαναφοράς που ασκείται σε ένα σώμα μάζας m που εκτελεί απλή αρμονική

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση ,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 2011-2012 1 Απλή Αρµονική Ταλάντωση 1.1 Περιοδικά Φαινόµενα

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ Μ.ΤΕΤΑΡΤΗ 0 ΑΠΡΙΛΙΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ - ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 ο 1. γ. γ 3. α 4. δ 5. α) Λ β) Σ γ)

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής

Όλα τα θέματα των πανελληνίων στις μηχανικές ταλαντώσεις έως και το 2014 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ. Ερωτήσεις Πολλαπλής Επιλογής έως και το 04 ΣΑΛΑΝΣΩΕΙ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΣΑΛΑΝΣΩΗ ΒΑΙΚΕ ΕΝΝΟΙΕ Ερωτήσεις Πολλαπλής Επιλογής. Να μεταφέρετε στο τετράδιό σας τον παρακάτω πίνακα που αναφέρεται στην απλή αρμονική ταλάντωση και να συμπληρώσετε

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Θέμα 1 ο (Μονάδες 25)

Θέμα 1 ο (Μονάδες 25) ΙΙΑΑΓΓΩΝΝΙΙΣΣΜΑΑ ΦΦΥΥΣΣΙΙΚΚΗΗΣΣ ΚΚΑΑΤΤΕΕΥΥΘΘΥΥΝΝΣΣΗΗΣΣ ΑΑΠΟΟΦΦΟΟΙΙΤΤΩΝΝ 0055 -- -- 00 Θέμα ο. Ένα σημειακό αντικείμενο που εκτελεί ΑΑΤ μεταβαίνει από τη θέση ισορροπίας του σε ακραία θέση σε χρόνο s. Η

Διαβάστε περισσότερα

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Παρασκευή 4 Σεπτέµβρη 2015 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Λύσεις. Θέµα Α

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Παρασκευή 4 Σεπτέµβρη 2015 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις. Λύσεις. Θέµα Α 2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Παρασκευή 4 Σεπτέµβρη 2015 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις Λύσεις Θέµα Α Α.1. Απλός αρµονικός ταλαντωτής εκτελεί ταλάντωση πλάτους Α. ιατηρούµε σταθερό το πλάτος

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα.

ΠΑΡΑΔΕΙΓΜΑΤΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα. Σύστημα σωμάτων σε επαφή στο οριζόντιο επίπεδο με ελατήριο συνδεδεμένο στο ένα σώμα.. Σώμα μάζας = 0,5 g έχει το ένα άκρο στερεωμένο σε οριζόντιο ιδανικό ελατήριο σταθεράς = 50 / και το άλλο άκρο του βρίσκεται

Διαβάστε περισσότερα

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη

α. β. γ. δ. Μονάδες 5 α. β. γ. δ. Μονάδες 5 α. ελαστική β. ανελαστική γ. πλαστική δ. έκκεντρη ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 27/09/2015 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 25/09/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ.

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΕΞΩΤΕΡΙΚΗ ΔΥΝΑΜΗ ΠΟΥ ΑΡΓΟΤΕΡΑ ΜΠΟΡΕΙ ΝΑ ΚΑΤΑΡΓΗΘΕΙ. Θα μελετήσουμε τώρα συστήματα που διεγείρονται σε ταλάντωση μέσω εξωτερικής ς που μπορεί να είναι (όπως θα δούμε παρακάτω) σταθερή, μεταβλητού

Διαβάστε περισσότερα

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI).

1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). 1. Η απομάκρυνση σώματος που πραγματοποιεί οριζόντια απλή αρμονική ταλάντωση δίδεται από την σχέση x = 0,2 ημ π t, (SI). Να βρείτε: α. το πλάτος της απομάκρυνσης, της ταχύτητας και της επιτάχυνσης. β.

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟY 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΠΛΑΓΙΑ ΚΡΟΥΣΗ.. Σώμα που κινείται με κάποια ταχύτητα που σχηματίζει γωνία ως προς το κεκλιμένο επίπεδο συγκρούεται πλαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Ξύλινο

Διαβάστε περισσότερα

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σε όλες τις περιπτώσεις που θα εξετάσουμε το δάπεδο είναι λείο. Επίσης τα σύμβολα των διανυσματικών μεγεθών αντιπροσωπεύουν τις αλγεβρικές τους τιμές. Α. Η επιφάνεια

Διαβάστε περισσότερα

Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή

Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΣΩΜΑΤΑ ΣΕ ΕΠΑΦΗ Σε πολλές περιπτώσεις έχουμε δύο σώματα που εκτελούν ταλάντωση τα οποία βρίσκονται σε επαφή μεταξύ τους. Η επαφή αυτή μπορεί να υπάρχει στη διάρκεια της ταλάντωσης είτε να

Διαβάστε περισσότερα

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση

Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σώματα σε επαφή και Απλή Αρμονική Ταλάντωση Σε όλες τις περιπτώσεις που θα εξετάσουμε το δάπεδο είναι λείο. Επίσης τα σύμβολα των διανυσματικών μεγεθών αντιπροσωπεύουν τις αλγεβρικές τους τιμές. Α. Η επιφάνεια

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17-10-11 ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ Α Θέµα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλαντώσεις Ονοματεπώνυμο Μαθητή: Ημερομηνία: 7-11-2016 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ - ΑΣΚΗΣΕΙΣ ΚΙΝΗΜΑΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ 1. Στο παρακάτω διάγραμμα απομάκρυνσης-χρόνου φαίνονται οι γραφικές παραστάσεις για δύο σώματα 1 και 2 τα οποία εκτελούν Α.Α.Τ. Να βρείτε τη σχέση που συνδέει τις μέγιστες επιταχύνσεις

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της

ΠΕΝΤΕΛΗ ΒΡΙΛΗΣΣΙΑ. 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση. Αν διπλασιάσουμε το πλάτος της Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ

2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ 2o ΘΕΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΚΦΩΝΗΣΕΙΣ Θέμα 1 ο Α. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

1.1. Μηχανικές Ταλαντώσεις.

1.1. Μηχανικές Ταλαντώσεις. 1.1. Μηχανικές. 1) Εξισώσεις ΑΑΤ Ένα υλικό σηµείο κάνει α.α.τ. µε πλάτος 0,1m και στην αρχή των χρόνων, βρίσκεται σε σηµείο Μ µε απο- µάκρυνση 5cm, αποµακρυνόµενο από τη θέση ισορροπίας. Μετά από 1s περνά

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2016 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΣ: ΘΕΤΙΚΩΝ ΣΠΟΥ ΩΝ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ Ηµεροµηνία: Τρίτη 5 Ιανουαρίου 016 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ Α ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις από 1-4 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6

Φροντιστήρια Εν-τάξη Σελίδα 1 από 6 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 11/09/2016 ΘΕΜΑ Α Να γράψετε στο τετραδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1. Ένα

Διαβάστε περισσότερα

Μηχανικές ταλαντώσεις

Μηχανικές ταλαντώσεις ο ΘΕΜΑ Μηχανικές ταλαντώσεις Α. Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Η εξίσωση

Διαβάστε περισσότερα

Physics by Chris Simopoulos

Physics by Chris Simopoulos ΔΥΝΑΜΙΚΗ ΠΡΟΣΕΓΓΙΣΗ. ΣΥΣΤΗΜΑΤΑ ΠΟΥ ΕΚΤΕΛΟΥΝ ΓΡΑΜΜΙΚΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ. Για να δείξω ότι ένα σώμα εκτελεί γραμμική αρμονική ταλάντωση ακολουθώ τον εξής τρόπο. Ι. Σχεδιάζω το σχήμα και τοποθετώ τις δυνάμεις

Διαβάστε περισσότερα

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ

Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου 2000 ΕΚΦΩΝΗΣΕΙΣ Θέµατα Φυσικής Θετικής & Τεχν. Κατ/νσης Γ Λυκείου Ζήτηµα ο ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις -4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Ο πρώτος

Διαβάστε περισσότερα

1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου.

1. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ.. Σώμα που συγκρούεται ανελαστικά με άλλο σώμα δεμένο στο άκρο οριζοντίου ελατηρίου. Σώμα μάζας = g κινείται σε λείο οριζόντιο επίπεδο με ταχύτητα υ μέτρου υ = 5 /s συγκρούεται

Διαβάστε περισσότερα

5 Σύνθεση Ταλαντώσεων

5 Σύνθεση Ταλαντώσεων Πρόχειρες Σηµειώσεις 011-01 5 Σύνθεση Ταλαντώσεων Ενα σώµα µπορει να εκτελεί ταυτόχρονα δυο αρµονικές ταλαντώσεις, οι οποίες µπορεί να έχουν οποιαδήποτε διεύθυνση. Το αποτέλεσµα είναι, γενικά, µια πολύπλοκη

Διαβάστε περισσότερα

Ταλαντώσεις σώματος αλλά και συστήματος.

Ταλαντώσεις σώματος αλλά και συστήματος. σώματος αλλά και συστήματος. Μια καλοκαιρινή περιπλάνηση. Τα δυο σώµατα Α και Β µε ίσες µάζες g, ηρεµούν όπως στο σχήµα, ό- που το ελατήριο έχει σταθερά 00Ν/, ενώ το Α βρίσκεται σε ύψος h0,45 από το έδαφος.

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράµµα που αντιστοιχεί

Διαβάστε περισσότερα

1 Απλή Αρµονική Ταλάντωση

1 Απλή Αρµονική Ταλάντωση Πρόχειρες Σηµειώσεις 011-01,Θετικής & Τεχνολογικής Κατεύθυνσης Καραδηµητρίου Ε. Μιχάλης http://perifysikhs.wordpress.com mixalis.karadimitriou@gmail.com Πρόχειρες Σηµειώσεις 011-01 1 Απλή Αρµονική Ταλάντωση

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 01 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ 01 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ Α Σελίδα από ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ () ΘΕΜΑ Α Α. Με την πάροδο του χρόνου και καθώς τα αμορτισέρ ενός αυτοκινήτου παλιώνουν και φθείρονται:

Διαβάστε περισσότερα

t N N f = t α) t=t/12 β) t=t/6

t N N f = t α) t=t/12 β) t=t/6 Εισαγωγικές έννοιες. ΤΑΛΑΝΤΩΣΕΙΣ Περιοδική κίνηση ονοµάζεται η κίνηση η οποία επαναλαµβάνεται σε ίσα χρονικά διαστήµατα. Περίοδος Τ µιας περιοδικής κίνησης είναι ο χρόνος που απαιτείται για να ολοκληρωθεί

Διαβάστε περισσότερα

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5)

δ) µειώνεται το µήκος κύµατός της (Μονάδες 5) ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 011-01 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ/Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: 1 η (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 30/1/11 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ 1 ο Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό κάθε µίας από τις παρακάτω

Διαβάστε περισσότερα

Θέμα 1 ο. Θέμα 2 ο. Η ιδιοσυχνότητα του συστήματος δίνεται από τη σχέση:

Θέμα 1 ο. Θέμα 2 ο. Η ιδιοσυχνότητα του συστήματος δίνεται από τη σχέση: ΑΠΑΝΤΗΣΕΙΣ ΣΤΟ ΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ((ΑΠΟΦΟΙΤΟΙ)) Θέμα 1 ο 1100 11 -- 001111 1. α. γ 3. β 4. γ 5. α) Λ β) Σ γ) Λ δ) Σ ε) Λ 1. Α. ΣΣωωσσττόό ττοο αα.. Θέμα ο Η ιδιοσυχνότητα του συστήματος

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. 3.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων;

ΟΡΟΣΗΜΟ. 3.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων; ΚΕΦΑΛΑΙΟ 1 Σύνθεση ταλαντώσεων 3.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων; 3. Να γίνει η σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας, ίδ ιας διεύθυνσης, διαφοράς φάσης μεταξύ τους φ,

Διαβάστε περισσότερα

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ

Φ Ρ Ο Ν Τ Ι Σ Τ Η Ρ Ι Α ΘΕΩΡΗΤΙΚΗ ΘΕΤΙΚΗ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΠΑ.Λ Προτεινόµενα Θέµατα Γ Λυκείου Ιούλιος 1 Φυσική ΘΕΜΑ Α Στις ερωτήσεις από 1-4 να βρείτε την σωστή απάντηση. 1. Η περίοδος της απλής αρμονικής ταλάντωσης ενός σώματος: Α. είναι ανεξάρτητη της μάζας του ταλαντούμενου

Διαβάστε περισσότερα

ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως

ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Τίτλος Κεφαλαίου: Μηχανικές & Ηλεκτρικές Ταλαντώσεις ιδακτική Ενότητα: Μηχανικές Αρµονικές Ταλαντώσεις Ασκήσεις που δόθηκαν στις εξετάσεις των Πανελληνίων ως Θέµα 3ο: (Ιούλιος 2010 - Ηµερήσιο) Σώµα Σ 1

Διαβάστε περισσότερα

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΚΑΙ ΗΛΕΚΤΡΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ Θέµα Α Στις ερωτήσεις 1-4 να βρείτε τη σωστή απάντηση. Α1. Για κάποιο χρονικό διάστηµα t, η πολικότητα του πυκνωτή και

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΗΣ Γ ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ ο : ΤΑΛΑΝΤΩΣΕΙΣ Θέµα ο ) Ενώ ακούµε ένα ραδιοφωνικό σταθµό που εκπέµπει σε συχνότητα 00MHz, θέλουµε να ακούσουµε το σταθµό που εκπέµπει σε 00,4MHz.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 6-0- ΘΕΡΙΝΑ ΣΕΙΡΑ Α ΘΕΜΑ ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003

ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2003 ΦΥΣΙΚΗ Γ ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 003 ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις)

2 ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ο Επαναληπτικό διαγώνισμα στο 1 ο κεφάλαιο Φυσικής Θετικής Τεχνολογικής Κατεύθυνσης (Μηχανικές και Ηλεκτρικές ταλαντώσεις) ΘΕΜΑ 1 ο Στις παρακάτω ερωτήσεις 1 4 επιλέξτε τη σωστή πρόταση 1. Ένα σώμα μάζας

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΔΕΚΑΠΕΝΤΕ (15) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας

Διαβάστε περισσότερα

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ

ΠΕΝΤΕΛΗ. Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Τάξη Μάθημα Εξεταστέα ύλη Γ Λυκείου Φυσικη κατευθυνσης ΠΕΝΤΕΛΗ Κτίριο 1 : Πλ. Ηρώων Πολυτεχνείου 13, Τηλ. 210 8048919 / 210 6137110 Κτίριο 2 : Πλ. Ηρώων Πολυτεχνείου 29, Τηλ. 210 8100606 ΒΡΙΛΗΣΣΙΑ Καθηγητής

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο ΕΚΦΩΝΗΣΕΙΣ Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Α ΦΑΣΗ ΤΑΞΗ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΤΕΥΘΥΝΣΗ: ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΙΑΓΩΝΙΣΜΑ 1 Ηµεροµηνία: Τετάρτη 7 Ιανουαρίου 015 ιάρκεια Εξέτασης: 3 ώρες ΘΕΜΑ A ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1 Α4 να γράψετε

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις

2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις 2ο ιαγώνισµα Γ Τάξης Ενιαίου Λυκείου Κυριακή 14 Σεπτέµβρη 2014 Το σύστηµα Ελατηρίου - Μάζας / Κρούσεις Σύνολο Σελίδων: επτά (7) - ιάρκεια Εξέτασης: 3 ώρες Βαθµολογία % Ονοµατεπώνυµο: Θέµα Α Στις ηµιτελείς

Διαβάστε περισσότερα

ΘΕΜΑ Α. (Μονάδες 5) (Μονάδες 5)

ΘΕΜΑ Α. (Μονάδες 5) (Μονάδες 5) ΘΕΜΑ Α 1) Σύστημα ελατηρίου-σώματος με μάζα m εκτελεί απλή αρμονική ταλάντωση με σταθερά επαναφοράς k. Αν η μάζα του σώματος τετραπλασιαστεί τότε: α/ το πλάτος της ταλάντωσης θα τετραπλασιαστεί β/ η περίοδος

Διαβάστε περισσότερα

Πριν λύσεις την εργασία σου διάβασε τα ποιο κάτω για να θυμηθείς. Η ενέργεια ταλάντωσης δεν είναι πάντα ιση με τη μηχανική ενέργεια συστήματος.

Πριν λύσεις την εργασία σου διάβασε τα ποιο κάτω για να θυμηθείς. Η ενέργεια ταλάντωσης δεν είναι πάντα ιση με τη μηχανική ενέργεια συστήματος. Πριν λύσεις την εργασία σου διάβασε τα ποιο κάτω για να θυμηθείς Η ενέργεια ταλάντωσης δεν είναι πάντα ιση με τη μηχανική ενέργεια συστήματος. Παράδειγμα : Έστω ένα σώμα αφήνεται από τη θέση φυσικού μήκους

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Γ Λυκείου Ταλαντώσεις Κρούσεις (θέματα Πανελληνίων)

Διαγώνισμα Φυσικής Γ Λυκείου Ταλαντώσεις Κρούσεις (θέματα Πανελληνίων) Διαγώνισμα Φυσικής Γ Λυκείου Ταλαντώσεις Κρούσεις (θέματα Πανελληνίων) ~Διάρκεια 3 ώρες~ Θέμα Α 1) Σε μια φθίνουσα ταλάντωση στην οποία το πλάτος μειώνεται εκθετικά με το χρόνο: i) Η περίοδος δε διατηρείται

Διαβάστε περισσότερα

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ. ΦΡΟΝΤΙΣΤΗΡΙΟ ΓΝΩΣΗ ΘΕΜΑ 1 1. Σε μια ελαστική κρούση δύο σωμάτων διατηρείται: α. Μόνο η ορμή του συστήματος των σωμάτων. β. Η ορμή και η κινητική ενέργεια του κάθε σώματος.

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης, Κυριτσάκας Βαγγέλης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Κυριακή 17-10-2010

Διαβάστε περισσότερα

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 1

ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ 1 ΤΥΠΟΛΟΓΙΟ-ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΚΕΦΑΛΑΙΟΥ ΠΕΡΙΟΔΙΚΑ ΦΑΙΝΟΜΕΝΑ Περίοδος (Τ) ενός περιοδικού φαινομένου είναι ο χρόνος που απαιτείται για μια πλήρη επανάληψη του φαινομένου. Αν σε χρόνο t γίνονται Ν επαναλήψεις

Διαβάστε περισσότερα

5. Δείξτε με λεκτικούς ισχυρισμούς ότι ο χρόνος κίνησης από τη θέση x = + A στην θέση

5. Δείξτε με λεκτικούς ισχυρισμούς ότι ο χρόνος κίνησης από τη θέση x = + A στην θέση Στα μεγέθη και στις περιγραφές των κινήσεων που ακολουθούν δεν γίνεται λεπτομερής ορισμός. Θεωρούνται καλώς ορισμένα (για τους σχετικούς φυσικά). Γενικά οι περιγραφές είναι σχετικά «χαλαρές» και επί της

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΣΕΠΤΕΜΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ 1 Ο : Στις παρακάτω ερωτήσεις 1 έως 4 να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

Θεωρία Μεθοδολογία Ασκήσεων Ερωτήσεις -Προβλήματα. Φυσική Κατεύθυνσης Γ Λυκείου - Ταλαντώσεις

Θεωρία Μεθοδολογία Ασκήσεων Ερωτήσεις -Προβλήματα. Φυσική Κατεύθυνσης Γ Λυκείου - Ταλαντώσεις Θεωρία Μεθοδολογία Ασκήσεων Ερωτήσεις -Προβλήματα Φυσική Κατεύθυνσης Γ Λυκείου - Ταλαντώσεις ΝΙΚΟΣ ΚΥΡΙΑΖΟΠΟΥΛΟΣ ΘΕΣΣΑΛΟΝΙΚΗ 01-013 - Στοιχεία επικοινωνίας Email nikkyriazo@sch.gr ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΦΥΣΙΚΗ Γ' ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση..

Διαβάστε περισσότερα

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ

ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΠΛΑΓΙΑ ΠΛΑΣΤΙΚΗ ΚΡΟΥΣΗ ΚΑΙ ΤΑΛΑΝΤΩΣΗ ΤΑΛΑΝΤΩΣΗ ΜΕΤΑ ΑΠΟ ΚΡΟΥΣΗ. Θα μελετήσουμε τώρα συστήματα που η ταλάντωση ξεκινά εξαιτίας μίας κρούσης ή έχουμε ήδη μία ταλάντωση και κάπου στην πορεία συμβαίνει και μία κρούση.. Σώμα που κινείται με κάποια

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ.

ΕΡΩΤΗΣΕΙΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ. ΕΡΩΤΗΣΕΙΣ ΣΤΙΣ ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ. 1 η κατηγορια ερωτησεων 1. Η γραφική παράσταση της απομάκρυνσης σε συνάρτηση με το χρόνο για ένα σημειακό αντικείμενο που εκτελεί Α.Α.Τ.φαινεται στο σχήμα : Με ποια

Διαβάστε περισσότερα

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004

ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 2004 ΦΥΣΙΚΗ Γ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 4 ΘΕΜΑ ο Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις - 4 και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε

Διαβάστε περισσότερα

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη

4. Σώμα Σ 1 μάζας m 1 =1kg ισορροπεί πάνω σε λείο κεκλιμένο επίπεδο που σχηματίζει με τον ορίζοντα γωνία φ=30 ο. Το σώμα Σ 1 είναι δεμένο στην άκρη 1. Δίσκος μάζας Μ=1 Kg είναι στερεωμένος στο πάνω άκρο κατακόρυφου ελατηρίου, σταθεράς k=200 N/m. Το άλλο άκρο του ελατηρίου είναι στερεωμένο σε οριζόντιο δάπεδο. Πάνω στο δίσκο κάθεται ένα πουλί με μάζα

Διαβάστε περισσότερα

Μηχανικές ταλαντώσεις

Μηχανικές ταλαντώσεις ο ΘΕΜΑ Μηχανικές ταλαντώσεις Α Ερωτήσεις Πολλαπλής Επιλογής Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση Η εξίσωση της

Διαβάστε περισσότερα

ΘΕΜΑ Α ΤΑΛΑΝΤΩΣΕΙΣ - 1 -

ΘΕΜΑ Α ΤΑΛΑΝΤΩΣΕΙΣ - 1 - - 1 - ΘΕΜΑ Α ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ Στις παρακάτω ερωτήσεις να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση ή στο σωστό συμπλήρωμά της. 1. [Ημ. Λύκειο

Διαβάστε περισσότερα

1.1.a. Μηχανικές Ταλαντώσεις.

1.1.a. Μηχανικές Ταλαντώσεις. ... ΑΑΤ και συνάντηση κινητών Σηµειακό σώµα Σ µάζας..a. Μηχανικές. m = kg ισορροπεί δεµένο στο ελεύθερο άκρο ιδανικού ελατήριου σταθεράς K = 00 N / m το άλλο άκρο του οποίο είναι ακλόνητα στερεωµένο σε

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ

ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Στις ημιτελείς προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση

Διαβάστε περισσότερα

Κρούσεις. 1 ο ΘΕΜΑ. Φυσική Γ Θετ. και Τεχν/κης Κατ/σης. Θέματα εξετάσεων

Κρούσεις. 1 ο ΘΕΜΑ. Φυσική Γ Θετ. και Τεχν/κης Κατ/σης. Θέματα εξετάσεων ο ΘΕΜΑ Κρούσεις Α. Ερωτήσεις πολλαπλής επιλογής Στην παρακάτω ερώτηση να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη σωστή απάντηση.. Σε κάθε κρούση ισχύει

Διαβάστε περισσότερα

ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις Α1 Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις Α1 Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 05-06 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 08//05 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΘΕΜΑ Α Ι. 1. Γ

ΛΥΣΕΙΣ ΘΕΜΑ Α Ι. 1. Γ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΛΥΣΕΙΣ ΘΕΜΑ Α Ι Γ Α dw d dx W = x σνθ = ( x σνθ ) P = σνθ dt dt dt P = σνθ 3 A 4 Δ (στην απάντηση β) πρέπει να προσθέσουμε την αύξηση

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2015 Β ΦΑΣΗ. Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 26 Απριλίου 2015 ιάρκεια Εξέτασης: 3 ώρες ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 015 ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ A Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΦΥΣΙΚΗ Ηµεροµηνία: Κυριακή 6 Απριλίου 015 ιάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ Στις ηµιτελείς προτάσεις Α1

Διαβάστε περισσότερα

ΟΠΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 4.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων;

ΟΠΡΟΣΗΜΟ ΓΛΥΦΑΔΑΣ. 4.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων; Σύνθεση ταλαντώσεων ΚΕΦΑΛΑΙΟ 1 4.1 Τι ονομάζουμε σύνθεση αρμονικών ταλαντώσεων; 4.2 Να γίνει η σύνθεση δύο απλών αρμονικών ταλαντώσεων ίδιας συχνότητας, ίδιας διεύθυνσης, διαφοράς φάσης μεταξύ τους φ,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ

1 ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ο ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΗΣ ΘΕΤΙΗΣ-ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΕΙΟΥ Θέμα ο. ύλινδρος περιστρέφεται γύρω από άξονα που διέρχεται από το κέντρο μάζας του με γωνιακή ταχύτητα ω. Αν ο συγκεκριμένος κύλινδρος περιστρεφόταν

Διαβάστε περισσότερα

Διάρκεια 90 min. Στις ερωτήσεις 1-4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση:

Διάρκεια 90 min. Στις ερωτήσεις 1-4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή απάντηση: 2ο ΓΕΛ ΠΕΙΡΑΙΑ Α Οµάδα ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗΣ-ΤΕΧΝ/ΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Ονοµατεπώνυµο: Τµήµα: Ηµεροµηνία: 2/2/200 Διάρκεια 90 min Ζήτηµα ο Στις ερωτήσεις -4 να επιλέξετε το γράµµα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

Κεφάλαιο 4 ο : Ταλαντώσεις

Κεφάλαιο 4 ο : Ταλαντώσεις Κεφάλαιο 4 ο : Ταλαντώσεις Φυσική Γ Γυμνασίου Περιοδικές Κινήσεις Όλες οι κινήσεις επαναλαμβάνονται σε ίσα χρονικά διαστήματα. Περιοδικές κινήσεις: Οι κινήσεις που επαναλαμβάνονται σε ίσα χρονικά διαστήματα.

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ ο Α) Στις ερωτήσεις 4 να σημειώσετε την σωστή. ) Σώμα εκτελεί απλή αρμονική ταλάντωση. Η συνολική δύναμη που δέχεται: (α) είναι σταθερή.

Διαβάστε περισσότερα

ΑΠΛΟ ΑΡΜΟΝΙΚΟ ΣΑΛΑΝΣΩΣΗ - ΤΣΗΜΑ ΕΛΑΣΗΡΙΟΤ ΩΜΑΣΟ

ΑΠΛΟ ΑΡΜΟΝΙΚΟ ΣΑΛΑΝΣΩΣΗ - ΤΣΗΜΑ ΕΛΑΣΗΡΙΟΤ ΩΜΑΣΟ ΑΠΛΟ ΑΡΜΟΝΙΚΟ ΣΑΛΑΝΣΩΣΗ - ΤΣΗΜΑ ΕΛΑΣΗΡΙΟΤ ΩΜΑΣΟ α) Ένα σώμα που μπορεί να εκτελεί απλή αρμονική ταλάντωση ονομάζεται απλός αρμονικός ταλαντωτής. Το σύστημα ελατήριο-μάζα είναι απλός αρμονικός ταλαντωτής,

Διαβάστε περισσότερα

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΚΥΡΙΑΚΗ 24/04/2016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ (ΑΠΟΦΟΙΤΟΙ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ Α Στις ερωτήσεις Α1 Α5 να γράψετε στο τετράδιο σας τον αριθμό

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ

ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ ΔΙΑΓΩΝΙΜΑ: Γ ΣΑΞΗ ΛΤΚΕΙΟΤ Μ Α Θ Η Μ Α : Υ ΤΙΚΗ ΚΑΣΕΤΘΤΝΗ Ε Π Ω Ν Τ Μ Ο :..... Ο Ν Ο Μ Α :........ Σ Μ Η Μ Α :..... Η Μ Ε Ρ Ο Μ Η Ν Ι Α : 1 3 / 1 0 / 2 0 1 3 Ε Π Ι Μ Ε Λ Ε Ι Α Θ Ε Μ Α Σ Ω Ν : ΥΑΡΜΑΚΗ ΠΑΝΣΕΛΗ

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ

ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β 22 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ÓÕÃ ÑÏÍÏ Θέµα Α ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ & ΕΠΑ.Λ. Β ΜΑΪΟΥ 03 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α-Α να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στη φράση, η οποία συµπληρώνει

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1 Ένα σώμα εκτελεί αρμονική ταλάντωση με ακραίες θέσεις που

Διαβάστε περισσότερα

4 ο Γενικό Λύκειο Κοζάνης Φυσική κατεύθυνσης Γ τάξης

4 ο Γενικό Λύκειο Κοζάνης Φυσική κατεύθυνσης Γ τάξης 4 ο Γενικό Λύκειο Κοζάνης Φυσική κατεύθυνσης Γ τάξης 1 ΠΑΡΑΤΗΡΗΣΕΙΣ 1. Στην ελαστική κρούση όπου το ένα σώμα είναι ακίνητο αρχικά εφαρμόζω τις γνωστές σχέσεις : Για το σώμα m 1 που αρχικά κινείται με ταχύτητα

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο

ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1. Θέµα 1 ο ΦΡΟΝΤΙΣΤΗΡΙΟ ΜΕΤΑΙΧΜΙΟ Επαναληπτικό στη Φυσική 1 Θέµα 1 ο 1. Το διάγραµµα του διπλανού σχήµατος παριστάνει τη χρονική µεταβολή της αποµάκρυνσης ενός σώµατος που εκτελεί απλή αρµονική ταλάντωση. Ποια από

Διαβάστε περισσότερα

υ λ γ. λ δ. λ 0 υ. Μονάδες 5

υ λ γ. λ δ. λ 0 υ. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 1 ΙΟΥΝΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΘΕΜΑ Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Δύο εγκάρσια κύματα

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKΤΩΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKΤΩΒΡΙΟΣ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΑΡΧΗ ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : OKΤΩΒΡΙΟΣ 205 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Ο : Στις παρακάτω ερωτήσεις έως 4 να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου. Ταλαντώσεις. Θέμα Α

Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου. Ταλαντώσεις. Θέμα Α Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου Θέμα Α 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση περιόδου Τ και τη χρονική στιγμή t=0 βρίσκεται στην ακραία αρνητική του απομάκρυνση. Μετά από χρόνο t 1 =

Διαβάστε περισσότερα

Μερικές ερωτήσεις στις φθίνουσες και στις εξαναγκασμένες

Μερικές ερωτήσεις στις φθίνουσες και στις εξαναγκασμένες Μερικές ερωτήσεις στις φθίνουσες και στις εξαναγκασμένες Α) Φθίνουσα Ταλάντωση λόγω ύναµης ίστασης F =-bυ Θεωρούµε ότι ο ταλωτής εκτελεί φθίνουσα ταλάντωση υπό την επίραση ύναµης επαναφοράς F επ =- Dx

Διαβάστε περισσότερα