ΑΝΑΛΟΓΙΚΟΣ ΚΑΙ ΜΗ ΑΝΑΛΟΓΙΚΟΣ ΣΥΛΛΟΓΙΣΜΟΣ ΣΕ ΜΑΘΗΤΕΣ ΜΕ ΣΥΜΠΤΩΜΑΤΑ ΥΣΛΕΞΙΑΣ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΑΝΑΛΟΓΙΚΟΣ ΚΑΙ ΜΗ ΑΝΑΛΟΓΙΚΟΣ ΣΥΛΛΟΓΙΣΜΟΣ ΣΕ ΜΑΘΗΤΕΣ ΜΕ ΣΥΜΠΤΩΜΑΤΑ ΥΣΛΕΞΙΑΣ"

Transcript

1 Αναλογικός και Μη Συλλογισµός σε Μαθητές µε Συµπτώµατα υσλεξίας ΑΝΑΛΟΓΙΚΟΣ ΚΑΙ ΜΗ ΑΝΑΛΟΓΙΚΟΣ ΣΥΛΛΟΓΙΣΜΟΣ ΣΕ ΜΑΘΗΤΕΣ ΜΕ ΣΥΜΠΤΩΜΑΤΑ ΥΣΛΕΞΙΑΣ Κυριακή Φράγκου, Χαράλαµπος Καψάλης, Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου ΠΕΡΙΛΗΨΗ Σκοπός της παρούσας εργασίας είναι η διερεύνηση του κατά πόσο παιδιά ηµοτικού Σχολείου µε συµπτώµατα δυσλεξίας, είναι ικανά να επιλύουν προβλήµατα αναλογικού και µη αναλογικού συλλογισµού. Τα αποτελέσµατα της έρευνας φανερώνουν ότι οι µαθητές µε προβλήµατα δυσλεξίας οδηγούνται σε λάθη, χρησιµοποιώντας τον αναλογικό συλλογισµό σε µη αναλογικά έργα. Επίσης εφαρµόζουν µε επιτυχία την αναλογική σκέψη µόνο σε συµβολικά έργα που δεν απαιτούν πολύπλοκες διαδικασίες (αναγωγή), για την εύρεση του σταθερού λόγου που συνδέει τα δύο ζεύγη µεταβλητών. 1. Εισαγωγή Οι αναλογικές σχέσεις κατέχουν σηµαντική θέση τόσο στη µαθηµατική εκπαίδευση όσο και στην καθηµερινή ζωή. Η µεγάλη σηµασία που δίνεται στο αναλογικό µοντέλο στα πλαίσια των σχολικών µαθηµατικών αλλά και από το κοινωνικό περιβάλλον, µπορεί να δηµιουργήσει στους µαθητές τη ψευδαίσθηση ότι το µοντέλο αυτό µπορεί να εφαρµοστεί παντού (Gagatsis & Kyriakides, 2000). Η ισχυρή τάση προς την εφαρµογή του αναλογικού µοντέλου αποτελεί ένα φαινόµενο το οποίο αντιστέκεται σε κάθε προσπάθεια αλλαγής και επηρεάζει πολλούς µαθητές σε µεγάλο εύρος ηλικιών και σε διαφορετικές µαθηµατικές περιστάσεις καθώς και περιπτώσεις από την καθηµερινή τους ζωή (De Bock et al, 2002). Σκοπός της παρούσας εργασίας είναι η διερεύνηση του κατά πόσο παιδιά ηµοτικού Σχολείου µε συµπτώµατα δυσλεξίας, είναι ικανά να επιλύουν προβλήµατα αναλογικού και µη αναλογικού συλλογισµού. Η δυσλεξία δεν είναι «αρρώστια που θεραπεύεται» ούτε µια «πάθηση που θα περάσει». Είναι µια εγγενής ιδιαιτερότητα που αφορά συγκεκριµένες διεργασίες του εγκεφάλου, οι οποίες σχετίζονται άµεσα και σε αρκετές περιπτώσεις δηµιουργούν εµπόδια στις δεξιότητες που ζητά το σχολείο. Τα δυσλεκτικά άτοµα δεν υστερούν σε τίποτα από τους «άλλους». Απλώς «µαθαίνουν», δηλαδή καταγράφουν, επεξεργάζονται, κατανοούν, οργανώνουν, αποµνηµονεύουν και µεταφέρουν τη γλώσσα µε το δικό τους τρόπο και ρυθµό. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 145

2 Κ. Φράγκου κ. ά. 2. υσλεξία Η δυσλεξία είναι η πιο κοινή από τις µαθησιακές διαταραχές, γνωστές ως Ειδικές Μαθησιακές υσκολίες δηλαδή τις καταστάσεις εκείνες που παρεµβάλλονται ανασταλτικά στην ικανότητα ενός παιδιού, µε φυσιολογική νοηµοσύνη, να αποκτήσει ορισµένες φωνολογικές / γραφοφωνηµικές δεξιότητες (δεξιότητα ανάγνωσης, δεξιότητα ορθογραφηµένης γραφής) ή άλλες νοητικές δεξιότητες (λογική σκέψη, Μαθηµατικές ικανότητες). Η δυσλεξία βρίσκεται στο επίκεντρο του ενδιαφέροντος διαφορετικών επιστηµονικών τοµέων (Ψυχολογίας, Νευρολογίας, Παιδαγωγικής), που την µελετούν ο καθένας και από διαφορετική σκοπιά λαµβάνοντας υπόψη κάθε φορά διαφορετικές παραµέτρους της. Αυτός είναι και ένας από τους λόγους που µέχρι σήµερα δε στάθηκε δυνατή η εύρεση ενός κοινά αποδεχτού ορισµού της δυσλεξίας. Σύµφωνα µε µια ερευνητική οµάδα για τη δυσλεξία και τον αναλφαβητισµό της ιεθνής Οµοσπονδίας Νευρολογίας (1968), δυσλεξία είναι η διαταραχή που παρουσιάζεται σε παιδιά τα οποία παρά τη φοίτησή τους σε συνηθισµένες σχολικές τάξεις αποτυγχάνουν να αποκτήσουν τις γλωσσικές δεξιότητες που σχετίζονται µε την ανάγνωση, τη γραφή και την ορθογραφία σε βαθµό ανάλογο µε τις διανοητικές τους ικανότητες. Η British Dyslexia Association ορίζει την δυσλεξία σαν ειδική δυσκολία του γραπτού ή προφορικού λόγου, που είναι ιδιοσυστατικής προέλευσης και η οποία µπορεί να συνοδεύεται από δυσκολία στην ενασχόληση µε αριθµούς. Σύµφωνα µε την Orton Dyslexia Association η δυσλεξία είναι µια µαθησιακή δυσκολία που χαρακτηρίζεται από προβλήµατα στην έκφραση ή τη δεκτικότητα του γραπτού ή προφορικού λόγου. Τα προβλήµατα µπορεί να εµφανιστούν στην ανάγνωση, στην ορθογραφία, στη γραφή, στην οµιλία ή στην ακρόαση. Η δυσλεξία είναι αποτέλεσµα πολλών αιτιών µαζί, που αλληλεξαρτώνται και αλληλεπιδρούν το ένα στο άλλο. Είναι πιθανό να οφείλεται σε οργανικές διαταραχές (ανωµαλία στην όραση, ανωµαλία στην ακοή, ανωµαλία του επικρατητικού συστήµατος του εγκεφάλου), σε ψυχικές διαταραχές (ανωριµότητα, αφοµοιωτικές γνωστικές γλωσσικές ανωµαλίες) και σε λειτουργικές αδυναµίες (αδυναµία προσοχής, αδυναµία προσανατολισµού στο χώρο, αδυναµία διαχωρισµού όλου-µέρους). ε δηµιουργείται ξαφνικά µετά από κάποιο έτος της ηλικίας και δεν εξαφανίζεται µετά από χρόνια. Τα παιδιά µε δυσλεξία παρουσιάζουν τα παρακάτω γενικά χαρακτηριστικά: Υπάρχει διαφορά ανάµεσα στην επίδοση που δείχνουν στο γλωσσικό µάθηµα και σε εκείνη που θα περιµέναµε να έχουν βάσει της νοητικής τους ικανότητας. Πιθανόν να έχουν δυσκολία στον προσανατολισµό, στην αίσθηση του χώρου και του χρόνου. εν µπορούν να συγκεντρώσουν την προσοχή τους για ικανοποιητικό χρονικό διάστηµα ανάλογα µε την ηλικία τους σε µια συγκεκριµένη δραστηριότητα και ίσως χαρακτηρίζονται από παρορµητικότητα στον τρόπο που αντιδρούν και ανταποκρίνονται. Χαρακτηρίζονται από µικρής έκτασης και διάρκειας βραχύχρονη µνήµη. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 146

3 Αναλογικός και Μη Συλλογισµός σε Μαθητές µε Συµπτώµατα υσλεξίας Πιθανόν να έχουν Ειδικές Μαθησιακές υσκολίες και στην Αριθµητική (δυσαριθµησία). εν έχουν κανένα απολύτως πρόβληµα στην άρθρωση και στην οµιλία (εκτός αν τυχαία συνυπάρχει άλλη διαταραχή), όµως δεν εκφράζονται µε πολλές προτάσεις όταν περιγράφουν τις εµπειρίες τους ή τα συναισθήµατά τους και τις σκέψεις τους και δεν διαθέτουν πλούσιο λεξιλόγιο. Συνηθίζουν να απαντούν µονολεκτικά στις ερωτήσεις που τους γίνονται ή µε πολύ λίγες φράσεις, µόνο και µόνο για να εκφράσουν την ουσία των όσων σκέφτονται. Μερικές φορές κάνουν και λάθη συντακτικού και σηµασιολογικού τύπου. Παρ όλη την αδυναµία που δείχνουν στην έκφραση, έχουν πλούσιο συναισθηµατικό κόσµο, καλή κριτική ικανότητα, κάνουν συλλογισµούς και προβληµατίζονται για διάφορα κοινωνικά θέµατα, διαµορφώνουν τις προσωπικές τους απόψεις και θέσεις, αισθάνονται όµως σαν να µην µπορούν να βρουν τα λόγια για να περιγράψουν όλον αυτόν τον πλούτο των ιδεών που κρύβουν. εν οργανώνουν καλά τη µελέτη τους, την εργασία τους, τον προσωπικό τους χώρο. εν συγκρατούν το πρόγραµµα των υποχρεώσεών τους και έτσι δεν ανταποκρίνονται µε συνέπεια. Μπορεί να είναι ακατάστατα ή αδέξια. εν δείχνουν ενδιαφέρον για τα βιβλία και οτιδήποτε στο οποίο χρησιµοποιείται ο γραπτός λόγος. Μερικά παιδιά έχουν προβλήµατα στην αντίληψη της διαδοχής και της αλληλουχίας. υσκολεύονται να αναγνωρίσουν την οµοιοκαταληξία ανάµεσα σε δύο λέξεις που συναντούν είτε µεµονωµένα, είτε µέσα σε στροφή ποιήµατος ή σε κείµενο. Έχουν σηµαντική δυσκολία στην επεξεργασία του φωνολογικού επιπέδου της γλώσσας και έτσι κάνουν λάθη σε ασκήσεις κατάτµησης του προφορικού λόγου, συγκερασµού γλωσσικών φθόγγων, σχέσης συµβόλου-ακούσµατος και αναγνώρισης και εντόπισης φθόγγων στη σωστή τους θέση µέσα σε λέξη ή πρόταση. Χαρακτηρίζονται από σηµαντική δυσκολία οπτικής και ακουστικής µνήµης, ενώ αντίθετα στις ικανότητες οπτικής και ακουστικής αντίληψης δεν εκδηλώνεται µειονεξία. Πρέπει να τονιστεί ότι όλα τα δυσλεκτικά παιδιά δεν έχουν τα ίδια συµπτώµατα και µε την ίδια ένταση. Όσα περισσότερα και εντονότερα συµπτώµατα εµφανίζει ένα παιδί, τόσο πιο βαριά είναι η µορφή της δυσλεξίας. Ο εκπαιδευτικός που έχει να αντιµετωπίσει µέσα στην τάξη µαθητή ή µαθητές µε δυσλεξία, πρέπει: 1. Να δείχνει κατανόηση, να παρέχει την απαραίτητη ψυχολογική στήριξη και να δίνει όσο συχνά χρειάζεται την πρέπουσα επιβράβευση. 2. Να συζητά µε το µαθητή το πρόβληµα του και να αποφασίζουν µαζί για τους τρόπους εξέτασης και αντιµετώπισής του µέσα στην τάξη. Πάνω απ όλα, ο εκπαιδευτικός πρέπει να δώσει στο παιδί να καταλάβει ότι οι προσπάθειές του θα πετύχουν µόνο αν το ίδιο το θέλει πραγµατικά: χρειάζεται να κουραστεί πολύ, να προσπαθήσει και να παλέψει. Η προσπάθεια πρέπει να γίνει συνείδηση στο παιδί. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 147

4 Κ. Φράγκου κ. ά. 3. Να δίνει την ευκαιρία στο παιδί να διακριθεί σε κάποια άλλη δραστηριότητα (π.χ. σπορ, µουσική, τεχνικά) και να ενθαρρύνει τις προσπάθειές του. Αν ενισχύει αυτή την ιδιαίτερη κλίση του παιδιού και δείξει ενδιαφέρον και θαυµασµό, αυτόµατα το εξυψώνει στα µάτια των συµµαθητών του, άσχετα µε το αν δεν µπορεί να γράψει ή να συλλαβίζει στην ανάγνωση. 4. Να αποφεύγει τις συγκρίσεις µέσα στην τάξη και να µη δηµιουργεί «ανταγωνιστικό» κλίµα µεταξύ των παιδιών. 5. Να µην επιβάλλει στο παιδί να διαβάζει µεγαλόφωνα, τη στιγµή που ξέρει ότι δυσκολεύεται στην ανάγνωση, ή να του ζητά να γράψει στον πίνακα, εφόσον έχει πρόβληµα µε την ορθογραφία ή την καλλιγραφία. 6. Αν το παιδί έχει δυσκολίες στην ανάγνωση και στην κατανόηση των εννοιών των γραπτών ερωτήσεων, θα χρειάζεται περισσότερο χρόνο για τη διεκπεραίωση της γραπτής εργασίας (π.χ. στα διαγωνίσµατα), και αυτό είναι κάτι που πρέπει να καταλάβει και να αποδεχτεί ο εκπαιδευτικός. 7. Χωρίς να γίνεται καταπιεστικός ή φανερά προστατευτικός, ο εκπαιδευτικός πρέπει να επιµένει ο συγκεκριµένος µαθητής, στη διάρκεια του µαθήµατος, να κάθεται όσο το δυνατό πιο κοντά του. Πρώτον, για να µπορεί να ελέγχει το µαθητή χωρίς να γίνεται αντιληπτός και, δεύτερον, για να µην αποσπάται η προσοχή του παιδιού από τους συµµαθητές του που κάθονται µπροστά και γύρω του. 8. Τέλος, το πιο βασικό είναι ο εκπαιδευτικός να βοηθήσει τα υπόλοιπα παιδιά να καταλάβουν το πρόβληµα του συµµαθητή τους, χωρίς να υποβιβάσει ή να γελοιοποιήσει το παιδί στα µάτια τους, τονίζοντας τις ικανότητες και τις δεξιότητές του σε άλλους τοµείς. 3. υσλεξία και Μαθηµατικά Τα δυσλεκτικά παιδιά έχουν συχνά ψηλό IQ και µπορεί να έχουν ταλέντο στα µαθηµατικά. Όµως, έχουν να αντιµετωπίσουν το πρόβληµα µνήµης, το οποίο δεν τα βοηθά στην επιτυχία των µαθηµατικών (Steeves, 1983). Οι δυσλεκτικοί συχνά αντιµετωπίζουν δυσκολίες στα µαθηµατικά, κυρίως σε θέµατα κατανόησης της έννοιας του αριθµού και στην αριθµητική. Στη συνέχεια παρουσιάζονται τα προβλήµατα που παρουσιάζουν τα παιδιά µε δυσλεξία στα Μαθηµατικά: α. Προβλήµατα µνήµης: Αδύνατο να θυµούνται µαθηµατικά δεδοµένα ή πληροφορίες (π.χ. πίνακες πολλαπλασιασµού). Ξεχνούν στάδια στους αλγόριθµους. Αδυναµία στα επαναληπτικά µαθήµατα ή εξετάσεις. υσκολία στην ανάγνωση της ώρας. υσκολία στα πολύπλοκα λεκτικά προβλήµατα. β. Ελλειµµατική προσοχή: υσκολία στη διατήρηση της προσοχής στα βήµατα του αλγόριθµου ή στην επίλυση µαθηµατικού προβλήµατος. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 148

5 Αναλογικός και Μη Συλλογισµός σε Μαθητές µε Συµπτώµατα υσλεξίας υσκολία στη διατήρηση προς προσοχής στην ακολουθία των σταδίων που χρειάζονται για την συµπλήρωση µιας µεγάλης διαίρεσης. υσκολία στη διατήρηση προσοχής στη κριτική καθοδήγηση. Γ. Ανικανότητα µεταφοράς: Γράφουν προς αριθµούς δυσανάγνωστα, αργά και µε ανακρίβεια (προς φορές αντιγράφουν λανθασµένα από το δικό προς γραπτό). υσκολία στη γραφή αριθµών σε µικρούς χώρους.. υσκολία προς ακουστικές διαδικασίες: υσκολία στην προφορική εξάσκηση (π.χ. πίνακες πολλαπλασιασµού). εν µπορούν να µετρήσουν προς τα πάνω ή προς τα κάτω. Ε. Οπτική χωρική ελλειµµατικότητα: Χάνουν το χώρο στο χαρτί υσκολία στη διάκριση αριθµών (17 και 71, 2 και 5, 6 και 9), νοµισµάτων, χειρισµό συµβόλων (+ και x) και ρολογιών χεριού. υσκολία στην ευθύγραµµη γραφή. υσκολία στη συσχέτιση οδηγιών µε προβλήµατα που περιέχουν εντολές χώρου (πάνω κάτω, δεξιά αριστερά). υσκολία στη χρησιµοποίηση της αριθµητικής γραµµής. Πρόβληµα µε οφθµαλµοκίνηση Κάποια από τα πιο πάνω προβλήµατα παρουσιάζουν και µη δυσλεκτικά παιδιά. Όλα τα δυσλεκτικά παιδιά δεν έχουν τα ίδια συµπτώµατα και µε την ίδια ένταση. 4. Αναλογικός συλλογισµός και «Ψευδοαναλογία» Από τα παλαιότερα χρόνια, η µέθοδος των τριών ή µε πιο σύγχρονη ορολογία, ο αναλογικός συλλογισµός, αποτελεί ένα σηµαντικό µαθηµατικό εργαλείο για το χειρισµό φαινοµένων στη φυσική, την χηµεία, τα οικονοµικά, την αστρονοµία και σε άλλα πεδία της ανθρώπινης ενασχόλησης (De Bock, Verschaffel & Janssens 1998). Το γεγονός αυτό µπορεί εύκολα να υποδηλώσει ότι ο αναλογικός συλλογισµός είναι ένα µοντέλο ευρείας εφαρµογής, κάτι που ενισχύεται και από τη συχνή του χρήση. Η βασική γλωσσική δοµή προβληµάτων που αφορούν την αναλογικότητα περιλαµβάνει τέσσερις ποσότητες (α, β, γ, δ), από τις οποίες, στις περισσότερες περιπτώσεις οι τρεις είναι γνωστές και η µια άγνωστη, καθώς και µια ένδειξη ότι η ίδια σχέση που συνδέει το α µε το β, συνδέει και το γ µε το δ. Στην περίπτωση ύπαρξης πραγµατικής αναλογίας αυτή η σχέση είναι ένας σταθερός λόγος (Behr, Harel, Post & Lesh, 1992). Ήδη από µικρή ηλικία, τα παιδιά έρχονται σε επαφή µε αναλογικές σχέσεις (Van de Brick & Streefland, 1979) και έτσι είναι σε θέση να σκεφτούν ότι µια κούκλα έχει δυο πόδια και άρα τρεις κούκλες έχουν έξι πόδια. Στη δηµοτική και µέση εκπαίδευση οι µαθητές εµβαθύνουν περισσότερο στην έννοια της αναλογίας. Καθ όλη Κινήσεις των µατιών δυσλεκτικού µαθητή κατά την εκτέλεση αφαίρεσης. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 149

6 Κ. Φράγκου κ. ά. τη διάρκεια της εκπαίδευσης η έννοια της αναλογίας εξελίσσεται από τον παραδοσιακό κανόνα των τριών στη δηµοτική εκπαίδευση, σε γραµµικά µοντέλα στη µέση εκπαίδευση και σε πιο αφηρηµένες καταστάσεις στην ανώτατη εκπαίδευση (De Bock, Van Dooren, Janssens & Verschaffel, 2002). Η µεγάλη σηµασία που δίνεται στο αναλογικό µοντέλο στα πλαίσια των σχολικών µαθηµατικών αλλά και από το κοινωνικό περιβάλλον, µπορεί να δηµιουργήσει στους µαθητές τη ψευδαίσθηση ότι το µοντέλο αυτό µπορεί να εφαρµοστεί παντού (Gagatsis & Kyriakides, 2000). Όπως αναφέρει χαρακτηριστικά ο Freudenthal (1983), η αναλογικότητα είναι τέτοια υποβλητική ιδιότητα σχέσεων που κάποιος µπορεί πολύ εύκολα να παραπλανηθεί και να χειρίζεται κάθε αριθµητική σχέση ως αναλογική. Η τάση της ευρείας εφαρµογής του αναλογικού µοντέλου, ακόµη και σε µη γραµµικές καταστάσεις αναφέρεται στη βιβλιογραφία ως ψευδαίσθηση της αναλογίας («illusion of linearity»), γραµµική παγίδα («linear trap»), γραµµικό εµπόδιο («linear obstacle») ή γραµµική παρανόηση («linear misconception») (De Bock et al, 1998). Πρόσφατα, έχει γίνει µια σηµαντική προσπάθεια από διάφορους ερευνητές ώστε να διερευνηθεί και να αντιµετωπιστεί η τάση των µαθητών να χειρίζονται µη αναλογικά προβλήµατα, ως επί το πλείστον, εµβαδού αλλά και όγκου, ως αναλογικά ( De Bock et al, 1998, De Bock et al, 2002, De Bock et al, 2003, Modestou, Gagatsis & Pitta-Pantazi, 2004). Πιο συγκεκριµένα οι De Bock et al (1998), διερεύνησαν την παρουσία και τη ισχύ του φαινοµένου της «ψευδοαναλογίας» σε µαθητές δύο ηλικιακών οµάδων (12-13 και ετών) κατά την ενασχόλησή τους µε προβλήµατα που αφορούσαν το µήκος και το εµβαδόν απλών γεωµετρικών σχηµάτων. Τα αποτελέσµατα αποκάλυψαν την ύπαρξη µιας ισχυρής τάσης ανάµεσα στους µαθητές ετών στη χρήση του αναλογικού συλλογισµού σε µη αναλογικά προβλήµατα, µια τάση που ήταν πιο εµφανής ακόµη και στους µαθητές ετών. Από την ανασκόπηση της βιβλιογραφίας γίνεται εµφανές ότι η ύπαρξη του φαινοµένου της ψευδαίσθησης της αναλογίας δεν είναι αποτέλεσµα κάποιου πειραµατικού πλαισίου. Είναι ένα επαναλαµβανόµενο φαινόµενο το οποίο φαίνεται να είναι αρκετά γενικό και ανθεκτικό (De Bock et al, 2003). Ο αναλογικός συλλογισµός φαίνεται να είναι βαθιά ριζωµένος στη διαισθητική γνώση των µαθητών και χρησιµοποιείται αυθόρµητα και ασυνείδητα, κάτι που κάνει την αναλογική προσέγγιση φυσική, αδιαµφισβήτητη και σε κάποιο βαθµό απρόσιτη για στοχασµό (De Bock et al, 2002). 5. Μεθοδολογία Η έρευνα έγινε σε 9 µαθητές ηµοτικού Σχολείου που παρουσιάζουν προβλήµατα δυσλεξίας. Τα παιδιά αυτά ήταν ενταγµένα στο πρόγραµµα υποστήριξης δυσλεκτικών παιδιών του Παγκύπριου Συνδέσµου για τη υσλεξία. Οι µαθητές ήταν ηλικίας από 8 µέχρι 12 χρόνων (από µέχρι Στ τάξη ηµοτικού). Για τη διερεύνηση και απάντηση των ερωτηµάτων τις έρευνας ζητήθηκε από τους µαθητές να δώσουν γραπτές απαντήσεις σε ένα ερωτηµατολόγιο. Επιπρόσθετα σε 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 150

7 Αναλογικός και Μη Συλλογισµός σε Μαθητές µε Συµπτώµατα υσλεξίας τέσσερα από τα 9 παιδιά έγιναν ταυτόχρονα ηµιδοµηµένες συνεντεύξεις σκοπός των οποίων ήταν να εξετάσουµε τον τρόπο σκέψης των µαθητών και τον τρόπο µε τον οποίο δικαιολογούν τις απαντήσεις τους. Η διαδικασία συλλογής των δεδοµένων έγινε στο χρονικό διάστηµα 3 µέχρι 14 Απριλίου Περιγραφή δοκιµίου Το δοκίµιο περιελάµβανε τριών ειδών έργα αναλογικού και µη αναλογικού συλλογισµού. Αναλυτικότερα υπήρχαν 4 µη αναλογικά γεωµετρικά έργα, ένα λεκτικό µη αναλογικό έργο και 6 συµβολικά έργα αναλογιών. Σκοπός µας ήταν να αποφύγουµε τα λεκτικά προβλήµατα αναλογιών αφού η εργασία αναφέρεται σε παιδιά µε δυσλεξία που έχουν αυξηµένα προβλήµατα ανάγνωσης και κατανόησης γραπτού λόγου. Στο κάθε ένα από τα 4 γεωµετρικά έργα δίνεται αρχικά ένα σχήµα και ζητείται από τους µαθητές να επιλέξουν από τέσσερα δοσµένα σχήµατα ποιο είναι αυτό που προκύπτει αν διπλασιάσουµε τις διαστάσεις του αρχικού. ίνονται δύο κανονικά σχήµατα (ορθογώνιο και τετράγωνο) και δύο ακανόνιστα γεωµετρικά σχήµατα. Στην συνέχεια δίνεται ένα µη αναλογικό λεκτικό πρόβληµα το οποίο οδηγεί τους µαθητές στην χρήση αναλογικής σκέψης για την επίλυσή του. «Η Μαρία είναι 6 χρονών και µένει στον 2ο όροφο µιας πολυκατοικίας. Όταν η Μαρία θα είναι 12 χρονών σε πιο όροφο της πολυκατοικίας της θα κατοικεί;» Τέλος το δοκίµιο περιλαµβάνει 6 συµβολικά έργα αναλογικού συλλογισµού στα οποία και πάλι ο µαθητές καλούνται να επιλέξουν την ορθή απάντηση. Για τα έργα αυτά υπήρχε και σχετικό παράδειγµα: ( 4, 5, 6 ) Η απάντηση είναι το Σκοπός και ερευνητικές υποθέσεις Η παρούσα έρευνα πραγµατοποιήθηκε σε δυσλεκτικούς µαθητές ηµοτικού σχολείου και είχε ως βασικό σκοπό τη διερεύνηση του κατά πόσο είναι ικανοί να κατανοούν και να επιλύουν έργα αναλογικού και µη αναλογικού συλλογισµού. Ειδικότερα, οι υποθέσεις της έρευνας µας είναι οι ακόλουθες: 1. Οι µαθητές της έρευνας µας θα παρουσιάζουν ψηλότερες επιδόσεις σε έργα αναλογίας παρά σε έργα µη αναλογικού συλλογισµού. 2. Οι δυσλεκτικοί µαθητές θα εφαρµόζουν τον αναλογικό συλλογισµό στα γεωµετρικά έργα µη αναλογικού συλλογισµού. 3. Οι δυσλεκτικοί µαθητές θα παρουσιάζουν σηµαντικά προβλήµατα στην κατανόηση µη αναλογικών έργων λεκτικής µορφής. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 151

8 Κ. Φράγκου κ. ά. 6. Αποτελέσµατα Είδος έργων Μη αναλογικός συλλογισµός Απαντήσεις Γεωµετρικά Λεκτικά Αναλογίας Συµβολικά Σωστές 41,67% 55,55% 72,22% Λάθος 58,33% 44,45% 27,78% Πίνακας1: Γενικά αποτελέσµατα στα έργα του δοκιµίου. Έργα Μ.Ο. Τ.Α. Μη αναλογικά 0,44 0,502 Αναλογικά 0,72 0,452 ( t =,003, df = 97, P<0,05) Πίνακας 2: Σύγκριση επίδοσης σε έργα αναλογίας και µη αναλογίας. Τα αποτελέσµατα του πίνακα1 παρουσιάζουν ότι ο µαθητές της έρευνας είχαν την χαµηλότερη επίδοση στα γεωµετρικά έργα µη αναλογικού συλλογισµού και την ψηλότερη επίδοση στα έργα αναλογίας που δίνονται συµβολικά. Το γεγονός αυτό επιβεβαιώνει την πρώτη υπόθεση της εργασίας µας. Η διαφορά στην επίδοση των µαθητών όπως αυτή παρουσιάζεται στους πιο πάνω πίνακες είναι και στατιστικά σηµαντική σύµφωνα µε έλεγχο που έγινε µε t-test. Τα αποτελέσµατα αυτά δικαιολογούνται και από τις συνεντεύξεις που έγιναν µέσα από τις οποίες παρατηρήθηκε ότι τα περισσότερα από τα λάθη των µαθητών οφείλονταν στην χρήση αναλογικής σκέψης σε µη αναλογικά προβλήµατα. Αναλυτικότερα στα πρώτα τέσσερα έργα που περιλάµβαναν σχήµατα οι µαθητές έχουν το χαµηλότερο µέσο όρο επιτυχίας 41,67%. Η χαµηλή αυτή επίδοση πιθανόν να οφείλεται στο ότι οι µαθητές αυτοί παρουσιάζουν οπτική και χωρική ελλειµµατικότητα που τους προκαλεί δυσκολίες στην συσχέτιση οδηγιών που περιέχουν πληροφορίες χώρου (χάνουν το χώρο στο χαρτί). Στα δύο έργα (1ο και 3ο) τα οποία περιλάµβαναν κανονικά σχήµατα οι περισσότεροι (5 από τους 9) µαθητές απαντούν σωστά. Στα άλλα δύο έργα όπου τα σχήµατα είναι ακανόνιστα οι περισσότεροι µαθητές αποτυγχάνουν (6 από τους 9). Το πιο συχνό λάθος που έκαναν οι µαθητές ήταν να µετρούν τα τετραγωνάκια (εµβαδόν) του σχήµατος και να τα διπλασιάζουν. Χαρακτηριστικές απαντήσεις µαθητών ήταν οι ακόλουθες: «...µετρώ τα τετραγωνάκια, τα κάνω φορές 2 και βρίσκω το σχήµα...», «χρειάζοµαι 24 (τετράγωνα) γιατί έχω 12...». Επίσης δεν λαµβάνουν υπόψη ότι ένα σχήµα που διπλασιάζεται µεγαλώνει και ως προς τις δύο διαστάσεις του. Χαρακτηριστικά: «...αφού το πλάτος είναι 4... τώρα θα γίνει 8», δεν λαµβάνει δηλαδή υπόψη ότι µε τον ίδιο τρόπο και το µήκος που είναι 3 θα γίνει 6. Το 5ο έργο του δοκιµίου ήταν λεκτικό πρόβληµα µη αναλογικού συλλογισµού. Στο έργο αυτό 5 από τους 9 µαθητές απάντησαν σωστά και 4 λάθος. Οι δύο από τις τέσσερις λάθος απαντήσεις οφείλονταν στο ότι ο µαθητές χρησιµοποιούν αναλογικό συλλογισµό σε µη αναλογικό πρόβληµα έτσι έδιναν απάντηση ότι θα κατοικεί στον 4ο όροφο. Από τους 4 µαθητές που είχαµε και συνεντεύξεις 3 απάντησαν λάθος και 1 µόνο σωστά. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 152

9 Αναλογικός και Μη Συλλογισµός σε Μαθητές µε Συµπτώµατα υσλεξίας Ο µαθητής που έδωσε σωστή απάντηση είπε: «Γιατί µου έβαλες τούτο το πρόβληµα; Τι σχέση έχει η ηλικία µε τον όροφο που κατοικεί;» Από τους µαθητές που έδωσαν λανθασµένες απαντήσεις οι δύο δεν έχουν αντίληψη του αναλογικού συλλογισµού, αφού το µόνο που κάνουν είναι να χρησιµοποιούν τα αριθµητικά δεδοµένα του προβλήµατος για να κάνουν τυχαίες πράξεις, π.χ. 6+12=18 θα κατοικεί στον 18ο όροφο!. Ο τρίτος µαθητής που έδωσε λάθος απάντηση, φαίνεται ότι χρησιµοποιεί µηχανικά κάποιο αναλογικό µοντέλο. Χαρακτηριστικός είναι ο διάλογος που έγινε: Μ: Θα κατοικεί στον 4ο όροφο. Ε: Είσαι σίγουρος; Μ: Σε τέτοια προβλήµατα ή θα κάνω πολλαπλασιασµό ή θα κάνω διαίρεση. Άρα ή στον 1ο ή στον 4ο όροφο θα κατοικεί... νοµίζω στον 4ο. Στα τελευταία 6 έργα, που ήταν συµβολικές ασκήσεις αναλογικού συλλογισµού οι µαθητές (όπως φαίνεται στον πίνακα 1) είχαν ποσοστό επιτυχίας 72,22%. Οι περισσότεροι µαθητές αντιλαµβάνονται το λόγο που συνδέει τους δύο πρώτους αριθµούς και εφαρµόζουν την σταθερή αυτή σχέση για να βρουν µε επιτυχία το ζητούµενο της άσκησης. Όλα τα λάθη των µαθητών που σηµειώθηκαν στην άσκηση αυτή, οφείλονται στην αδυναµία των µαθητών να βρουν τον λόγο που συνδέει τα δύο ζεύγη αριθµών µε αποτέλεσµα να εφαρµόζουν προσθετική στρατηγική για να βρουν το ζητούµενο. Αξιοσηµείωτο είναι το γεγονός ότι και οι 9 µαθητές απέτυχαν στην εύρεση της ορθής απάντησης στην πιο κάτω αναλογία σε αντίθεση µε τις υπόλοιπες: ( 17, 18, 19 ) Το λάθος στην άσκηση αυτή πηγάζει από το γεγονός ότι για την λύση της, οι µαθητές θα έπρεπε να κάνουν πρώτα αναγωγή ή απλοποίηση του πρώτου λόγου για να µπορέσουν να βρουν τη σχέση ( 5/6 ) που θα τους οδηγήσει στην εύρεση του άγνωστου όρου. Αντί αυτού όλοι οι µαθητές έδωσαν ως απάντησή τους το 17. Και οι 4 µαθητές από τους οποίους είχαµε συνεντεύξεις είπαν: «...αφού προσθέτω 2 στο 10 για να γίνει έτσι και το 15 γίνεται 17», «... το 10 δεν πάει στο 12. Όµως από το 10 έχω 12 αν προσθέσω 2. Έτσι προσθέτω και στο 15 δύο...». Από τα πιο πάνω αποτελέσµατα φαίνεται ότι οι µαθητές της έρευνας εφαρµόζουν µε επιτυχία την αναλογική σκέψη µόνο σε έργα αναλογιών που δεν απαιτούν πολύπλοκες διαδικασίες (αναγωγή), για την εύρεση του σταθερού λόγου που συνδέει τα δύο ζεύγη µεταβλητών. 7. Συµπεράσµατα Συζήτηση Από τα αποτελέσµατα της έρευνας προκύπτει ότι και οι µαθητές που παρουσιάζουν προβλήµατα δυσλεξίας χειρίζονται τα µη αναλογικά προβλήµατα ως αναλογικά. Το συµπέρασµα αυτό δεν διαφοροποιείται καθόλου από τα αποτελέσµατα 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 153

10 Κ. Φράγκου κ. ά. άλλων ερευνών (De Bock et al, 1998, De Bock et al, 2002, De Bock et al, 2003, Modestou, Gagatsis & Pitta-Pantazi, 2004) που είχαν ως υποκείµενα µαθητές χωρίς κανένα µαθησιακό πρόβληµα. Επίσης το συµπέρασµα αυτό συµφωνεί µε την άποψη των De Bock et al (2003) ότι το φαινόµενο της ψευδαίσθησης της αναλογίας δεν είναι ένα συνηθισµένο και τυχαίο λάθος αλλά αποτελεί επιστηµολογικό εµπόδιο το οποίο φαίνεται να είναι αρκετά γενικό και ανθεκτικό. Παράλληλα στα µη αναλογικά προβλήµατα (εµβαδόν) τα λάθη των συγκεκριµένων µαθητών δεν αποδίδονται µόνο στην ψευδαίσθηση της αναλογίας αλλά ενισχύονται και από την οπτική και χωρική ελλειµµατικότητα που είναι ένα από τα χαρακτηριστικά των ατόµων µε προβλήµατα δυσλεξίας. Τέλος οι µαθητές της έρευνας φαίνεται να είναι σε θέση να χρησιµοποιούν την αναλογική σκέψη µόνο στις περιπτώσεις που δεν απαιτείται η απλοποίηση ή αναγωγή για την εύρεση της σταθερής σχέσης που διέπει τα ζεύγη των µεταβλητών. Σε αυτές τις περιπτώσεις οι µαθητές χρησιµοποιούν την προσθετική στρατηγική. 8. Εισηγήσεις Μέσα από την τριβή µας µε το αντικείµενο αυτό παρατηρήσαµε ότι µια πολύ σηµαντική µεταβλητή η οποία πιθανόν να επηρεάζει τα αποτελέσµατα της έρευνας, την συµπεριφορά και αντίδραση των µαθητών µε προβλήµατα δυσλεξίας, είναι και το είδος της αναπαράστασης µε το οποίο παρουσιάζεται στους µαθητές αυτούς η κάθε άσκηση. Ως γνωστό τα δυσλεκτικά άτοµα παρουσιάζουν κάποιες ιδιαιτερότητες στον τρόπο κατανόησης διαφόρων ερεθισµάτων. Θα ήταν καλό πιστεύουµε να εξεταστεί κατά πόσο η αναπαραστάσεις των έργων επηρεάζουν και πως τα συγκεκριµένα άτοµα. 9. Περιορισµοί Οι δυσλεκτικοί µαθητές αποτελούν µία ετερογενή οµάδα, όπου ο κάθε µαθητής παρουσιάζει διαφορετικά χαρακτηριστικά και ιδιαιτερότητες. Λόγο αυτού του γεγονότος δεν θα ήταν σωστό να οδηγηθούµε σε γενικεύσεις σύµφωνα µε τα όποια αποτελέσµατα και συµπεράσµατα καταλήξει η οποιαδήποτε έρευνα. εν ήταν εφικτή η συνέντευξη µε όλους τους µαθητές που αποτελούσαν το δείγµα της έρευνας µας λόγο της αρνητικής στάσης κάποιων γονιών. Για το λόγο αυτό τα ερωτηµατολόγια χορηγήθηκαν µέσω του Παγκύπριου Συνδέσµου για τη υσλεξία. Οι 9 µαθητές του δείγµατός µας, παρακολουθούν συστηµατικά ειδική αγωγή. Αυτό επηρεάζει µε δύο τρόπους. Πρώτον είναι πιθανόν κάποιοι από τους µαθητές να εργάστηκαν και να εξασκήθηκαν ξανά σε παρόµοιες ασκήσεις. Επίσης η αγωγή που δέχεται ο κάθε µαθητής είναι εξατοµικευµένη και προσαρµοσµένη στις µαθησιακές ανάγκες και ικανότητές του. 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 154

11 Αναλογικός και Μη Συλλογισµός σε Μαθητές µε Συµπτώµατα υσλεξίας ΒΙΒΛΙΟΓΡΑΦΙΑ Behr. M., Harel, G., Post, T., & Lesh, R. (1992). Rational number, Ratio and Proportion. Handbook of research on Mathematics Teaching and Learning. De Bock, D., Verschaffel, L., & Janssens, D. (1998). The predominance of the linear model in secondary school students solutions of word problems involving length and area of similar plane figures. Educational Studies in Mathematics, 35, De Bock, D., Van Dooren, W., Verschaffel, L., & Janssens, D. (2002). Improper use of linear reasoning: an in-depth study of the nature and the irresistibility of secondary school students errors. Educational Studies in Mathematics, 50, De Bock, D., Van Dooren, W., Verschaffel, L., Janssens, D., & Claes, K. (2003). Do realistic contexts and graphical representations always have a beneficial impact on students performance? Negative evidence from a study on modeling nonlinear geometry problems. Learning and Instruction, 13 (4), Gagatsis, A., & Kyriakides, L. (2000). Teacher s attitudes towards their pupils mathematical errors. Educational Research and Evaluation 6 (1), Karplus, R., Pulos, S. & Stage, E. (1983). Early adolescents proportional reasoning on rate problems. Educational Studies in Mathematics, 14, Misailidou, C., Williams, J. (2003). Diagnostic assessment of children s proportional reasoning. Journal of Mathematical Behavior, 22, Singh, R. (2000). Understanding the concepts of proportion and ratio constructed by two grade six students. Educational Studies in Mathematics, 43, Λιβανίου, Ε. (2004).Μαθησιακές υσκολίες και προβλήµατα συµπεριφοράς στην κανονική τάξη. Εκδόσεις Κέδρος, Αθήνα. Μαυροµµάτη,. (1995). Η κατάρτιση του προγράµµατος αντιµετώπισης της δυσλεξίας. Αθήνα. Φλωράτου, Μ. (1992). Μαθησιακές δυσκολίες και όχι τεµπελιά. Εκδόσεις Οδυσσέας, Αθήνα. ΠΑΡΑΡΤΗΜΑ Προβλήµατα Αναλογιών Τάξη:. 1. Πιο κάτω, σου δίνεται ένα ορθογώνιο. Αν διπλασιάσουµε όλες του τις διαστάσεις ποιο από τα τέσσερα σχήµατα που φαίνονται πιο κάτω θα πάρουµε; Βάλε σε κύκλο την σωστή απάντηση. Α Χρόνος: 45 λεπτά Β Γ 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 155

12 Κ. Φράγκου κ. ά. 2. Πιο κάτω, δίνεται ένας σταυρός. Αν διπλασιάσουµε όλες του τις διαστάσεις ποιο από τα τέσσερα σχήµατα που φαίνονται πιο κάτω θα πάρουµε; Βάλε σε κύκλο τη σωστή απάντηση. Γ Α Β 3. Πιο κάτω, δίνεται ένα τετράγωνο. Αν διπλασιάσουµε όλες του τις διαστάσεις πιο από τα τέσσερα σχήµατα που φαίνονται πιο κάτω θα πάρουµε; Βάλε σε κύκλο την σωστή απάντηση. Α Β Γ 4. ίνεται το πιο κάτω σχήµα. Αν διπλασιάσουµε όλες του τις διαστάσεις του πιο από τα τέσσερα σχήµατα που φαίνονται πιο κάτω θα πάρουµε; Βάλε σε κύκλο την σωστή απάντηση. Β Α Γ 6. Η Μαρία είναι 6 χρονών και µένει στον 2ο όροφο µια πολυκατοικίας. Όταν η Μαρία θα είναι 12 χρονών σε πιο όροφο της πολυκατοικίας της θα κατοικεί; 8. Πιο κάτω δίνονται µερικές µαθηµατικές αναλογίες. Προσπάθησε να βρεις τη σχέση που υπάρχει στο πρώτο ζευγάρι και συµπληρώσεις το κενό τετραγωνάκι στο δεύτερο ζευγάρι. ιάλεξε κάθε φορά ΕΝA από τους αριθµούς που είναι στην παρένθεση, όπως στο παράδειγµα. Παράδειγµα: ( 4, 5, 6 ) Η απάντηση είναι το 6. Προσοχή: Πρέπει να δηλώνεις µόνο ένα νούµερο κάθε φορά ( 3, 15, 27 ) 2... ( 5, 6, 10 ) 5... ( 15, 19, 12 ) ( 4, 6, 8 ) ( 17, 18, 19 ) 5... ( 14, 20, 17 ) 9 ο Συνέδριο Παιδαγωγικής Εταιρείας Κύπρου 156

Μαθησιακές υσκολίες (Πηγή : http://mariaskokou.wordpress.com ) Μιλώντας για τη δυσλεξία Έχει ϖεράσει ϖάνω αϖό ένας αιώνας αϖό την ϖρώτη ϖεριγραφή ενός ϖεριστατικού δυσλεξίας. O γιατρός W.Pringle Morgan

Διαβάστε περισσότερα

Η ΑΝΑΛΟΓΙΑ (f(x) = ax) ΩΣ ΕΠΙΣΤΗΜΟΛΟΓΙΚΟ ΕΜΠΟ ΙΟ;

Η ΑΝΑΛΟΓΙΑ (f(x) = ax) ΩΣ ΕΠΙΣΤΗΜΟΛΟΓΙΚΟ ΕΜΠΟ ΙΟ; Η Αναλογία (f(x) = ax) ως Επιστηµολογικό Εµπόδιο; Η ΑΝΑΛΟΓΙΑ (f(x) = ax) ΩΣ ΕΠΙΣΤΗΜΟΛΟΓΙΚΟ ΕΜΠΟ ΙΟ; Μοδεστίνα Μοδέστου Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου ΠΕΡΙΛΗΨΗ Στο άρθρο αυτό γίνεται µια

Διαβάστε περισσότερα

Περιεχόμενα. Προλογικό Σημείωμα 9

Περιεχόμενα. Προλογικό Σημείωμα 9 Περιεχόμενα Προλογικό Σημείωμα 9 1 ο ΚΕΦΑΛΑΙΟ 1.1. Εισαγωγή 14 1.2 Τα βασικά δεδομένα των Μαθηματικών και οι γνωστικές απαιτήσεις της κατανόησης, απομνημόνευσης και λειτουργικής χρήσης τους 17 1.2.1. Η

Διαβάστε περισσότερα

Πτυχιακή με θέμα: «Μαθησιακές δυσκολίες στη σχολική ηλικία και εφαρμογή του Τεστ Πρώιμης Ανίχνευσης Δυσλεξίας».

Πτυχιακή με θέμα: «Μαθησιακές δυσκολίες στη σχολική ηλικία και εφαρμογή του Τεστ Πρώιμης Ανίχνευσης Δυσλεξίας». Πτυχιακή με θέμα: «Μαθησιακές δυσκολίες στη σχολική ηλικία και εφαρμογή του Τεστ Πρώιμης Ανίχνευσης Δυσλεξίας». Επιβλέπων καθηγητής:κ.χριστοδουλίδης Παύλος Επιμέλεια: Κατσάνου Αλεξάνδρα (Α.Μ:11074) Στόχος

Διαβάστε περισσότερα

Μαθησιακές Δυσκολίες Εκπαιδευτική αξιολόγηση. Πηνελόπη Κονιστή ΠΕ 70 Med Ειδικής Αγωγής pkonisti@gmail.com

Μαθησιακές Δυσκολίες Εκπαιδευτική αξιολόγηση. Πηνελόπη Κονιστή ΠΕ 70 Med Ειδικής Αγωγής pkonisti@gmail.com Μαθησιακές Δυσκολίες Εκπαιδευτική αξιολόγηση Πηνελόπη Κονιστή ΠΕ 70 Med Ειδικής Αγωγής pkonisti@gmail.com Τι είναι Μαθησιακές Δυσκολίες; Καμπύλη Νοημοσύνης Δείκτης Νοημοσύνης ποσοστό % κατηγορία πάνω από

Διαβάστε περισσότερα

Ασκήσεις φυσικής και Δυσλεξία

Ασκήσεις φυσικής και Δυσλεξία Ασκήσεις φυσικής και Δυσλεξία 1. Εισαγωγή 2. Τύποι 3. Ασκήσεις Γρηγοριάδης Ιωάννης Φυσική Η φυσική αποτελεί πεδίο στο οποίο μπορούν να διαπρέψουν οι μαθητές με δυσλεξία καθώς η ιδιαιτερότητα τους, τους

Διαβάστε περισσότερα

Παιδαγωγική ή Εκπαίδευση ΙΙ

Παιδαγωγική ή Εκπαίδευση ΙΙ Παιδαγωγική ή Εκπαίδευση ΙΙ Ενότητα 8: Ζαχαρούλα Σμυρναίου Σχολή: Φιλοσοφική Τμήμα: Φιλοσοφίας Παιδαγωγικής Ψυχολογίας Εξελικτικές μαθησιακές θεωρίες Δυσλεξία Η Δυσλεξία δεν είναι κατά βάση μια διαταραχή

Διαβάστε περισσότερα

ΤΟ ΤΕΣΤ ΑΝΙΧΝΕΥΣΗΣ ΤΗΣ ΔΥΣΛΕΞΙΑΣ ΣΤΟΥΣ ΕΝΗΛΙΚΕΣ(DAST) Δριδάκη Αργυρώ Α.Μ.: 10909 Κόλλια Δήμητρα Α.Μ.: 11283

ΤΟ ΤΕΣΤ ΑΝΙΧΝΕΥΣΗΣ ΤΗΣ ΔΥΣΛΕΞΙΑΣ ΣΤΟΥΣ ΕΝΗΛΙΚΕΣ(DAST) Δριδάκη Αργυρώ Α.Μ.: 10909 Κόλλια Δήμητρα Α.Μ.: 11283 ΤΟ ΤΕΣΤ ΑΝΙΧΝΕΥΣΗΣ ΤΗΣ ΔΥΣΛΕΞΙΑΣ ΣΤΟΥΣ ΕΝΗΛΙΚΕΣ(DAST) Δριδάκη Αργυρώ Α.Μ.: 10909 Κόλλια Δήμητρα Α.Μ.: 11283 Αναπτυξιακή Δυσλεξία Παγκόσμια Ομοσπονδία Νευρολογίας το 1968 «μια διαταραχή στα παιδιά τα οποία,

Διαβάστε περισσότερα

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΜΕ ΡΗΤΟΥΣ ΑΡΙΘΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 5.4.1. Αποτελέσματα από το πρόγραμμα εξ αποστάσεως επιμόρφωσης δασκάλων και πειραματικής εφαρμογής των νοερών

Διαβάστε περισσότερα

Χρήστος Μαναριώτης Σχολικός Σύμβουλος 4 ης Περιφέρειας Ν. Αχαϊας Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΣΚΕΦΤΟΜΑΙ ΚΑΙ ΓΡΑΦΩ ΣΤΗΝ Α ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ

Χρήστος Μαναριώτης Σχολικός Σύμβουλος 4 ης Περιφέρειας Ν. Αχαϊας Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΣΚΕΦΤΟΜΑΙ ΚΑΙ ΓΡΑΦΩ ΣΤΗΝ Α ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΣΚΕΦΤΟΜΑΙ ΚΑΙ ΓΡΑΦΩ ΣΤΗΝ Α ΔΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ Η καλλιέργεια της ικανότητας για γραπτή έκφραση πρέπει να αρχίζει από την πρώτη τάξη. Ο γραπτός λόγος χρειάζεται ως μέσο έκφρασης. Βέβαια,

Διαβάστε περισσότερα

ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ. Δυσλεξία και εκπαιδευτική πράξη

ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ. Δυσλεξία και εκπαιδευτική πράξη ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ Δυσλεξία και εκπαιδευτική πράξη του Κωνσταντίνου Θώδη * Η εικόνα που προβάλλεται και έχει επικρατήσει για το παιδί με «μαθησιακές δυσκολίες» είναι η εικόνα ενός έξυπνου παιδιού, το

Διαβάστε περισσότερα

=> Οι μαθησιακές δυσκολίες αποτελούν έναν ανομοιογενή πληθυσμό

=> Οι μαθησιακές δυσκολίες αποτελούν έναν ανομοιογενή πληθυσμό Μαθησιακές Δυσκολίες ΟΡΙΣΜΟΣ - Παρόλο που ο όρος χρησιμοποιείται εδώ και 40 χρόνια περίπου, δεν υπάρχει συμφωνία πάνω στα αποδεκτά κριτήρια που ορίζουν τις μαθησιακές δυσκολίες είτε στον κλινικό είτε στον

Διαβάστε περισσότερα

Οδηγός διαφοροποίησης για την πρωτοβάθµια

Οδηγός διαφοροποίησης για την πρωτοβάθµια Οδηγός διαφοροποίησης για την πρωτοβάθµια Γιατί χρειάζεται να κάνουµε τόσο ειδική διαφοροποίηση; Τα παιδιά που βρίσκονται στο φάσµα του αυτισµού έχουν διαφορετικό τρόπο σκέψης και αντίληψης για τον κόσµο,

Διαβάστε περισσότερα

Δυσλεξία και Ξένη Γλώσσα

Δυσλεξία και Ξένη Γλώσσα Δυσλεξία και Ξένη Γλώσσα Βιβέτα Λυμπεράκη Ξένια Κωνσταντινοπούλου Καθηγήτριες αγγλικών ειδικής αγωγής Ποιοί μαθητές αναμένεται να αντιμετωπίσουν δυσκολία στις ξένες γλώσσες Μαθητές που: παρουσιάζουν δυσκολίες

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

Η ΨΕΥ ΑΙΣΘΗΣΗ ΤΗΣ ΓΡΑΜΜΙΚΟΤΗΤΑΣ ΣΕ ΕΛΛΗΝΕΣ ΜΑΘΗΤΕΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ: ΟΤΑΝ Η ΓΝΩΣΗ ΥΠΑΡΧΕΙ, ΑΛΛΑ ΕΝ ΕΝΕΡΓΟΠΟΙΕΙΤΑΙ

Η ΨΕΥ ΑΙΣΘΗΣΗ ΤΗΣ ΓΡΑΜΜΙΚΟΤΗΤΑΣ ΣΕ ΕΛΛΗΝΕΣ ΜΑΘΗΤΕΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ: ΟΤΑΝ Η ΓΝΩΣΗ ΥΠΑΡΧΕΙ, ΑΛΛΑ ΕΝ ΕΝΕΡΓΟΠΟΙΕΙΤΑΙ Η ΨΕΥ ΑΙΣΘΗΣΗ ΤΗΣ ΓΡΑΜΜΙΚΟΤΗΤΑΣ ΣΕ ΕΛΛΗΝΕΣ ΜΑΘΗΤΕΣ ΓΥΜΝΑΣΙΟΥ ΚΑΙ ΛΥΚΕΙΟΥ: ΟΤΑΝ Η ΓΝΩΣΗ ΥΠΑΡΧΕΙ, ΑΛΛΑ ΕΝ ΕΝΕΡΓΟΠΟΙΕΙΤΑΙ Κωνσταντίνος Κοντογιαννόπουλος & Ξένια Βαµβακούση Πανεπιστήµιο Αθηνών kkontog@sch.gr

Διαβάστε περισσότερα

BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS

BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS BELIEFS ABOUT THE NATURE OF MATHEMATICS, MATHEMATICS TEACHING AND LEARNING AMONG TRAINEE TEACHERS Effandi Zakaria and Norulpaziana Musiran The Social Sciences, 2010, Vol. 5, Issue 4: 346-351 Στόχος της

Διαβάστε περισσότερα

Πώς μαθαίνουν οι μαθητές;

Πώς μαθαίνουν οι μαθητές; Τεχνικές για την καλλιέργεια δεξιοτήτων ανάγνωσης και γραφής Ευγενία Νιάκα Σχολική Σύμβουλος Πώς μαθαίνουν οι μαθητές; Οι μαθητές δεν απορροφούν «σαν σφουγγάρια», ούτε αποδέχονται άκριτα κάθε νέα πληροφορία.

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ»

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ: ΜΑΘΗΜΑΤΙΚΑ ΣΤ ΔΗΜΟΤΙΚΟΥ «ΤΑ ΚΛΑΣΜΑΤΑ» Νικόλαος Μπαλκίζας 1. ΕΙΣΑΓΩΓΗ Σκοπός του σχεδίου μαθήματος είναι να μάθουν όλοι οι μαθητές της τάξης τις έννοιες της ισοδυναμίας των κλασμάτων,

Διαβάστε περισσότερα

Αντιμετώπιση μαθησιακών δυσκολιών στις πρώτες τάξεις του Δημοτικού με το πρόγραμμα «Η Χώρα των Λενού»

Αντιμετώπιση μαθησιακών δυσκολιών στις πρώτες τάξεις του Δημοτικού με το πρόγραμμα «Η Χώρα των Λενού» Αντιμετώπιση μαθησιακών δυσκολιών στις πρώτες τάξεις του Δημοτικού με το πρόγραμμα «Η Χώρα των Λενού» Νοέμβριος 2009 Κατερίνα Φυτράκη Φιλόλογος ΜΑ Περιεχόμενα παρουσίασης Δυσκολίες μάθησης στο Δημοτικό

Διαβάστε περισσότερα

ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ Κόπτσης Αλέξανδρος

ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ Κόπτσης Αλέξανδρος ΜΑΘΗΣΙΑΚΕΣ ΔΥΣΚΟΛΙΕΣ Κόπτσης Αλέξανδρος Ανομοιογενής ομάδα διαταραχών που σχετίζονται με την απόκτηση και χρήση ικανοτήτων ακρόασης-ομιλίας-ανάγνωσης-γραφήςσυλλογισμού-μαθηματικών δεξιοτήτων. Δυσλεξία-Δυσγραφία-Δυσαναγνωσία-Δυσορθογραφία-Δυσαριθμησία

Διαβάστε περισσότερα

Ανάγνωση. Ικανότητα γρήγορης και αυτόματης αναγνώρισης λέξεων. Γνώση γραμμάτων και αντιστοιχίας γραμμάτων φθόγγων. Κατανόηση κειμένου

Ανάγνωση. Ικανότητα γρήγορης και αυτόματης αναγνώρισης λέξεων. Γνώση γραμμάτων και αντιστοιχίας γραμμάτων φθόγγων. Κατανόηση κειμένου Ανάγνωση Ικανότητα γρήγορης και αυτόματης αναγνώρισης λέξεων Γνώση γραμμάτων και αντιστοιχίας γραμμάτων φθόγγων Γνώση σημασίας λέξεων (λεξιλόγιο πρόσληψης) Κατανόηση κειμένου Οικειότητα με γραπτέςλέξειςκαι

Διαβάστε περισσότερα

Κλινική Νευροψυχολογία του παιδιού

Κλινική Νευροψυχολογία του παιδιού Κλινική Νευροψυχολογία του παιδιού Α εξάμηνο Διδάσκων : Α. Β. Καραπέτσας Ακαδημαϊκό έτος 2015-2016 1 ΜΟΥΣΙΚΗ ΚΑΙ ΜΝΗΜΗ 2 Μία από τις πρώτες έρευνες που μελετούν και επιβεβαιώνουν ότι τα άτομα με μουσική

Διαβάστε περισσότερα

Αίτια - Διάγνωση Μαθησιακές Δυσκολίες

Αίτια - Διάγνωση Μαθησιακές Δυσκολίες Βασίλειος Κωτούλας Σχολικός Σύμβουλος 2ης Εκπ. Περ. ΠΕ Καρδίτσας vaskotoulas@sch.gr http://dipe.kar.sch.gr/grss Αίτια - Διάγνωση Μαθησιακές Δυσκολίες Δομή Εισήγησης Ορισμός - Χαρακτηριστικά Βασικές παραδοχές

Διαβάστε περισσότερα

Διδάσκων : Αργύρης Καραπέτσας Καθηγητής Νευροψυχολογίας Νευρογλωσσολογίας Πανεπιστήμιο Θεσσαλίας

Διδάσκων : Αργύρης Καραπέτσας Καθηγητής Νευροψυχολογίας Νευρογλωσσολογίας Πανεπιστήμιο Θεσσαλίας Διδάσκων : Αργύρης Καραπέτσας Καθηγητής Νευροψυχολογίας Νευρογλωσσολογίας Πανεπιστήμιο Θεσσαλίας 1 Δυσαριθμησία Αξιολόγηση Διάγνωση 2 Όροι και Ορισμοί των Μαθηματικών Διαταραχών Έχουν χρησιμοποιηθεί όροι

Διαβάστε περισσότερα

ΟΡΙΣΜΟΣ ΜΑΘΗΣΙΑΚΩΝ ΔΥΣΚΟΛΙΩΝ:

ΟΡΙΣΜΟΣ ΜΑΘΗΣΙΑΚΩΝ ΔΥΣΚΟΛΙΩΝ: ΟΡΙΣΜΟΣ ΜΑΘΗΣΙΑΚΩΝ ΔΥΣΚΟΛΙΩΝ: Γενικές Δυσκολίες Μάθησης Ειδικές Μαθησιακές Δυσκολίες «Μαθησιακές δυσκολίες αφορούν σε μία ομάδα ανομοιογενών διαταραχών οι οποίες εκδηλώνονται με εγγενείς δυσκολίες σε πρόσκτηση

Διαβάστε περισσότερα

Φοιτήτρια: Τσαρκοβίστα Βικτώρια (Α.Μ. 12517) Επιβλέπων καθηγητής: Χριστοδουλίδης Παύλος

Φοιτήτρια: Τσαρκοβίστα Βικτώρια (Α.Μ. 12517) Επιβλέπων καθηγητής: Χριστοδουλίδης Παύλος Φοιτήτρια: Τσαρκοβίστα Βικτώρια (Α.Μ. 12517) Επιβλέπων καθηγητής: Χριστοδουλίδης Παύλος Tα παιδιά με ειδικές μαθησιακές δυσκολίες παρουσιάζουν προβλήματα στις βασικές ψυχολογικές διαδικασίες που περιλαμβάνονται

Διαβάστε περισσότερα

6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ

6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 6.5. ΑΠΟΤΕΛΕΣΜΑΤΑ ΕΡΕΥΝΩΝ ΣΤΟΥΣ ΚΑΤ ΕΚΤΙΜΗΣΗ ΥΠΟΛΟΓΙΣΜΟΥΣ ΤΗΣ ΣΧΟΛΗΣ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΤΗΣ ΦΥΣΗΣ ΚΑΙ ΤΗΣ ΖΩΗΣ 6.5.1. Οι γνώσεις υποψηφίων δασκάλων για την υπολογιστική εκτίμηση Σε μια έρευνα των Lemonidis

Διαβάστε περισσότερα

ο εκπαιδευτικός µπορεί να χρησιµοποιήσει ιστορία σε κόµικς που περιέχει διάλογο να διδάξει κατάλληλες λεκτικές δοµές για το ξεκίνηµα συζήτησης

ο εκπαιδευτικός µπορεί να χρησιµοποιήσει ιστορία σε κόµικς που περιέχει διάλογο να διδάξει κατάλληλες λεκτικές δοµές για το ξεκίνηµα συζήτησης Μαθησιακή υσκολία Στρατηγικές ο εκπαιδευτικός µπορεί να χρησιµοποιήσει ιστορία σε κόµικς που περιέχει διάλογο να διδάξει κατάλληλες λεκτικές δοµές για το ξεκίνηµα συζήτησης να διδάξει στους µαθητές τρόπους

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

Πέντε Προτάσεις Αντιμετώπισης των υσκολιών στην Ανάγνωση

Πέντε Προτάσεις Αντιμετώπισης των υσκολιών στην Ανάγνωση Πέντε Προτάσεις Αντιμετώπισης των υσκολιών στην Ανάγνωση Tο φαινόμενο της ανάγνωσης προσεγγίζεται ως ολική διαδικασία, δηλαδή ως λεξιλόγιο, ως προφορική έκφραση και ως κατανόηση. ημήτρης Γουλής Πρώτη Πρόταση

Διαβάστε περισσότερα

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση

Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Ανάλυση των δραστηριοτήτων κατά γνωστική απαίτηση Πέρα όµως από την Γνωσιακή/Εννοιολογική ανάλυση της δοµής και του περιεχοµένου των σχολικών εγχειριδίων των Μαθηµατικών του Δηµοτικού ως προς τις έννοιες

Διαβάστε περισσότερα

Οι μαθησιακές δυσκολίες είναι μια διαταραχή που απασχολεί πολλές ειδικότητες όπως ψυχολόγους, παιδοψυχολόγους, λογοθεραπευτές, ειδικούς αγωγούς κ.α.

Οι μαθησιακές δυσκολίες είναι μια διαταραχή που απασχολεί πολλές ειδικότητες όπως ψυχολόγους, παιδοψυχολόγους, λογοθεραπευτές, ειδικούς αγωγούς κ.α. Οι μαθησιακές δυσκολίες είναι μια διαταραχή που απασχολεί πολλές ειδικότητες όπως ψυχολόγους, παιδοψυχολόγους, λογοθεραπευτές, ειδικούς αγωγούς κ.α. Η κάθε ειδικότητα ελέγχει και επεμβαίνει σε διαφορετικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ. Σωτηρία Τζιβινίκου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ. Σωτηρία Τζιβινίκου ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΕΙΔΙΚΗΣ ΑΓΩΓΗΣ Σωτηρία Τζιβινίκου Αποτελεσματική πρόληψη είναι μια μορφή παρέμβασης. Η Πρόληψη ξεκινά όταν τα προβλήματα δεν είναι παρόντα/εμφανή Η καλή γονεϊκή

Διαβάστε περισσότερα

ΜΑΘΗΣΙΑΚEς ΔΥΣΚΟΛIΕς: ΔΙΕΡΕΥΝΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕ ΧΟΡΗΓΗΣΗ

ΜΑΘΗΣΙΑΚEς ΔΥΣΚΟΛIΕς: ΔΙΕΡΕΥΝΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕ ΧΟΡΗΓΗΣΗ ΤΕΙ ΗΠΕIΡΟΥ ΣΧΟΛH ΕΠΑΓΓΕΛΜAΤΩΝ ΥΓΕIΑς ΚΑΙ ΠΡOΝΟΙΑς ΤΜHΜΑ: ΛΟΓΟΘΕΡΑΠΕIΑς ΜΑΘΗΣΙΑΚEς ΔΥΣΚΟΛIΕς: ΔΙΕΡΕΥΝΗΤΙΚΗ ΠΡΟΣΕΓΓΙΣΗ ΜΕ ΧΟΡΗΓΗΣΗ ΤΟΥ ΑΘΗΝΑ ΤΕΣΤ ΕΙΣΗΓΗΤHς: ΧΡΙΣΤΟΔΟΥΛIΔΗς ΠΑYΛΟς ΣΠΟΥΔΑΣΤEς: ΜΑΚΑΡΟYΝΑ ΚΑΛΛΙOΠΗ

Διαβάστε περισσότερα

Χαρακτηριστικά άτυπης αξιολόγησης

Χαρακτηριστικά άτυπης αξιολόγησης Προσαρμογή Διδακτικών Στόχων σε μαθητές με Μαθησιακές Δυσκολίες Νιάκα Ευγενία Ειδική παιδαγωγός, Σχολική Σύμβουλος Τι λάβαμε υπόψη; Το ατομικό ιστορικό των μαθητών Την αξιολόγηση της διεπιστημονικής ομάδας

Διαβάστε περισσότερα

Επίπεδο Γ2. Χρήση γλώσσας (20 μονάδες) Διάρκεια: 30 λεπτά. Ερώτημα 1 (5 μονάδες)

Επίπεδο Γ2. Χρήση γλώσσας (20 μονάδες) Διάρκεια: 30 λεπτά. Ερώτημα 1 (5 μονάδες) Γ2 (20 μονάδες) Διάρκεια: 30 λεπτά Ερώτημα 1 (5 μονάδες) Ο φίλος σας έγραψε μία μελέτη σχετικά με τρόπους βελτίωσης της αναγνωστικής ικανότητας των μαθητών. Επειδή, όμως, είναι ξένος, κάνει ακόμη λάθη,

Διαβάστε περισσότερα

Διάλεξη 5η Μαθησιακές Δυσκολίες Σύνδρομο Μειωμένης Προσοχής Και Υπερκινητικότητας

Διάλεξη 5η Μαθησιακές Δυσκολίες Σύνδρομο Μειωμένης Προσοχής Και Υπερκινητικότητας ΕΠΕΑΕΚ: ΑΝΑΜΟΡΦΩΣΗ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ ΣΠΟΥΔΩΝ ΤΟΥ ΤΕΦΑΑ, ΠΘ ΑΥΤΕΠΙΣΤΑΣΙΑ Διάλεξη 5η Μαθησιακές Δυσκολίες Σύνδρομο Μειωμένης Προσοχής Και Υπερκινητικότητας Κοκαρίδας Δημήτριος Πανεπιστήμιο Θεσσαλίας ΤΕΦΑΑ,

Διαβάστε περισσότερα

Διάγνωση ειδικού και μη ειδικού τύπου Μαθησιακών δυσκολιών. Ελπίδα Καρδαρά Ψυχολόγος

Διάγνωση ειδικού και μη ειδικού τύπου Μαθησιακών δυσκολιών. Ελπίδα Καρδαρά Ψυχολόγος Διάγνωση ειδικού και μη ειδικού τύπου Μαθησιακών δυσκολιών Ελπίδα Καρδαρά Ψυχολόγος ΟΡΙΣΜΟΣ ΚΑΙ ΠΕΡΙΟΧΟΜΕΝΟ ΜΑΘΗΣΙΑΚΩΝ ΔΥΣΚΟΛΙΩΝ «Οι Μαθησιακές Δυσκολίες κατά τον Hammill, 1990, είναι ένας γενικός όρος

Διαβάστε περισσότερα

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων

Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά. Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Γράφοντας ένα σχολικό βιβλίο για τα Μαθηματικά Μαριάννα Τζεκάκη Αν. Καθηγήτρια Α.Π.Θ. Μ. Καλδρυμίδου Αν. Καθηγήτρια Πανεπιστημίου Ιωαννίνων Εισαγωγή Η χώρα μας απέκτησε Νέα Προγράμματα Σπουδών και Νέα

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

Προσέγγιση των Μαθησιακών Δυσκολιών και Εφαρμογή του Τεστ Αθηνά

Προσέγγιση των Μαθησιακών Δυσκολιών και Εφαρμογή του Τεστ Αθηνά Παρουσίαση Πτυχιακής Εργασίας με θέμα: Προσέγγιση των Μαθησιακών Δυσκολιών και Εφαρμογή του Τεστ Αθηνά Ιωάννινα Νοέμβριος2012 Επόπτης καθηγητής: Χριστοδουλίδης Παύλος Εκπονήτριες: Αρμυριώτη Βασιλική (11071)

Διαβάστε περισσότερα

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ

Π Ι Σ Τ Ο Π Ο Ι Η Σ Η Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ Ε Π Α Ρ Κ Ε Ι Α Σ Τ Η Σ ΕΛΛΗΝΟΜΑΘΕΙΑΣ Χ Ρ Η Σ Η Γ Λ Ω Σ Σ Α Σ Π Ρ Ω Τ Η Σ Ε Ι Ρ Α Δ Ε Ι Γ Μ Α Τ Ω Ν 2 0 Μ 0 Ν Α Δ Ε Σ 1 Y Π Ο Υ Ρ Γ Ε Ι Ο Π Α Ι Δ Ε Ι Α Σ Κ Α Ι Θ Ρ Η Σ Κ Ε Υ Μ Α Τ Ω Ν Κ Ε Ν Τ Ρ Ο Ε Λ Λ

Διαβάστε περισσότερα

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007

Μαθηματικά A Δημοτικού. Πέτρος Κλιάπης Σεπτέμβρης 2007 Μαθηματικά A Δημοτικού Πέτρος Κλιάπης Σεπτέμβρης 2007 Το σύγχρονο μαθησιακό περιβάλλον των Μαθηματικών Ενεργή συμμετοχή των παιδιών Μάθηση μέσα από δραστηριότητες Κατανόηση ΌΧΙ απομνημόνευση Αξιοποίηση

Διαβάστε περισσότερα

Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009)

Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009) Αξιολόγηση Προγράμματος Αλφαβητισμού στο Γυμνάσιο Πρώτο Έτος Αξιολόγησης (Ιούλιος 2009) 1. Ταυτότητα της Έρευνας Το πρόβλημα του λειτουργικού αναλφαβητισμού στην Κύπρο στις ηλικίες των 12 με 15 χρόνων

Διαβάστε περισσότερα

Ανάπτυξη Χωρικής Αντίληψης και Σκέψης

Ανάπτυξη Χωρικής Αντίληψης και Σκέψης Ανάπτυξη Χωρικής Αντίληψης και Σκέψης Clements & Sarama, 2009; Sarama & Clements, 2009 Χωρική αντίληψη και σκέψη Προσανατολισμός στο χώρο Οπτικοποίηση (visualization) Νοερή εικονική αναπαράσταση Νοερή

Διαβάστε περισσότερα

ΑΞΙΟΛΟΓΗΣΗ. Γεώργιος Ν. Πριµεράκης Σχ. Σύµβουλος ΠΕ03

ΑΞΙΟΛΟΓΗΣΗ. Γεώργιος Ν. Πριµεράκης Σχ. Σύµβουλος ΠΕ03 ΑΞΙΟΛΟΓΗΣΗ Γεώργιος Ν. Πριµεράκης Σχ. Σύµβουλος ΠΕ03 1 Η αξιολόγηση (µπορεί να) αναφέρεται στον εκπαιδευτικό, στο µαθητή, στο Αναλυτικό Πρόγραµµα, στα διδακτικά υλικά στη σχολική µονάδα ή (και) στο θεσµό

Διαβάστε περισσότερα

Έρευνες με χρήση φορητής μάθησης στα Μαθηματικά

Έρευνες με χρήση φορητής μάθησης στα Μαθηματικά Έρευνες με χρήση φορητής μάθησης στα Μαθηματικά Οι Drigas & Pappas (2015) κάνουν μια ανασκόπιση των ερευνών της φορητής μάθησης στα Μαθηματικά. Με βάση την ιδέα της ενσωμάτωσης της κινητής μάθησης στην

Διαβάστε περισσότερα

θέραπειν Αγίας Σοφίας 3, Ν. Ψυχικό, Τ ,

θέραπειν  Αγίας Σοφίας 3, Ν. Ψυχικό, Τ , θέραπειν Κέντρο Συµβουλευτικών Υπηρεσιών Ψυχικού Το κέντρο συμβουλευτικών υπηρεσιών θέραπειν αποτελεί ένα σύγχρονο κέντρο ειδικών θεραπειών, πρόληψης, διάγνωσης και αποκατάστασης. Στελεχώνεται από εξειδικευμένους

Διαβάστε περισσότερα

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την

ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την 1 ΔΙΔΑΣΚΑΛΙΑ ΓΝΩΣΤΙΚΗΣ ΣΤΡΑΤΗΓΙΚΗΣ ΓΙΑ ΤΗΝ ΚΑΤΑΝΟΗΣΗ Δρ. Ζαφειριάδης Κυριάκος Οι ικανοί αναγνώστες χρησιμοποιούν πολλές στρατηγικές (συνδυάζουν την παλαιότερη γνώση τους, σημειώνουν λεπτομέρειες, παρακολουθούν

Διαβάστε περισσότερα

Πανεπιστήμιο Δυτικής Μακεδονίας. Παιδαγωγικό Τμήμα Νηπιαγωγών. σύμβολα αριθμών. επ. Κωνσταντίνος Π. Χρήστου. Πανεπιστήμιο Δυτικής Μακεδονίας

Πανεπιστήμιο Δυτικής Μακεδονίας. Παιδαγωγικό Τμήμα Νηπιαγωγών. σύμβολα αριθμών. επ. Κωνσταντίνος Π. Χρήστου. Πανεπιστήμιο Δυτικής Μακεδονίας Παιδαγωγικό Τμήμα Νηπιαγωγών σύμβολα αριθμών επ. Κωνσταντίνος Π. Χρήστου 1 αναπαραστάσεις των αριθμών Εμπράγματες Υλικά αντικείμενα ($$$) Εικονικές (***) Λεκτικές (τρία) Συμβολικές, (3, τρία) Διαφορετικές

Διαβάστε περισσότερα

Στόχος της ψυχολογικής έρευνας:

Στόχος της ψυχολογικής έρευνας: Στόχος της ψυχολογικής έρευνας: Συστηματική περιγραφή και κατανόηση των ψυχολογικών φαινομένων. Η ψυχολογική έρευνα χρησιμοποιεί μεθόδους συστηματικής διερεύνησης για τη συλλογή, την ανάλυση και την ερμηνεία

Διαβάστε περισσότερα

ΟΠΤΙΚΗ ΑΝΤΙΛΗΨΗ, ΨΕΥ ΑΙΣΘΗΣΗ ΤΗΣ ΑΝΑΛΟΓΙΑΣ ΚΑΙ ΟΙ ΕΝΝΟΙΕΣ ΤΗΣ ΠΕΡΙΜΕΤΡΟΥ ΚΑΙ ΤΟΥ ΕΜΒΑ ΟΥ

ΟΠΤΙΚΗ ΑΝΤΙΛΗΨΗ, ΨΕΥ ΑΙΣΘΗΣΗ ΤΗΣ ΑΝΑΛΟΓΙΑΣ ΚΑΙ ΟΙ ΕΝΝΟΙΕΣ ΤΗΣ ΠΕΡΙΜΕΤΡΟΥ ΚΑΙ ΤΟΥ ΕΜΒΑ ΟΥ Η Ψευδαίσθηση της Αναλογίας ΟΠΤΙΚΗ ΑΝΤΙΛΗΨΗ, ΨΕΥ ΑΙΣΘΗΣΗ ΤΗΣ ΑΝΑΛΟΓΙΑΣ ΚΑΙ ΟΙ ΕΝΝΟΙΕΣ ΤΗΣ ΠΕΡΙΜΕΤΡΟΥ ΚΑΙ ΤΟΥ ΕΜΒΑ ΟΥ Αθανάσιος Γαγάτσης, Γεώργιος Γεωργίου Γεώργιος Τούρβας, Ελευθερία Χαραλάµπους Τµήµα

Διαβάστε περισσότερα

1. Εισαγωγή. 2. Τεχνικές και «κρατούμενα»

1. Εισαγωγή. 2. Τεχνικές και «κρατούμενα» 1. Εισαγωγή Η προσέγγιση των Μαθηματικών της Β Δημοτικού από το παιδί προϋποθέτει την κατανόηση των μαθηματικών εννοιών που παρουσιάστηκαν στην Α Δημοτικού και την εξοικείωση του παιδιού με τις πράξεις

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση )

ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΜΕΣΗΣ ΕΚΠΑΙ ΕΥΣΗΣ (Απογευματινή φοίτηση ) Ι ΑΚΤΙΚΟ ΣΥΜΒΟΛΑΙΟ,ΕΙΚΟΝΕΣ ΚΑΙ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ ΠΡΟΒΛΗΜΑΤΩΝ Η ΕΠΙ ΡΑΣΗ ΤΩΝ ΕΙΚΟΝΩΝ ΣΤΗΝ ΕΠΙΛΥΣΗ ΜΗ ΡΕΑΛΙΣΤΙΚΩΝ

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2014-2015

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2014-2015 ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΑΓΩΓΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΑΚΑΔΗΜΑΙΚΟ ΕΤΟΣ 2014-2015 ΘΕΜΑ: Αξιολόγηση και Εκπαίδευση των μαθητών με μαθησιακές δυσκολίες. Προσαρμογές αναλυτικών

Διαβάστε περισσότερα

Διαμορφωτική Αξιολόγηση του Μαθητή: Από τη Θεωρία στη Χάραξη Πολιτικής. Λεωνίδας Κυριακίδης, Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου

Διαμορφωτική Αξιολόγηση του Μαθητή: Από τη Θεωρία στη Χάραξη Πολιτικής. Λεωνίδας Κυριακίδης, Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου Διαμορφωτική Αξιολόγηση του Μαθητή: Από τη Θεωρία στη Χάραξη Πολιτικής Λεωνίδας Κυριακίδης, Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου 1 Δομή παρουσίασης Αξιολόγηση: Έννοια & Σημασία Σκοποί Αξιολόγησης

Διαβάστε περισσότερα

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων.

Σενάριο 5. Μετασχηµατισµοί στο επίπεδο. Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Σενάριο 5. Μετασχηµατισµοί στο επίπεδο Γνωστική περιοχή: Γεωµετρία Α' Λυκείου. Συµµετρία ως προς άξονα. Σύστηµα συντεταγµένων. Απόλυτη τιµή πραγµατικών αριθµών. Συµµεταβολή σηµείων. Θέµα: Στο περιβάλλον

Διαβάστε περισσότερα

Το Μάθημα της Γλώσσας στο Δημοτικό του Κολλεγίου Αθηνών

Το Μάθημα της Γλώσσας στο Δημοτικό του Κολλεγίου Αθηνών Το Μάθημα της Γλώσσας στο Δημοτικό του Κολλεγίου Αθηνών 1 η Τάξη Στόχοι Τα παιδιά: Αναπτύσσουν, σε κάθε ευκαιρία, τον προφορικό λόγο. Ως ομιλητές απαντούν σε απλές ερωτήσεις, ανακοινώνουν, περιγράφουν,

Διαβάστε περισσότερα

Αθανάσιος Φ. Κατσούλης

Αθανάσιος Φ. Κατσούλης Αθανάσιος Φ. Κατσούλης Doctorate student, Université Paul Valéry - Montpellier III Master in Teaching and Psychological Methodologies in Education, University of L Aquila (Italy) Μ.A in Education (Education

Διαβάστε περισσότερα

Το Σηντι-Ρωμ του Δυσαλέξη

Το Σηντι-Ρωμ του Δυσαλέξη Το Σηντι-Ρωμ του Δυσαλέξη Μια εκπαιδευτική εφαρμογή για παιδιά με δυσλεξία Απόστολος Πηγιάκης Ειδικός Παιδαγωγός ΕΠΙΛΕΞΕΙ Μαρία Καραβελάκη, Αναλύτρια εκπαιδευτικών συστημάτων ΙΝΤΕ*LEARN Τεχνολογίες Αιχμής

Διαβάστε περισσότερα

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ

ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΠΑΙΔΑΓΩΓΙΚΟ ΤΜΗΜΑ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ Y404. ΔΙΜΕΠΑ: ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΕΡΓΑΣΙΑ ΠΕΙΡΑΜΑΤΙΣΜΟΥ ΜΕ ΜΑΘΗΤΗ ΔΙΔΑΣΚΩΝ: ΧΑΡΑΛΑΜΠΟΣ ΛΕΜΟΝΙΔΗΣ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΔΗΜΗΤΡΙΑΔΗΣ ΗΡΑΚΛΗΣ ΑΕΜ: 3734 Περιεχόμενα

Διαβάστε περισσότερα

Νοημοσύνη. Μπορεί να μετρηθεί; Βασίλειος Κωτούλας 2 η Περιφέρεια ΔΕ Καρδίτσας

Νοημοσύνη. Μπορεί να μετρηθεί; Βασίλειος Κωτούλας 2 η Περιφέρεια ΔΕ Καρδίτσας Νοημοσύνη Μπορεί να μετρηθεί; Βασίλειος Κωτούλας 2 η Περιφέρεια ΔΕ Καρδίτσας S Αμφισβήτηση S Αξιολόγηση της νοημοσύνης (Νασιάκου, (1980): Νοημοσύνη είναι ό,τι μετρούν τα τεστ νοημοσύνης) S Τρόπος αξιολόγησης

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΟΦΟΒΙΑ: Μήπως ο φόβος για τα μαθηματικά είναι τελικά αδικαιολόγητος;

ΜΑΘΗΜΑΤΙΚΟΦΟΒΙΑ: Μήπως ο φόβος για τα μαθηματικά είναι τελικά αδικαιολόγητος; ΜΑΘΗΜΑΤΙΚΟΦΟΒΙΑ: Μήπως ο φόβος για τα μαθηματικά είναι τελικά αδικαιολόγητος; ΟΡΙΣΜΟΣ: Μαθηματικοφοβία είναι το άγχος, ο φόβος, η ανασφάλεια που αισθάνονται οι μαθητές για το μάθημα των μαθηματικών και

Διαβάστε περισσότερα

Ο ρόλος της οικογένειας στις εκπαιδευτικές και επαγγελματικές επιλογές των μαθητών

Ο ρόλος της οικογένειας στις εκπαιδευτικές και επαγγελματικές επιλογές των μαθητών Ο ρόλος της οικογένειας στις εκπαιδευτικές και επαγγελματικές επιλογές των μαθητών Η οικογένεια είναι το κατ εξοχήν περιβάλλον στο οποίο ζει, αναπτύσσεται και διαμορφώνεται το παιδί. Αντιλαμβάνεται λοιπόν

Διαβάστε περισσότερα

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων

Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Παιδαγωγικές δραστηριότητες μοντελοποίησης με χρήση ανοικτών υπολογιστικών περιβαλλόντων Βασίλης Κόμης, Επίκουρος Καθηγητής Ερευνητική Ομάδα «ΤΠΕ στην Εκπαίδευση» Τμήμα Επιστημών της Εκπαίδευσης και της

Διαβάστε περισσότερα

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία

Διδακτικές προσεγγίσεις στην Πληροφορική. Η εποικοδομιστική προσέγγιση για τη γνώση. ως ενεργητική και όχι παθητική διαδικασία Διδακτικές προσεγγίσεις στην Πληροφορική Η εποικοδομιστική προσέγγιση για τη γνώση ως ενεργητική και όχι παθητική διαδικασία ως κατασκευή και όχι ως μετάδοση ως αποτέλεσμα εμπειρίας και όχι ως μεταφορά

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΥΣΤΗΜΑ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΥΣΤΗΜΑ ΑΞΙΟΛΟΓΗΣΗΣ 1 ΕΙΣΑΓΩΓΗ ΣΤΟ ΣΥΣΤΗΜΑ ΑΞΙΟΛΟΓΗΣΗΣ Γενικές πληροφορίες σχετικά με το σύστημα αξιολόγησης H αξιολόγηση είναι κυρίως διαμορφωτική και στοχεύει να περιγράψει την πρόοδο που κάνουν οι μαθητές, και στη συνέχεια,

Διαβάστε περισσότερα

Αξιολόγηση της διδακτικής πράξης

Αξιολόγηση της διδακτικής πράξης Αξιολόγηση της διδακτικής πράξης 1 } Ορισµός: Απόδοση αξίας Απόδοση προσήµου σε κάτι που αξιολογείται Σύγκρισης δύο πραγµάτων } Αξιολόγηση Αποτίµηση στόχου (σύγκριση του στόχου µε το αποτέλεσµα) Σηµασία

Διαβάστε περισσότερα

Η προσέγγιση του γραπτού λόγου και η γραφή. Χ.Δαφέρμου

Η προσέγγιση του γραπτού λόγου και η γραφή. Χ.Δαφέρμου Η προσέγγιση του γραπτού λόγου και η γραφή Πώς μαθαίνουν τα παιδιά να μιλούν? Προσπαθώντας να επικοινωνήσουν Πώς μαθαίνουν τα παιδιά να γράφουν? Μαθαίνoυν να γράφουν γράφοντας Η γραφή λύνει προβλήματα

Διαβάστε περισσότερα

Θέμα πτυχιακής Μαθησιακές δυσκολίες και Κακοποίηση παιδιών

Θέμα πτυχιακής Μαθησιακές δυσκολίες και Κακοποίηση παιδιών Θέμα πτυχιακής Μαθησιακές δυσκολίες και Κακοποίηση παιδιών Ορισμός μαθησιακών διαταραχών Η αδυναμία των μαθητών να ανταποκριθούν στις απαιτήσεις ενός κανονικού σχολείου. Τα μαθησιακά προβλήματα ΔΕΝ οφείλονται

Διαβάστε περισσότερα

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΚΥΠΡΟΥ

ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΚΥΠΡΟΥ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΠΟΛΙΤΙΣΜΟΥ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΚΥΠΡΟΥ ΠΡΟΓΡΑΜΜΑ ΠΡΟΫΠΗΡΕΣΙΑΚΗΣ ΚΑΤΑΡΤΙΣΗΣ ΘΕΜΑ: ΔΙΔΑΚΤΙΚΗ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΔΥΣΛΕΞΙΑ ΠΟΝΤΙΚΗ ΔΙΟΝΥΣΙΟΥ ΑΝΤΡΟΥΛΛΑ ΠΜΠ: 11407 ΟΜΑΔΑ: ΛΕΥΑ1 ΕΙΔΙΚΟΤΗΤΑ:

Διαβάστε περισσότερα

Παιδαγωγική αντιμετώπιση δυσλεξικών μαθητών

Παιδαγωγική αντιμετώπιση δυσλεξικών μαθητών Παιδαγωγική αντιμετώπιση δυσλεξικών μαθητών Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Η δυσλεξία (dyslexia) είναι ένας σχετικά νέος όρος ο οποίος απασχολεί

Διαβάστε περισσότερα

Γιαννάκης Βασιλειάδης, Γιώργος Σαββίδης, Μαίρη Κουτσελίνη Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου ΠΕΡΙΛΗΨΗ

Γιαννάκης Βασιλειάδης, Γιώργος Σαββίδης, Μαίρη Κουτσελίνη Τµήµα Επιστηµών της Αγωγής, Πανεπιστήµιο Κύπρου ΠΕΡΙΛΗΨΗ Αναγνωστικός Αλφαβητισµός σε Μαθητές Ε Τάξης ηµοτικού ΑΝΑΓΝΩΣΤΙΚΟΣ ΑΛΦΑΒΗΤΙΣΜΟΣ: ΜΕΛΕΤΗ ΠΕΡΙΠΤΩΣΗΣ ΣΕ ΜΑΘΗΤΕΣ Ε ΤΑΞΗΣ ΗΜΟΤΙΚΟΥ ΣΧΟΛΕΙΟΥ ΣΕ ΣΥΝΕΧΟΜΕΝΑ ΚΑΙ ΜΗ ΣΥΝΕΧΟΜΕΝΑ ΚΕΙΜΕΝΑ ΠΟΥ ΠΕΡΙΛΑΜΒΑΝΟΝΤΑΙ ΣΤΑ ΝΕΑ

Διαβάστε περισσότερα

ΜΑΘΗΤΕΣ ΜΕ ΧΡΟΝΙΑ ΝΟΣΗΜΑΤΑ ΚΑΙ Η ΔΙΑΜΟΡΦΩΣΗ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΤΗΣ ΣΥΝΕΚΠΑΙΔΕΥΣΗΣ ΣΤΟ ΕΛΛΗΝΙΚΟ ΣΧΟΛΕΙΟ

ΜΑΘΗΤΕΣ ΜΕ ΧΡΟΝΙΑ ΝΟΣΗΜΑΤΑ ΚΑΙ Η ΔΙΑΜΟΡΦΩΣΗ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΤΗΣ ΣΥΝΕΚΠΑΙΔΕΥΣΗΣ ΣΤΟ ΕΛΛΗΝΙΚΟ ΣΧΟΛΕΙΟ ΜΑΘΗΤΕΣ ΜΕ ΧΡΟΝΙΑ ΝΟΣΗΜΑΤΑ ΚΑΙ Η ΔΙΑΜΟΡΦΩΣΗ ΤΩΝ ΚΟΙΝΩΝΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΤΗΣ ΣΥΝΕΚΠΑΙΔΕΥΣΗΣ ΣΤΟ ΕΛΛΗΝΙΚΟ ΣΧΟΛΕΙΟ Κων/νος Καλέμης, Άννα Κωσταρέλου, Μαρία Αγγελική Καλέμη Εισαγωγή H σύγχρονη τάση που επικρατεί

Διαβάστε περισσότερα

Προτάσεις για τις προαγωγικές και απολυτήριες ενδοσχολικές εξετάσεις μαθητών/τριών με ΕΕΑ ή και αναπηρία:

Προτάσεις για τις προαγωγικές και απολυτήριες ενδοσχολικές εξετάσεις μαθητών/τριών με ΕΕΑ ή και αναπηρία: Προτάσεις για τις προαγωγικές και απολυτήριες ενδοσχολικές εξετάσεις μαθητών/τριών με ΕΕΑ ή και αναπηρία: 1. Η διαφοροποιημένη αντιμετώπιση κατά τη διαδικασία εξέτασης των μαθητών/τριών με ΕΕΑ ή και αναπηρία

Διαβάστε περισσότερα

Δραστηριότητες LINC. Σχετικά με τη δραστηριότητα >>ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ

Δραστηριότητες LINC. Σχετικά με τη δραστηριότητα >>ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Δραστηριότητες LINC >>ΦΥΛΛΟ ΕΡΓΑΣΙΑΣ Σχετικά με τη δραστηριότητα Η δραστηριότητα αυτή, αφορά μαθητές ηλικίας από 6 εώς 10 ετών και έχει ως στόχο να βοηθήσει τους μαθητές στην επίλυση προβλημάτων λογικής

Διαβάστε περισσότερα

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες

Η διάρκεια πραγματοποίησης της ανοιχτής εκπαιδευτικής πρακτικής ήταν 2 διδακτικές ώρες ΣΧΟΛΕΙΟ Η εκπαιδευτική πρακτική αφορούσε τη διδασκαλία των μεταβλητών στον προγραμματισμό και εφαρμόστηκε σε μαθητές της τελευταίας τάξης ΕΠΑΛ του τομέα Πληροφορικής στα πλαίσια του μαθήματος του Δομημένου

Διαβάστε περισσότερα

Ικανότητες. Μηδέν είναι μήτε τέχνην άνευ μελέτης μήτε μελέτην άνευ τέχνης ΠΡΩΤΑΓΟΡΑΣ

Ικανότητες. Μηδέν είναι μήτε τέχνην άνευ μελέτης μήτε μελέτην άνευ τέχνης ΠΡΩΤΑΓΟΡΑΣ Ικανότητες Υπολογιστική ικανότητα Μαθηματική ικανότητα Μηχανική ικανότητα Ικανότητα αντίληψης χώρου Γλωσσική ικανότητα Ικανότητα για δουλειές γραφείου Επιδεξιότητα Εικαστική ικανότητα Επαγγελματικές κατευθύνσεις

Διαβάστε περισσότερα

Διδάσκων : Αργύρης Καραπέτσας Καθηγητής Νευροψυχολογίας Νευρογλωσσολογίας Πανεπιστήμιο Θεσσαλίας

Διδάσκων : Αργύρης Καραπέτσας Καθηγητής Νευροψυχολογίας Νευρογλωσσολογίας Πανεπιστήμιο Θεσσαλίας Διδάσκων : Αργύρης Καραπέτσας Καθηγητής Νευροψυχολογίας Νευρογλωσσολογίας Πανεπιστήμιο Θεσσαλίας 1 επίκτητη και ειδική ή εξελικτική δυσλεξία Η δυσλεξία ως πρόβλημα της ανάγνωσης, διακρίνεται σε δύο μεγάλες

Διαβάστε περισσότερα

Δεύτερη διδακτική πρόταση Έλεγχος επίδοσης στο σχολείο. 1 φωτοτυπία ανά μαθητή με τον έλεγχο παραγωγή προφορικού λόγου, παραγωγή γραπτού λόγου

Δεύτερη διδακτική πρόταση Έλεγχος επίδοσης στο σχολείο. 1 φωτοτυπία ανά μαθητή με τον έλεγχο παραγωγή προφορικού λόγου, παραγωγή γραπτού λόγου Κατανόηση προφορικού λόγου Επίπεδο B Δεύτερη διδακτική πρόταση Έλεγχος επίδοσης στο σχολείο Ενδεικτική διάρκεια: Ομάδα-στόχος: Διδακτικός στόχος: Στρατηγικές: Υλικό: Ενσωμάτωση δραστηριοτήτων: 1 διδακτική

Διαβάστε περισσότερα

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ

ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΙΔΑΓΩΓΙΚΗ ΣΧΟΛΗ ΔΗΜΟΤΙΚΗΣ ΕΚΠΑΙΔΕΥΣΗΣ ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : ΛΕΜΟΝΙΔΗΣ ΧΑΡΑΛΑΜΠΟΣ ΑΠΟΣΠΑΣΜΕΝΗ ΕΚΠΑΙΔΕΥΤΙΚΟΣ : ΚΑΠΠΑΤΟΥ ΝΑΤΑΣΣΑ ΠΡΑΚΤΙΚΗ ΑΣΚΗΣΗ ΜΑΘΗΜΑΤΙΚΩΝ Β ΦΑΣΗ ΘΕΜΑ ΔΙΔΑΣΚΑΛΙΑΣ:

Διαβάστε περισσότερα

ΑΝΙΧΝΕΥΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΙΔΟΣΗΣ (ΑΔΜΕ) ΓΙΑ ΜΑΘΗΤΕΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ. Σ. Παπαϊωάννου, Α. Μουζάκη Γ. Σιδερίδης & Π. Σίμος

ΑΝΙΧΝΕΥΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΙΔΟΣΗΣ (ΑΔΜΕ) ΓΙΑ ΜΑΘΗΤΕΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ. Σ. Παπαϊωάννου, Α. Μουζάκη Γ. Σιδερίδης & Π. Σίμος ΑΝΙΧΝΕΥΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑΤΙΚΗΣ ΕΠΙΔΟΣΗΣ (ΑΔΜΕ) ΓΙΑ ΜΑΘΗΤΕΣ ΤΟΥ ΔΗΜΟΤΙΚΟΥ Σ. Παπαϊωάννου, Α. Μουζάκη Γ. Σιδερίδης & Π. Σίμος ΜΑΘΗΜΑΤΙΚΑ Αναπόσπαστο μέρος της ανθρώπινης δραστηριότητας Βασικό στοιχείο

Διαβάστε περισσότερα

Ένα Διαφορετικό Πλαίσιο Διδασκαλίας της Έννοιας της Αναλογίας

Ένα Διαφορετικό Πλαίσιο Διδασκαλίας της Έννοιας της Αναλογίας Ένα Διαφορετικό Πλαίσιο Διδασκαλίας της Έννοιας της Αναλογίας Μοδεστίνα Μοδέστου * & Αθανάσιος Γαγάτσης ** * Παιδαγωγικό Ινστιτούτο Κύπρου ** Τμήμα Επιστημών της Αγωγής, Πανεπιστήμιο Κύπρου Περίληψη Βασικός

Διαβάστε περισσότερα

THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION

THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION THE ROLE OF IMPLICIT MODELS IN SOLVING VERBAL PROBLEMS IN MULTIPLICATION AND DIVISION E F R A I M F I S C H B E I N, T E L - A V I V U N I V E R S I T Y M A R I A D E R I, U N I V E R S I T Y O F P I S

Διαβάστε περισσότερα

13 ο ΠΑΓΚΥΠΡΙΟ ΣΥΝΕΔΡΙΟ ΔΥΣΛΕΞΙΑΣ Σάββατο 6 Οκτωβρίου 2010 Εργαστήριο

13 ο ΠΑΓΚΥΠΡΙΟ ΣΥΝΕΔΡΙΟ ΔΥΣΛΕΞΙΑΣ Σάββατο 6 Οκτωβρίου 2010 Εργαστήριο 13 ο ΠΑΓΚΥΠΡΙΟ ΣΥΝΕΔΡΙΟ ΔΥΣΛΕΞΙΑΣ Σάββατο 6 Οκτωβρίου 2010 Εργαστήριο «Δυσλεξία: Μια λέξη δύσκολη και μόνο να την πεις φαντάσου το μαρτύριο όμως να τη ζεις» Μαρία Χριστοπούλου, Ευρωπαϊκό Πανεπιστήμιο Κύπρου,

Διαβάστε περισσότερα

Πότε πρέπει να αρχίζει η λογοθεραπεία στα παιδιά - λόγος και μαθησιακές δυσκολίες

Πότε πρέπει να αρχίζει η λογοθεραπεία στα παιδιά - λόγος και μαθησιακές δυσκολίες Η διάγνωση των διαταραχών λόγου πρέπει να γίνεται έγκαιρα, μόλις οι γονείς αντιληφθούν οτι κάτι ισως δεν πάει καλά και πρέπει να παρουσιάσουν το παιδί τους στον ειδικό. Ο ειδικός θα λάβει μέτρα για την

Διαβάστε περισσότερα

Φωτεινή Πολυχρόνη Επίκουρη Καθηγήτρια Πανεπιστήμιο Αθηνών Γιώτα Δημητροπούλου Λέκτορας Πανεπιστήμιο Ιωαννίνων

Φωτεινή Πολυχρόνη Επίκουρη Καθηγήτρια Πανεπιστήμιο Αθηνών Γιώτα Δημητροπούλου Λέκτορας Πανεπιστήμιο Ιωαννίνων Μαθησιακές Δυσκολίες Φωτεινή Πολυχρόνη Επίκουρη Καθηγήτρια Πανεπιστήμιο Αθηνών Γιώτα Δημητροπούλου Λέκτορας Πανεπιστήμιο Ιωαννίνων 1 Θεματικές ενότητες του μαθήματος Θεωρητικό πλαίσιο της διαδικασίας εκμάθησης

Διαβάστε περισσότερα

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 6: Η σημασία των ερωτήσεων στην εκπαιδευτική διαδικασία

Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 6: Η σημασία των ερωτήσεων στην εκπαιδευτική διαδικασία Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 6: Η σημασία των ερωτήσεων στην εκπαιδευτική διαδικασία Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική

Διαβάστε περισσότερα

«Διαγνωστικές κατηγορίες και διαγνωστικά κριτήρια για όλες τις μαθησιακές δυσκολίες, σύμφωνα με το DSM-IV, DSM-IV TR, DSM-V & ICD-10»

«Διαγνωστικές κατηγορίες και διαγνωστικά κριτήρια για όλες τις μαθησιακές δυσκολίες, σύμφωνα με το DSM-IV, DSM-IV TR, DSM-V & ICD-10» «Διαγνωστικές κατηγορίες και διαγνωστικά κριτήρια για όλες τις μαθησιακές δυσκολίες, σύμφωνα με το DSM-IV, DSM-IV TR, DSM-V & ICD-10» Περιεχόμενα Περιεχόμενα...1 Εισαγωγή...1 DSM-IV, DSM-IV TR, DSM-V...2

Διαβάστε περισσότερα

Γεωργία Νταβαρούκα Νηπιοβρεφοκομία Δ εξάμηνου Λάρισα

Γεωργία Νταβαρούκα Νηπιοβρεφοκομία Δ εξάμηνου Λάρισα Γεωργία Νταβαρούκα geo_ntav@live.com Νηπιοβρεφοκομία Δ εξάμηνου Λάρισα 1-3-2016 1800 1920: Έρευνες στον τομέα της νευρολογίας ξεκίνησαν στην Ευρώπη. Οι απώλειες στη γλωσσική ικανότητα και ομιλία, αποδόθηκαν

Διαβάστε περισσότερα

Τα συμπτώματα που προειδοποιούν για τυχόν μαθησιακές δυσκολίες στην αριθμητική είναι τα εξής:

Τα συμπτώματα που προειδοποιούν για τυχόν μαθησιακές δυσκολίες στην αριθμητική είναι τα εξής: ...δεν σημαίνει χαμηλή νοημοσύνη Ονομάζεται δυσαριθμησία και είναι η μαθησιακή δυσκολία στα μαθηματικά. Τα παιδιά που παρουσιάζουν δυσκολίες στα μαθηματικά, δε σημαίνει πως έχουν χαμηλή νοημοσύνη. Της

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

Η προβληματική κατάσταση Χρήστος Πανούτσος

Η προβληματική κατάσταση Χρήστος Πανούτσος Η προβληματική κατάσταση Χρήστος Πανούτσος Η Τζούλι και η μαμά της έχουν βγει για να αγοράσουν ένα τζιν για το σχολείο. Παρατηρούν έναν πάγκο με την εξής ταμπέλα πάνω: 40% έκπτωση των τιμών στις ετικέτες

Διαβάστε περισσότερα

Σχέδιο Μαθήματος: Κοινωνικές και Επικοινωνιακές Δεξιότητες για Ανάπτυξη Αυτοπεποίθησης και Τεχνικών Επίλυσης Διαφορών

Σχέδιο Μαθήματος: Κοινωνικές και Επικοινωνιακές Δεξιότητες για Ανάπτυξη Αυτοπεποίθησης και Τεχνικών Επίλυσης Διαφορών Σχέδιο Μαθήματος: Κοινωνικές και Επικοινωνιακές Δεξιότητες για Ανάπτυξη Αυτοπεποίθησης και Τεχνικών Επίλυσης Διαφορών Διάρκεια: Περιληπτική Περιγραφή: Δύο 45λεπτες διδακτικές περίοδοι Η πρώτη περίοδος

Διαβάστε περισσότερα

MULTICOM 112. Οδηγίες χρήσης

MULTICOM 112. Οδηγίες χρήσης MULTICOM 112 Οδηγίες χρήσης Σκοπός Στόχος του προγράμματος Multicom-112 είναι να βοηθήσει το προσωπικό των επιχειρησιακών κέντρων να αναπτύξουν βασικές γλωσσικές δεξιότητες μέχρι το σημείο όπου θα είναι

Διαβάστε περισσότερα

ΚΑΠΟΙΕΣ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ

ΚΑΠΟΙΕΣ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΚΑΠΟΙΕΣ ΔΙΔΑΚΤΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ Οι εκπαιδευόμενοι χρειάζεται να δουν και να χρησιμοποιήσουν ποικίλα μοντέλα του κλάσματος, εστιάζοντας αρχικά στα οικία κλάσματα όπως είναι το μισό, τα τέταρτα, πέμπτα,

Διαβάστε περισσότερα

ΣΥΧΝΕΣ ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΗΝ ΕΡΕΥΝΑ TIMSS

ΣΥΧΝΕΣ ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΗΝ ΕΡΕΥΝΑ TIMSS ΕΘΝΙΚΟ ΚΕΝΤΡΟ TIMSS 2015 ΣΥΧΝΕΣ ΕΡΩΤΗΣΕΙΣ ΓΙΑ ΤΗΝ ΕΡΕΥΝΑ TIMSS Τι είναι η Έρευνα TIMSS; Η Έρευνα Trends in International Mathematics and Science Study (TIMSS) του Διεθνούς Οργανισμού για την Αξιολόγηση

Διαβάστε περισσότερα

Αποτελέσματα ερευνών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις της σχολής των Μαθηματικών της Φύσης και της Ζωής

Αποτελέσματα ερευνών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις της σχολής των Μαθηματικών της Φύσης και της Ζωής 4.3. ΠΟΛΥΨΗΦΙΟΙ ΠΟΛΛΑΠΛΑΣΙΑΣΜΟΙ ΚΑΙ ΔΙΑΙΡΕΣΕΙΣ 4.3.. Αποτελέσματα ερευνών σε πολυψήφιους πολλαπλασιασμούς και διαιρέσεις της σχολής των Μαθηματικών της Φύσης και της Ζωής Παρουσίαση δεδομένων από το αρχικό

Διαβάστε περισσότερα

Μαθησιακές δυσκολίες: Προσεγγίζοντας από την θεωρία την πράξη. 1. Μαθησιακές δυσκολίες: ορισμοί-περιορισμοί, διάγνωση-αντιμετώπιση

Μαθησιακές δυσκολίες: Προσεγγίζοντας από την θεωρία την πράξη. 1. Μαθησιακές δυσκολίες: ορισμοί-περιορισμοί, διάγνωση-αντιμετώπιση 1. Μαθησιακές δυσκολίες: ορισμοί-περιορισμοί, διάγνωση-αντιμετώπιση ΒΙΟΓΡΑΦΙΚΟ Η Ελένη Λιβανίου είναι Εκπαιδευτικός Ψυχολόγος με Διδακτορικό στη γνωστική και κοινωνική ψυχολογία από το πανεπιστήμιο του

Διαβάστε περισσότερα