1. Τι ονομάζουμε πρόβλημα; Δώστε παραδείγματα.

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. Τι ονομάζουμε πρόβλημα; Δώστε παραδείγματα."

Transcript

1 1. Τι ονομάζουμε πρόβλημα; Δώστε παραδείγματα. ΑΠΑΝΤΗΣΗ Ορισμός: Με τον όρο πρόβλημα εννοείται μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. Παραδείγματα προβλημάτων: Φυσικά φαινόμενα, όπως εκρήξεις ηφαιστείων, παλιρροιακά κύματα, σεισμοί και τυφώνες, αποτελούν σημαντικά προβλήματα ακόμα και στην εποχή μας, με αποτέλεσμα οι πληθυσμοί των περιοχών που πλήττονται να μετρούν ανθρώπινα θύματα, να υπόκεινται οικονομική καταστροφή και να αναγκάζονται πολλές φορές σε μετακίνηση. Ο υποσιτισμός ενός πολύ μεγάλου μέρους του πληθυσμού της αφρικανικής κύρια ηπείρου, οι καθημερινοί θάνατοι πολλών ανθρώπων, ειδικά μικρών παιδιών, αποτελεί ένα από τα σοβαρότερα προβλήματα της ανθρωπότητας σήμερα, χωρίς να έχει μπορέσει να αντιμετωπιστεί επαρκώς από τις ανθρωπιστικές οργανώσεις και τους διεθνείς οργανισμούς. Η αργή ταχύτητα μετάδοσης των δεδομένων σε σχέση με τις απαιτήσεις της σύγχρονης τεχνολογίας, αποτελεί ένα πρόβλημα που αντιμετωπίζεται σε ικανοποιητικό βαθμό από τη τεχνολογία των οπτικών ινών. 2. Τι γνωρίζετε για το πρόβλημα του 2000; ΑΠΑΝΤΗΣΗ Οι υπολογιστές αναπαριστούσαν την ημερομηνία χρησιμοποιώντας 2 ψηφία για το έτος. Δηλ. η ημερομηνία 15 Απριλίου 1999, αναπαριστάνονταν ως Από τις πρώτες περιόδους λειτουργίας των υπολογιστών, τότε που γινόταν κάθε δυνατή προσπάθεια να εξοικονομηθεί πολύτιμος αποθηκευτικός χώρος, καθιερώθηκε η καταγραφή της ημερομηνίας με τον παραπάνω τρόπο. Οπότε η πρώτη μέρα του 21ου αιώνα θα συμβολίζoταν με τον κωδικό , πράγμα που αν δεν αντιμετωπιζόταν θα είχε επιφέρει μεγάλη αναστάτωση και σύγχυση στους υπολογισμούς που θα πραγματοποιούσαν οι υπολογιστές. 5

2 Το συγκεκριμένο πρόβλημα αν και φαίνεται απλό μπορεί να έχει περίπλοκες επιπτώσεις. Για παράδειγμα, οι υπολογιστές τραπεζών μπορεί να κάνουν λάθος οικονομικούς υπολογισμούς. Ένα ευρύ φάσμα κοινωνικών υπηρεσιών ασφάλιση, υγειονομική περίθαλψη, παροχή ενέργειας, μεταφορές, κλπ -παρέχονται μέσα από χρήση πολύπλοκων υπολογιστικών συστημάτων, που απειλούνταν από το πρόβλημα του έτους Το πρόβλημα επιλύθηκε με την χρήση τεσσάρων ψηφίων για την αναπαράσταση του έτους στους σύγχρονους υπολογιστές. 3. Τι ονομάζουμε δεδομένα, πληροφορίες, επεξεργασία δεδομένων; ΑΠΑΝΤΗΣΗ Με τον όρο δεδομένα δηλώνεται οποιοδήποτε στοιχείο μπορεί να γίνει αντιληπτό από έναν τουλάχιστον παρατηρητή με μία από τις πέντε αισθήσεις του. Με τον όρο πληροφορία αναφερόμαστε σε κάθε στοιχείο που προκύπτει από την επεξεργασία των δεδομένων του προβλήματος. Ο όρος επεξεργασία δεδομένων δηλώνει εκείνη τη διαδικασία κατά την οποία ένας μηχανισμός δέχεται δεδομένα, τα επεξεργάζεται σύμφωνα με έναν προκαθορισμένο τρόπο και αποδίδει πληροφορίες. Επί χιλιετίες ο μηχανισμός επεξεργασίας των δεδομένων ήταν και εξακολουθεί να είναι ο ανθρώπινος εγκέφαλος. Στις μέρες μας, ένας άλλος μηχανισμός επεξεργασίας δεδομένων είναι ο υπολογιστής. Ένα γνωσιακό ποσό δεν μπορεί να χαρακτηριστεί αυτόματα σαν δεδομένο ή πληροφορία. Το στοιχείο εκείνο που θα μπορέσει να προσδώσει το χαρακτηρισμό δεδομένο ή πληροφορία σε ένα γνωσιακό ποσό είναι το αν αυτό προέρχεται από διαδικασία επεξεργασίας ή αν πρόκειται να υποβληθεί σε επεξεργασία. Κατά συνέπεια το ίδιο γνωσιακό ποσό μπορεί για μια διαδικασία να αποτελεί πληροφορία και για μια άλλη επόμενη να αποτελεί δεδομένο. 4. Από τι εξαρτάται η κατανόηση ενός προβλήματος; ΑΠΑΝΤΗΣΗ Η κατανόηση ενός προβλήματος είναι συνάρτηση δύο παραγόντων: της σωστής διατύπωσης εκ μέρους του δημιουργού του της σωστής ερμηνείας από τη μεριά εκείνου που καλείται να το αντιμετωπίσει. Η μορφή με την οποία παρουσιάζεται ένα πρόβλημα μπορεί να είναι οποιαδήποτε αρκεί να μπορεί να γίνει αντιληπτή από μία από τις πέντε ανθρώπινες αισθήσεις. Σε κάθε όμως περίπτωση θα πρέπει να γίνει απολύτως κατανοητό πριν γίνει κάθε προσπάθεια αντιμετώπισής του. 6

3 Η κατανόηση ενός προβλήματος εξαρτάται σε μεγάλο βαθμό από την διατύπωσή του. Οποιοδήποτε μέσο μπορεί να χρησιμοποιηθεί για να αποδοθεί η διατύπωση ενός προβλήματος. Συνηθέστερο από όλα είναι ο λόγος, είτε ο προφορικός, είτε ο γραπτός. Ο λόγος σαν μέσο επικοινωνίας και συνεννόησης πρέπει να χαρακτηρίζεται από σαφήνεια. Άστοχη χρήση ορολογίας, λανθασμένη σύνταξη, είναι δύο στοιχεία που μπορούν να προκαλέσουν παρερμηνείες και παραπλανήσεις. Η ικανότητα εκφοράς σωστού προφορικού και γραπτού λόγου αποτελεί μεγάλο προτέρημα για κάθε άτομο. Η παρερμηνεία είναι δυνατή ακόμα και σε περιπτώσεις όπου όλοι οι λεξικολογικοί και συντακτικοί κανόνες κρατούνται με ευλάβεια. Με τον όρο χώρο προβλήματος ορίζουμε την περιοχή, (π.χ. επιστημονική, καθημερινή ζωή), από την οποία προέρχεται το πρόβλημα. Σημαντικός ακόμα παράγοντας στη σωστή αντιμετώπιση ενός προβλήματος είναι η αποσαφήνιση του χώρου στον οποίο αναφέρεται. Η πληροφορία αυτή παρέχεται επίσης από την εκφώνηση του προβλήματος. Τα δεδομένα του προβλήματος είναι αυτά που θα μας παρέχουν αυτήν την πληροφορία. 5. Με ποια κριτήρια κατηγοριοποιούμε τα προβλήματα; ΑΠΑΝΤΗΣΗ Τα διάφορα προβλήματα μπορούμε να τα κατηγοριοποιήσουμε σύμφωνα με τα παρακάτω κριτήρια: Την δυνατότητα επίλυσης τους. Τον βαθμό δόμησης των λύσεων τους (εφόσον είναι επιλύσιμα). Το είδος της επίλυσης που επιζητούν. 6. Πώς κατηγοριοποιούμε τα προβλήματα με κριτήριο την δυνατότητα επίλυσης τους; ΑΠΑΝΤΗΣΗ Με κριτήριο τη δυνατότητα επίλυσης ενός προβλήματος, διακρίνουμε τρεις κατηγορίες προβλημάτων : Επιλύσιμα, είναι εκείνα τα προβλήματα για τα οποία η λύση τους είναι ήδη γνωστή και έχει διατυπωθεί. Επιλύσιμα μπορεί επίσης να χαρακτηριστούν και προβλήματα, των οποίων η λύση δεν έχει ακόμα διατυπωθεί, αλλά ή συνάφειά τους με άλλα που ήδη έχουν λυθεί μας επιτρέπει να θεωρούμε σαν βέβαιη τη δυνατότητα επίλυσής τους. Η κατασκευή laser εκτυπωτών είναι ένα λυμένο πρόβλημα αφού υπάρχουν εταιρίες που κατασκευάζουν τέτοιου είδους εκτυπωτές. Ανοικτά, ονομάζονται εκείνα τα προβλήματα για τα οποία η λύση τους δεν έχει μεν ακόμα βρεθεί, αλλά παράλληλα δεν έχει αποδειχθεί, ότι δεν επιδέχονται λύση. Σαν παράδειγμα ανοικτού προβλήματος μπορούμε να αναφέρουμε το πρόβλημα της ενοποίησης των τεσσάρων πεδίων δυνάμεων. Άλυτα, χαρακτηρίζονται εκείνα τα προβλήματα για τα οποία έχουμε φτάσει στην παραδοχή, ότι δεν επιδέχονται λύση. 7

4 Τέτοιου είδους πρόβλημα είναι το γνωστό από τους αρχαίους ελληνικούς χρόνους πρόβλημα του τετραγωνισμού του κύκλου με κανόνα και διαβήτη. Το πρόβλημα αυτό θεωρείται άλυτο. 7. Πώς κατηγοριοποιούμε τα προβλήματα σύμφωνα με τo βαθμό δόμησης των λύσεων τους; ΑΠΑΝΤΗΣΗ Με κριτήριο το βαθμό δόμησης των λύσεών τους, τα επιλύσιμα προβλήματα μπορούν να διακριθούν σε τρεις επίσης κατηγορίες : Δομημένα, χαρακτηρίζονται εκείνα τα προβλήματα των οποίων η επίλυση προέρχεται από μια αυτοματοποιημένη διαδικασία. Για παράδειγμα, η επίλυση της δευτεροβάθμιας εξίσωσης αποτελεί ένα δομημένο πρόβλημα, αφού ο τρόπος επίλυσης της εξίσωσης είναι γνωστός και αυτοματοποιημένος. Στα δομημένα προβλήματα δεν υπάρχει δυνατότητα επιλογής μέσα από ένα πλήθος εναλλακτικών λύσεων. Ημιδομημένα, ονομάζονται τα προβλήματα εκείνα των οποίων η λύση μπορεί να επιλεγεί ανάμεσα από ένα εύρος πιθανών λύσεων, αφήνοντας στον ανθρώπινο παράγοντα περιθώρια επιλογής της. Σαν παράδειγμα ημιδομημένου προβλήματος μπορούμε να αναφέρουμε ένα πρόβλημα όπου ένας ταξιδιώτης αναζητά να επιλέξει το μεταφορικό μέσο μετακίνησής του από ένα μέρος σε κάποιο άλλο. Το πρόβλημα είναι ημιδομημένο, δεδομένου ότι η λύση που θα επιλεγεί, πρέπει να αναζητηθεί σε ένα σύνολο σαφώς προκαθορισμένο που συμπεριλαμβάνει όλα τα διαθέσιμα μεταφορικά μέσα. Αδόμητα, χαρακτηρίζονται τα προβλήματα εκείνα των οποίων οι λύσεις δεν μπορούν να δομηθούν ή δεν έχει διερευνηθεί σε βάθος η δυνατότητα δόμησής τους. Πρωτεύοντα ρόλο στην επίλυση αυτού του τύπου προβλημάτων κατέχει η ανθρώπινη διαίσθηση. Παράδειγμα αδόμητου προβλήματος είναι η επιλογή του τρόπου, του τόπου και του χρόνου ενός εφηβικού πάρτυ. Είναι σαφές ότι δεν υπάρχει κανένας συγκεκριμένος τρόπος (αυτοματοποιημένη διαδικασία) οργάνωσης ενός εφηβικού πάρτυ και όλοι οι παράγοντες που θα το διαμορφώσουν εξαρτώνται από τους διοργανωτές του. Τα αδόμητα προβλήματα έχουν πρακτικά άπειρους τρόπους λύσεις. Προσοχή! Για να κατηγοριοποιήσουμε ένα πρόβλημα σύμφωνα με τo βαθμό δόμησης των λύσεων του πρέπει το πρόβλημα να είναι οπωσδήποτε επιλύσιμο. 8. Πώς κατηγοριοποιούμε τα προβλήματα με κριτήριo το είδος επίλυσης τους; ΑΠΑΝΤΗΣΗ 8

5 Με κριτήριο το είδος της επίλυσης που επιζητούν, τα προβλήματα διακρίνονται σε τρεις κατηγορίες: Απόφασης, όπου η απόφαση που πρόκειται να ληφθεί σαν λύση του προβλήματος απαντά σε ένα ερώτημα. Πιθανόν αυτή η απάντηση να είναι ένα Ναι ή ένα Όχι. Αυτό που θέλουμε να διαπιστώσουμε σε ένα πρόβλημα απόφασης είναι αν υπάρχει απάντηση που ικανοποιεί τα δεδομένα που θέτονται από το πρόβλημα. Παράδειγμα: Δίδεται ένας ακέραιος αριθμός Ν και το πρόβλημα που τίθεται είναι, αν ο αριθμός Ν είναι πρώτος. Υπολογιστικά, όπου απαιτούνται να γίνουν υπολογισμοί για να μπορεί να δοθεί μία απάντηση στο πρόβλημα. Σε ένα υπολογιστικό πρόβλημα ζητάμε να βρούμε τη τιμή της απάντησης που ικανοποιεί τα δεδομένα που παρέχει το πρόβλημα. Παράδειγμα: Η εύρεση της ρίζας της εξίσωσης χ 2 = 5 είναι υπολογιστικό πρόβλημα. Βελτιστοποίησης, όπου το πρόβλημα που τίθεται επιζητά το βέλτιστο αποτέλεσμα για τα συγκεκριμένα δεδομένα που διαθέτει. Σε ένα πρόβλημα βελτιστοποίησης αναζητούμε την απάντηση που ικανοποιεί κατά τον καλύτερο τρόπο τα δεδομένα που παρέχει το πρόβλημα. Παράδειγμα: Η εύρεση της συντομότερης διαδρομής Αθήνας - Κορίνθου είναι πρόβλημα βελτιστοποίησης. 9. Tι ονομάζουμε με τον όρο δομή προβλήματος; ΑΠΑΝΤΗΣΗ Με τον όρο δομή προβλήματος αναφερόμαστε στα συστατικά του μέρη, στα επιμέρους προβλήματα (υποπροβλήματα) που το αποτελούν καθώς και τον τρόπο που αυτά συνδέονται μεταξύ τους. Η κατανόηση του προβλήματος είναι βασική προϋπόθεση για να γίνει στη συνέχεια δυνατή η σωστή αποτύπωση της δομής του. 10. Τι εννοούμε με τον όρο ανάλυση ενός προβλήματος; ΑΠΑΝΤΗΣΗ Ανάλυση ενός προβλήματος είναι ο χωρισμός του προβλήματος σε επιμέρους υποπροβλήματα που είναι απλούστερα στην επίλυση τους. Η ανάλυση αυτή του προβλήματος σε άλλα απλούστερα αναδύει παράλληλα και τη δομή του προβλήματος. Η καταγραφή της δομής ενός προβλήματος σημαίνει αυτόματα ότι έχει αρχίσει η διαδικασία ανάλυσης του προβλήματος σε άλλα απλούστερα. Με τη σειρά τους τα νέα προβλήματα μπορούν να αναλυθούν σε άλλα, ακόμη πιο απλά. Η διαδικασία αυτή της ανάλυσης μπορεί να συνεχιστεί μέχρις ότου τα επιμέρους προβλήματα που προέκυψαν θεωρηθούν αρκετά απλά και η αντιμετώπισή τους χαρακτηριστεί ως δυνατή. 9

6 Τα πλεονεκτήματα της ανάλυσης του προβλήματος σε υποπροβλήματα, δηλαδή της εύρεσης της δομής του είναι: 1. Η δυσκολία αντιμετώπισης του προβλήματος ελαττώνεται όσο προχωρά η ανάλυση του σε απλούστερα υποπροβλήματα. 2. Ο κατακερματισμός ενός προβλήματος σε απλούστερα προβλήματα, ενεργοποιεί και οξύνει τη σκέψη και την αναλυτική ικανότητα του ατόμου. 11. Με ποιους τρόπους μπορούμε να περιγράψουμε και αναλύσουμε ένα πρόβλημα; (Πως μπορεί να αναπαρασταθεί η δομή ενός προβλήματος;) ΑΠΑΝΤΗΣΗ Ένα πρόβλημα μπορεί να αναπαρασταθεί με δύο τρόπους: 1. Φραστικά, όπου καθένα από τα υποπροβλήματα, περιγράφεται με λόγια. 2. Διαγραμματικά, η διαδικασία αναπαράστασης περιγράφεται παρακάτω: το αρχικό πρόβλημα αναπαρίσταται από ένα ορθογώνιο παραλληλόγραμμο κάθε ένα από τα απλούστερα προβλήματα στα οποία αναλύεται ένα οποιοδήποτε πρόβλημα, αναπαρίσταται επίσης από ένα ορθογώνιο παραλληλόγραμμο τα παραλληλόγραμμα που αντιστοιχούν στα απλούστερα προβλήματα στα οποία αναλύεται ένα οποιοδήποτε πρόβλημα, σχηματίζονται ένα επίπεδο χαμηλότερα. Έτσι σε κάθε κατώτερο επίπεδο, δημιουργείται η γραφική αναπαράσταση των προβλημάτων στα οποία αναλύονται τα προβλήματα του αμέσως ψηλότερου επιπέδου. (κοίτα σελίδα 23). Η διαγραμματική αναπαράσταση προσφέρει μια απτή απεικόνιση της δομής του προβλήματος. Η δημιουργία του σχετικού διαγράμματος βοηθάει τόσο στην καλύτερη κατανόηση του ίδιου του προβλήματος, όσο και στη σχεδίαση της λύσης του. 12. Τι περιλαμβάνει ο καθορισμός των απαιτήσεων ενός προβλήματος; ΑΠΑΝΤΗΣΗ Περιλαμβάνει τον επακριβή προσδιορισμό των δεδομένων που παρέχει το πρόβλημα καθώς και την λεπτομερειακή καταγραφή των ζητούμενων που αναμένονται ως αποτελέσματα της επίλυσης του προβλήματος. Μεθοδολογία προσδιορισμού των δεδομένων ενός προβλήματος δεν υπάρχει, ούτε και μεθοδολογία εντοπισμού και αποσαφήνισης των ζητούμενων ενός προβλήματος. 13. Ποια είναι τα στάδια αντιμετώπισης ενός προβλήματος; ΑΠΑΝΤΗΣΗ 10

7 Τα στάδια αντιμετώπισης ενός προβλήματος είναι τρία: Κατανόηση, όπου απαιτείται η σωστή και πλήρης αποσαφήνιση των δεδομένων και των ζητούμενων του προβλήματος. Ανάλυση, όπου το αρχικό πρόβλημα διασπάται σε άλλα επί μέρους απλούστερα προβλήματα. Επίλυση, όπου υλοποιείται η λύση του προβλήματος, μέσω της λύσης των επιμέρους προβλημάτων. ΚΑΤΑΝΟΗΣΗ ΑΝΑΛΥΣΗ ΕΠΙΛΥΣΗ 14. Ποιες είναι οι απαιτούμενες ενέργειες για την αντιμετώπιση ενός προβλήματος; ΑΠΑΝΤΗΣΗ Οι απαιτούμενες ενέργειες για την αντιμετώπιση ενός προβλήματος (που αφορούν την επεξεργασία των δεδομένων) είναι αυτές που φαίνονται στο σχήμα: ΕΙΣΟΔΟΣ ΕΛΕΓΧΟΣ ΕΠΕΞΕΡΓΑΣΙΑ ΕΞΟΔΟΣ Οι είσοδοι αφορούν καταχώρηση των δεδομένων του προβλήματος. Τα δεδομένα ελέγχονται ως προς την ορθότητά τους και ίσως χρειαστεί επανάληψη της καταχώρησης κάποιων τιμών. Γίνονται οι απαραίτητες επεξεργασίες ή υπολογισμοί προκειμένου να βρεθούν τα ζητούμενα αποτελέσματα (πληροφορίες). Οι έξοδοι αφορούν εξαγωγή των επιθυμητών αποτελεσμάτων 15. Ποιοι είναι οι λόγοι που αναθέτουμε την επίλυση ενός προβλήματος σε υπολογιστή; ΑΠΑΝΤΗΣΗ Οι λόγοι που αναθέτουμε την επίλυση ενός προβλήματος σε υπολογιστή σχετίζονται με Την πολυπλοκότητα των υπολογισμών. Την επαναληπτικότητα των διαδικασιών. 11

8 Την ταχύτητα εκτέλεσης των πράξεων. Το μεγάλο πλήθος των δεδομένων. 16. Ποιες λειτουργίες μπορεί να εκτελέσει ένας υπολογιστής; ΑΠΑΝΤΗΣΗ O υπολογιστής δεν μπορεί να εκτελεί παρά μόνο τρεις λειτουργίες: Πρόσθεση, η οποία αποτελεί τη βασική αριθμητική πράξη, δεδομένου ότι και οι άλλες αριθμητικές πράξεις μπορούν να αντιμετωπιστούν, σαν διαδικασίες πρόσθεσης. Σύγκριση, η οποία συνιστά τη βασική λειτουργία για την επιτέλεση όλων των λογικών πράξεων. Μεταφορά δεδομένων, λειτουργία που προηγείται και έπεται της επεξεργασίας δεδομένων. Οι λειτουργίες αυτές είναι αρκετές, ώστε ο υπολογιστής να επιτελέσει με επιτυχία κάθε είδους επεξεργασία. Με βάση αυτές τις τρεις λειτουργίες διεκπεραιώνει όλες τις εργασίες που του αναθέτονται και επιλύει όλα τα προβλήματα που αναλαμβάνει. 17. Σύγκριση ανθρώπου με ηλεκτρονικό υπολογιστή. ΑΠΑΝΤΗΣΗ Αναμφίβολα προβλήματα λυνόντουσαν και πριν τη γένεση των υπολογιστών. Η ικανότητα του ανθρώπου να αντιμετωπίζει και να επιλύει προβλήματα είναι πολύ προγενέστερη της εμφάνισής τους. Οι υπολογιστές ήρθαν σχετικά πάρα πολύ πρόσφατα για να δράσουν βοηθητικά στην ανθρώπινη δραστηριότητα. Η ικανότητα που παρουσιάζει ο υπολογιστής εκδηλώνεται σε ποσοτικό επίπεδο και όχι σε ποιοτικό. Μπορεί να αντιμετωπίσει σύνθετα λογικά προβλήματα μόνο εφόσον ο άνθρωπος έχει φροντίσει προηγούμενα, με τη χρήση κατάλληλων προγραμμάτων, να του διδάξει τον τρόπο αντιμετώπισης και επίλυσης αυτού του είδους των προβλημάτων. Πρέπει να γίνει απόλυτα κατανοητό πως τα προβλήματα και οι λύσεις του προϋπήρξαν και εξακολουθούν να υπάρχουν ανεξάρτητα από τους υπολογιστές. Η σύγκριση λειτουργιών ανθρώπου και υπολογιστή επιφέρει βέβαια μια ποιοτική διαφορά υπέρ του ανθρώπου. Ο υπολογιστής δεν είναι ένας ηλεκτρονικός εγκέφαλος. Αυτό που κάνει δεν είναι τίποτε περισσότερο από το να χειρίζεται στοιχεία, ενώ ο άνθρωπος μπορεί να σκέπτεται, να παράγει ιδέες. Το σημείο αυτό είναι πρωταρχικής σημασίας, προσδιορίζοντας μια τεράστια ποιοτική διαφορά. Το σημείο εκείνο στο οποίο ο υπολογιστής υπερτερεί έναντι του ανθρώπου, είναι η ταχύτητα εκτέλεσης των πράξεων, ταχύτητα η οποία βελτιώνεται συνέχεια με την πρόοδο της τεχνολογίας. 12

9 1. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Προβλήματα συναντούμε μόνο στα μαθηματικά και γενικά στις θετικές επιστήμες. 2. Ένα πρόβλημα είναι μια κατάσταση για την οποία μπορούμε να βρούμε τουλάχιστον μια λύση. 3. Ο υπολογιστής και το πρόβλημα είναι έννοιες που εξαρτώνται άμεσα η μια από την άλλη. 4. Αν υποβάλουμε ξανά τις πληροφορίες σε επεξεργασία παίρνουμε νέες πληροφορίες. 5. Με τον όρο δεδομένο αναφέρεται οποιοδήποτε γνωσιακό στοιχείο. 6. Ο Η/Υ είναι ένας μηχανισμός επεξεργασίας δεδομένων. 7. Το ζητούμενο στα προβλήματα είναι κάποιος αριθμός. 8. Τα δεδομένα ενός προβλήματος είναι πάντοτε κάποιοι αριθμοί. 9. Για την παραγωγή πληροφοριών απαιτούνται δεδομένα ή άλλες πληροφορίες. 10. Το ότι το ύψος ενός ατόμου είναι 1,90 αποτελεί δεδομένο, ενώ είναι πληροφορία ότι το άτομο αυτό είναι ψηλό. 11. Για την επίλυση ενός προβλήματος απαιτείται η σωστή διατύπωσή του. 13

10 2. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Η κατανόηση ενός προβλήματος εξαρτάται μόνο από την διατύπωσή του. 2. Η κακή διατύπωση ενός προβλήματος μπορεί να οδηγήσει στην μη επίλυσή του. 3. Η κατανόηση ενός προβλήματος εξαρτάται αποκλειστικά από τη φύση του προβλήματος. 4. Όσο πιο σαφές είναι ένα πρόβλημα στην διατύπωσή του τόσο πιο εύκολο είναι στην επίλυσή του. 5. Σημαντικός παράγοντας στη σωστή αντιμετώπιση ενός προβλήματος είναι η αποσαφήνιση του χώρου στον οποίο αναφέρεται. 6. Με τον όρο χώρο προβλήματος ορίζουμε τα δεδομένα του προβλήματος. 7. Η κατανόηση ενός προβλήματος εξαρτάται από το χώρο που προέρχεται. Για παράδειγμα αν είναι πρόβλημα επιστημονικό ή της καθημερινής ζωής. 8. Για κάθε πρόβλημα υπάρχει μοναδικός τρόπος επίλυσής του. 9. Τα προβλήματα για τα οποία δεν μπορούμε να απαντήσουμε ακόμη, εάν είναι δυνατόν να επιλυθούν ονομάζονται μη επιλύσιμα. 10. Η επίλυση της πρωτοβάθμιας εξίσωσης αποτελεί αδόμητο πρόβλημα. 11. Άλυτα ονομάζουμε τα προβλήματα των οποίων η λύση δεν έχει βρεθεί. 12. Ένα δομημένο πρόβλημα είναι πάντοτε επιλύσιμο. 13. Ένα επιλύσιμο πρόβλημα είναι πάντοτε δομημένο. 14. Ένα άλυτο πρόβλημα είναι και αδόμητο. 15. Ανοικτά είναι τα προβλήματα που δεν είναι άλυτα ούτε επιλύσιμα. 16. Ο υπολογισμός του εμβαδού ενός τριγώνου είναι ανοικτό πρόβλημα. 17. Ο υπολογισμός του εμβαδού ενός τριγώνου είναι δομημένο πρόβλημα 14

11 3. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Με κριτήριο την δυνατότητα επίλυσης ενός προβλήματος οι κατηγορίες είναι: επιλύσιμα, υπολογιστικά και άλυτα. 2. Ανοικτό ονομάζεται ένα πρόβλημα όταν μπορεί να λυθεί με περισσότερους από ένας τρόπους. 3. Υπάρχουν επιλύσιμα προβλήματα που δεν μπορούν να λυθούν με ηλεκτρονικό υπολογιστή. 4. Τα άλυτα προβλήματα μπορούν να λυθούν μόνο με ηλεκτρονικό υπολογιστή. 5. Αδόμητα ονομάζονται τα προβλήματα των οποίων η διαδικασία επίλυσης δεν είναι αυτοματοποιημένη επειδή οι δυνατές λύσεις είναι πρακτικά απεριόριστες. 6. Ημιδομημένα χαρακτηρίζονται τα προβλήματα των οποίων τα δεδομένα επιλέγονται μέσα από ένα περιορισμένο σύνολο τιμών. 7. Ανοιχτό ονομάζεται ένα πρόβλημα που μπορεί εύκολα να παρεξηγηθεί αν το γνωστικό επίπεδο του λύτη είναι χαμηλό. 8. Τα υπολογιστικά προβλήματα είναι αυτά στα οποία πρέπει να πάρουμε μια απόφαση. 9. Τα επιλύσιμα προβλήματα έχουν πιο σαφείς διατυπώσεις από τα άλυτα. 10. Δομή ενός προβλήματος είναι μόνο η εύρεση του συνόλου των μερών που το απαρτίζουν. 11. Η δομή ενός προβλήματος εξαρτάται στην ουσία από το είδος της επίλυσης που επιζητεί το ίδιο το πρόβλημα. 12. Κάθε πρόβλημα μπορεί να αναλυθεί σε επιμέρους προβλήματα. 13. Η δομή ενός προβλήματος καταγράφεται κατά την φάση της επίλυσής του. 14. Τα δομημένα προβλήματα είναι τα μόνα προβλήματα που έχουν δομή. 15. Τα επιμέρους προβλήματα του αρχικού προβλήματος είναι δυνατόν να αναλυθούν και σε άλλα απλούστερα υποπροβλήματα. 15

12 4. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Το αρχικό πρόβλημα στη διαγραμματική αναπαράσταση αναπαριστάται με μία έλλειψη. 2. Ένα οποιοδήποτε πρόβλημα μπορεί να αναπαρασταθεί είτε διαγραμματικά, είτε φραστικά. 3. Η κατανόηση ενός προβλήματος ακολουθεί την ανάλυσή του. 4. Σε ένα υπολογιστή η μεταφορά των δεδομένων γίνεται μόνο μετά την επεξεργασία τους. 5. Ο καθορισμός των απαιτήσεων έχει άμεση σχέση με την κατανόηση του προβλήματος. 6. Ο καθορισμός των απαιτήσεων ενός προβλήματος κάνει το ίδιο το πρόβλημα πιο εύκολο 7. Μεθοδολογία προσδιορισμού των δεδομένων ενός προβλήματος δεν υπάρχει. 8. Για την επίλυση ενός προβλήματος πρέπει να έχουν καθοριστεί τα δεδομένα και τα ζητούμενα. 9. Ο έλεγχος των δεδομένων μπορεί να οδηγήσει και πάλι στην είσοδο. 10. Ο Η/Υ δεν μπορεί να επιτελέσει όλες τις λειτουργίες του ανθρώπινου εγκεφάλου. 11. Η χρήση Η/Υ για την επίλυση προβλημάτων ενδείκνυται στις περιπτώσεις που χρειάζεται διαχείριση μεγάλου όγκου δεδομένων. 12. Αν ένα πρόβλημα απαιτεί απλούς υπολογισμούς σε μικρό όγκο δεδομένων δεν μπορεί να ανατεθεί σε έναν Η/Υ. 13. Ο ταχύτερος μηχανισμός επεξεργασίας δεδομένων είναι ο ανθρώπινος εγκέφαλος. 14. Ο Η/Υ μπορεί να επιλύσει με άνεση οποιοδήποτε πολύπλοκο πρόβλημα χωρίς τη βοήθεια του ανθρώπου. 16

13 5. Να σημειώσετε το Σωστό ( ) ή το Λάθος ( ) στους παρακάτω ισχυρισμούς: 1. Η πρόσθεση είναι μια από τις βασικές λειτουργίες που μπορεί να επιτελέσει έναν Η/Υ. 2. Ένας από τους λόγους που χρησιμοποιούμε τους υπολογιστές είναι το γεγονός ότι μπορούν να αναλύουν με εξαιρετική ακρίβεια τα δεδομένα. 3. Οι βασικές λειτουργίες που εκτελεί ένας υπολογιστής είναι η πρόσθεση, ο πολλαπλασιασμός και η σύγκριση. 4. H/Y δεν μπορεί να παράγει ιδέες. 5. Η σύγκριση είναι μια αριθμητική πράξη. 6. Η ικανότητα που παρουσιάζει ο υπολογιστής εκδηλώνεται σε ποσοτικό επίπεδο και όχι σε ποιοτικό. 6. Επιλέξτε όσα χρειάζονται μεταξύ των προτεινόμενων. 1. Το πρόβλημα α) επιλύεται πάντοτε με κάποια τεχνική β) προέρχεται πάντοτε από κάποιο επιστημονικό τομέα γ) είναι ένας όρος γεμάτος ασάφειες δ) διατυπώνονται συνήθως χρησιμοποιώντας τον προφορικό ή τον γραπτό λόγο. 2. Στη διαγραμματική αναπαράσταση της ανάλυσης ενός προβλήματος α) όλα τα προβλήματα παριστάνονται με τρίγωνα β) τα υποπροβλήματα και το αρχικό πρόβλημα παρίστανται με το ίδιο γεωμετρικό σχήμα. γ) μπορεί να συναντήσουμε και βρόχους δ) υπάρχει ένα ανώτατο όριο επιπέδων ανάλυσης. 3. Οι λόγοι για τους οποίους αναθέτουμε την επίλυση προβλημάτων σ' έναν Η/Υ είναι: α) Ταχύτητα εκτέλεσης πράξεων β) Χειρισμός μεγάλου όγκου δεδομένων γ) Ικανότητα εκτέλεσης συγκρίσεων δ) Ικανότητα για ανάλυση δεδομένων 17

14 4. Τα δεδομένα ενός προβλήματος πρέπει α) να έχουν καθοριστεί με σαφήνεια β) να είναι δομημένα γ) να είναι αριθμητικά δ) να είναι κοινά σε όλα τα προβλήματα 5. Η διαδικασία μέσω της οποίας βρίσκουμε το ζητούμενο ενός προβλήματος ονομάζεται α) επίλυση β) ανάλυση γ) αξιολόγηση δ) εύρεση 6. Οι βασικές λειτουργίες που μπορεί να επιτελέσει ένας Η/Υ είναι: α) πολλαπλασιασμός β) χειρισμός μεγάλου όγκου δεδομένων γ) μεταφορά δεδομένων δ) ικανότητα ανάλυσης δεδομένων 7. Συμπληρώστε τα κενά με τη λέξη που λείπει. 1. Το πρόβλημα του έτους 2000 είχε να κάνει με τον τρόπο καταγραφής της από τους υπολογιστές. 2. Ο λόγος ως μέσο επικοινωνίας πρέπει πάντοτε να χαρακτηρίζεται από. 3. Η των δεδομένων αποτελεί ένα παραγωγής πληροφοριών. 4. Όταν η ανάλυση ενός προβλήματος γίνεται διαγραμματικά, τα ορθογώνια παραλληλόγραμμα που αντιστοιχούν στα υποπροβλήματα στα οποία αναλύεται το πρόβλημα αυτό, σχηματίζονται ένα επίπεδο. 5. Ένα από τα κατηγοριοποίησης των προβλημάτων είναι η δυνατότητα επίλυσής τους. 6. Ανοικτά είναι τα προβλήματα τα οποία είναι ακόμα υπό ως προς την ύπαρξη ή όχι λύσης τους. 7. Η είναι η βασική αριθμητική πράξη στον υπολογιστή, με τη βοήθεια της οποίας μπορούν να υλοποιηθούν όλες οι άλλες πράξεις. 8. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα. 9. Η μπορεί να χρησιμοποιηθεί για την απεικόνιση της δομής ενός προβλήματος. 18

15 8. Nα αντιστοιχίσετε τα στοιχεία της στήλης (Α) με αυτά της στήλης (Β). ΣΤΗΛΗ Α ΣΤΗΛΗ Β Κατηγορία προβλήματος Πρόβλημα a. Έχουμε φτάσει στην παραδοχή ότι δεν επιδέχονται λύση 1. Ανοικτό b. Απαντά σε ένα ερώτημα με ένα "Ναι" ή "Όχι" 2. Δομημένο c. Η λύση προέρχεται από μια αυτοματοποιημένη διαδικασία 3. Απόφασης d. Η λύση τους δεν έχει βρεθεί αλλά δεν έχει αποδειχτεί ότι δεν επιδέχονται λύση e. Η λύση τους επιδιώκεται στα πλαίσια ενός εύρους πιθανών λύσεων f. Ζητάμε το βέλτιστο αποτέλεσμα για τα δεδομένα του προβλήματος 9. Nα αντιστοιχίσετε τα στοιχεία της στήλης (Α) με αυτά της στήλης (Β). ΣΤΗΛΗ Α ΣΤΗΛΗ Β Κατηγορία προβλήματος Πρόβλημα a. Εύρεση εμβαδού τραπεζίου 1. Ανοικτό b. Αγορά αυτοκινήτου 2. Δομημένο c. Εύρεση γρηγορότερης διανομής γραμμάτων 3. Απόφασης d. Πόσοι μαθητές θα πάρουν αριστείο 4. Βελτιστοποίησης e. Ένας αριθμός είναι άρτιος f. Ο μαθητής Ιωάννου θα πάρει αριστείο 19

16 10. Nα αντιστοιχίσετε τα στοιχεία της στήλης (Α) με αυτά της στήλης (Β). ΣΤΗΛΗ Α ΣΤΗΛΗ Β 1. Λειτουργία Η/Υ a. Πληροφορία 2. Στοιχείο γνώσης b. Επαναληπτικότητα διαδικασιών 3. Είδος επίλυσης c. Σύγκριση 4. Δυνατότητα επίλυσης d. Πρόβλημα βελτιστοποίησης 5. Ανάλυση προβλήματος e. Δομημένο πρόβλημα 6. Λόγος χρήσης Η/Υ f. Υποπροβλήματα 7. Βαθμός δόμησης λύσεων g. Άλυτο πρόβλημα 11. Nα αντιστοιχίσετε τα στοιχεία της στήλης (Α) με αυτά της στήλης (Β). ΣΤΗΛΗ Α Κατηγορία προβλήματος ΣΤΗΛΗ Β Πρόβλημα 1. Η δημιουργία αποικίας στον πλανήτη Κρόνο. a. Ανοικτό 2. Η κατασκευή ενός οχήματος που να αναπτύσσει ταχύτητα μεγαλύτερη του φωτός. b. Αδόμητο 3. Η επίλυση μιας δευτεροβάθμιας εξίσωσης. c. Άλυτο d. Τίποτα από τα παραπάνω 20

17 Κατηγορία 1 η Ανάλυση προβλήματος Τρόπος αντιμετώπισης: 1. Αναλύουμε το αρχικό πρόβλημα σε υποπροβλήματα και αυτά με τη σειρά τους σε καινούργια υποπροβλήματα. Η διαδικασία αυτή θα συνεχισθεί μέχρι το πρόβλημα να μην αναλύεται περισσότερο. 2. Για την διαγραμματική αναπαράσταση έχουμε: το αρχικό πρόβλημα αναπαρίσταται από ένα ορθογώνιο παραλληλόγραμμο κάθε ένα από τα απλούστερα προβλήματα στα οποία αναλύεται ένα οποιοδήποτε πρόβλημα, αναπαρίσταται επίσης από ένα ορθογώνιο παραλληλόγραμμο τα παραλληλόγραμμα που αντιστοιχούν στα απλούστερα προβλήματα στα οποία αναλύεται ένα οποιοδήποτε πρόβλημα, σχηματίζονται ένα επίπεδο χαμηλότερα. Έτσι σε κάθε κατώτερο επίπεδο, δημιουργείται η γραφική αναπαράσταση των προβλημάτων στα οποία αναλύονται τα προβλήματα του αμέσως ψηλότερου επιπέδου. 1.1 Να αναλυθεί φραστικά το πρόβλημα αντιμετώπισης των ναρκωτικών και μετά να κάνετε την διαγραμματική του αναπαράσταση. ΛΥΣΗ Α. ΦΡΑΣΤΙΚΑ: 21

18 Το αρχικό πρόβλημα είναι Αντιμετώπιση ναρκωτικών. Αυτό θα μπορούσε να αναλυθεί καταρχήν σε τρία επιμέρους προβλήματα: (1) Πρόληψη (2) Θεραπεία (3) Επανένταξη Τα τρία αυτά επιμέρους προβλήματα πιθανό να μην είναι ιδιαίτερα λεπτομερή έτσι ώστε να επιτρέπουν την εύκολη αντιμετώπισή τους. Πρέπει λοιπόν κάθε ένα από αυτά να αναλυθεί σε ακόμα απλούστερα. Έτσι λοιπόν το επί μέρους πρόβλημα (1) Πρόληψη, μπορεί να αναλυθεί σε: (1.1) Σωστή ενημέρωση των πολιτών σχετικά με το θέμα (1.2) Υποβοήθηση προς την κατεύθυνση ανάπτυξης ενδιαφερόντων, οραμάτων και στόχων εκ μέρους των εφήβων (1.3) Υποστήριξη ομάδων αυξημένης θεωρητικά προδιάθεσης Όμοια το επί μέρους πρόβλημα (2) Θεραπεία, μπορεί να αναλυθεί ως εξής: (2.1) Δημιουργία νέων κρατικών θεραπευτικών κοινοτήτων (2.2) Ενίσχυση υπαρχόντων θεραπευτικών κοινοτήτων (2.3) Δημιουργία κατάλληλων τμημάτων στα δημόσια νοσοκομεία Παρόμοια το επιμέρους πρόβλημα (3) Επανένταξη, μπορεί να αναλυθεί ως ακολούθως: (3.1) Καταπολέμηση της κοινωνικής προκατάληψης έναντι των απεξαρτημένων (3.2) Επιδότηση θέσεων εργασίας για απεξαρτημένους πρώην χρήστες Στη συνέχεια και το πρόβλημα (1.1) μπορεί να αναλυθεί σε απλούστερα: (1.1.1) Ενημέρωση των εφήβων μέσα από κατάλληλα προγράμματα στα σχολεία (1.1.2) Ενημέρωση των γονέων με προγράμματα του Δήμου (1.1.3) Ενημέρωση κάθε άλλου ενδιαφερόμενου πολίτη με προγράμματα του Υπουργείου Υγείας Μια παρόμοια παραπέρα ανάλυση θα μπορούσε να γίνει και για το πρόβλημα (1.2), το οποίο θα μπορούσε να αναλυθεί στα εξής απλούστερα προβλήματα : (1.2.1) Οργάνωση πολιτιστικών δραστηριοτήτων στα σχολεία (1.2.2) Δημιουργία δημόσιων χώρων άθλησης στις γειτονιές για τους νέους (1.2.3) Παροχή κινήτρων στα παιδιά και στους νέους για παρακολούθηση και συμμετοχή σε καλλιτεχνικά γεγονότα ΠΑΡΑΤΗΡΗΣΗ: Η ανάλυση είναι κάτι το υποκειμενικό οπότε ο καθένας μπορεί να ακολουθήσει διαφορετικό τρόπο ανάλυσης. Όλοι όμως οι τρόποι πρέπει να έχουν σκοπό το αρχικό πρόβλημα να αναλυθεί σε απλούστερα υποπροβλήματα. 22

19 Β. ΔΙΑΓΡΑΜΜΑΤΙΚΑ: ΑΝΤΙΜΕΤΩΠΙΣΗ ΝΑΡΚΩΤΙΚΩΝ ΠΡΟΛΗΨΗ ΘΕΡΑΠΕΙΑ ΕΠΑΝΕΝΤΑΞΗ Κατηγορία 2 η Εύρεση δεδομένων και ζητούμενων Τρόπος αντιμετώπισης: 1. Διαβάζουμε προσεκτικά το πρόβλημα και ανιχνεύουμε τα δεδομένα και τα ζητούμενα. Πρέπει να θυμόμαστε ότι τα δεδομένα και τα ζητούμενα δεν είναι μόνο αριθμοί και ότι δεν υπάρχει μεθοδολογία για την εύρεση τους. 2. Δεν πρέπει να ταυτίζουμε δεδομένα και πληροφορίες. Ένα στοιχείο που σε ένα πρόβλημα αποτελεί δεδομένο σε άλλο μπορεί να είναι πληροφορία. 23

20 1.2 Ένα εργοστάσιο κατασκευάζει τηλεοράσεις, dvd και ραδιόφωνα. Παράγει καθημερινά 120 τεμάχια και από τα τρία προϊόντα. Το κόστος κατασκευής της μίας τηλεόρασης είναι 80 του dvd 90 και του ραδιοφώνου 15 και το καθημερινό συνολικό κόστος των προϊόντων είναι Εάν οι παραγόμενες τηλεοράσεις μαζί με τα ραδιόφωνα είναι διπλάσια σε αριθμό από τα παραγόμενα dvd πόσα τεμάχια παράγονται καθημερινά από κάθε προϊόν; Να κατασκευασθεί ένας πίνακας δεδομένων-ζητούμενων. ΛΥΣΗ Τα προϊόντα που κατασκευάζει το εργοστάσιο (τηλεόραση, dvd, ραδιόφωνο). ΔΕΔΟΜΕΝΑ Κόστος τηλεόρασης (80 ), κόστος dvd (90 ), κόστος ραδιοφώνου (15 ), συνολικό καθημερινό κόστος προϊόντων (3.150 ), συνολικό αριθμό προϊόντων (120). Αριθμός τηλεοράσεων και ραδιοφώνων διπλάσιος από αριθμό dvd. ΖΗΤΟΥΜΕΝΑ Ο αριθμός των τηλεοράσεων, των dvd και των ραδιοφώνων που κατασκευάζονται καθημερινά. 24

21 Ανάλυση προβλήματος 1.3 H υπογεννητικότητα είναι ένα από τα οξύτερα προβλήματα που αντιμετωπίζει η πατρίδα μας. Αναλύστε σε υποπροβλήματα και παρουσιάστε φραστικά και σχηματικά το παραπάνω πρόβλημα. Εύρεση δεδομένων και ζητούμενων 1.4 Δύο πόλεις Α και Β συνδέονται μεταξύ τους με εθνική οδό που έχει μήκος 225 km. Δύο αυτοκίνητα φεύγουν ταυτόχρονα, το ένα από την πόλη Α προς την Β με ταχύτητα 72 km/h και το άλλο από την πόλη Β προς την Α με ταχύτητα 86 km/h. Πόσες ώρες μετά το ξεκίνημα θα συναντηθούν και σε ποια απόσταση από κάθε πόλη ; α) Να κατασκευασθεί ένας πίνακας δεδομένων-ζητούμενων. β) Να μορφοποιηθεί το παραπάνω πρόβλημα με μαθηματικό τρόπο. 1.5 O Βότσης θέλει να αγοράσει ένα σουβλατζίδικο. Ο ιδιοκτήτης του ζητάει ευρώ για να το πουλήσει. Όμως η αξία του θα αυξηθεί κατά 25% λόγω εφορίας και άλλων εισφορών. O Βότσης διαθέτει ευρώ και θα πάρει δάνειο ευρώ. Θα του φθάσουν τα χρήματα για να αγοράσει το μαγαζί; α) Να κατασκευασθεί ένας πίνακας δεδομένων-ζητούμενων. β) Να μορφοποιηθεί το παραπάνω πρόβλημα με μαθηματικό τρόπο. 1.6 Σε ένα λύκειο το πλήθος των φιλολόγων είναι τριπλάσιο του πλήθους των καθηγητών πληροφορικής, ενώ το πλήθος των γυμναστών είναι ίσο με το μισό του πλήθους των φιλολόγων. Αν το συνολικό πλήθος των καθηγητών που ανήκουν στις παραπάνω ειδικότητες είναι 11, να βρείτε πόσοι είναι οι φιλόλογοι, οι καθηγητές πληροφορικής και οι γυμναστές που υπηρετούν στο σχολείο αυτό. α) Να πραγματοποιήσετε καθορισμό απαιτήσεων του παραπάνω προβλήματος. β) Να το μορφοποιήσετε με μαθηματικό τρόπο. 25

1. Τι ονομάζουμε πρόβλημα; Δώστε παραδείγματα.

1. Τι ονομάζουμε πρόβλημα; Δώστε παραδείγματα. 1. Τι ονομάζουμε πρόβλημα; Δώστε παραδείγματα. ΑΠΑΝΤΗΣΗ Ορισμός: Με τον όρο πρόβλημα εννοείται μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. Παραδείγματα

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ Ι ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ Ι ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ Ι ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ Πρόβλημα: Με τον όρο αυτό εννοείται μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. Δομή προβλήματος: Με τον όρο

Διαβάστε περισσότερα

Γεώργιος Φίλιππας 23/8/2015

Γεώργιος Φίλιππας 23/8/2015 MACROWEB Προβλήματα Γεώργιος Φίλιππας 23/8/2015 Παραδείγματα Προβλημάτων. Πως ορίζεται η έννοια πρόβλημα; Από ποιους παράγοντες εξαρτάται η κατανόηση ενός προβλήματος; Τι εννοούμε λέγοντας χώρο ενός προβλήματος;

Διαβάστε περισσότερα

1 Ανάλυση Προβλήματος

1 Ανάλυση Προβλήματος 1 Ανάλυση Προβλήματος 1.1 Η Έννοια Πρόβλημα Τι είναι δεδομένο; Δεδομένο είναι οτιδήποτε μπορεί να γίνει αντιληπτό από έναν τουλάχιστον παρατηρητή, με μία από τις πέντε αισθήσεις του. Τι είναι επεξεργασία

Διαβάστε περισσότερα

1.1. Προσδοκώμενα αποτελέσματα

1.1. Προσδοκώμενα αποτελέσματα 1.1. Προσδοκώμενα αποτελέσματα Η μελέτη αυτού του πρώτου κεφαλαίου αναμένεται ότι θα σου καταστήσει σαφή την έννοια του προβλήματος. Η σωστή αντιμετώπιση ενός προβλήματος προϋποθέτει την καταρχήν πλήρη

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Η έννοια πρόβληµα Ανάλυση προβλήµατος Με τον όρο πρόβληµα εννοούµε µια κατάσταση η οποία χρήζει αντιµετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή ούτε προφανής. Μερικά προβλήµατα είναι τα εξής:

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 1 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ 1.1 Να δοθεί ο ορισμός του προβλήματος καθώς και τρία παραδείγματα

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 1 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 1 ο Να δοθεί ο ορισμός του προβλήματος καθώς και τρία παραδείγματα σημαντικών ιστορικών ή επιστημονικών προβλημάτων. Με τον όρο Πρόβλημα, εννοείται μια κατάσταση η οποία χρήζει αντιμετώπισης,και απαιτεί λύση

Διαβάστε περισσότερα

Περιεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων...

Περιεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων... Περιεχόμενα Ανάλυση προβλήματος 1. Η έννοια πρόβλημα...13 2. Επίλυση προβλημάτων...17 Δομή ακολουθίας 3. Βασικές έννοιες αλγορίθμων...27 4. Εισαγωγή στην ψευδογλώσσα...31 5. Οι πρώτοι μου αλγόριθμοι...54

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. Πρόβλημα είναι μία κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής.

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ. Πρόβλημα είναι μία κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ 1. Τι ονομάζουμε πρόβλημα; Πρόβλημα είναι μία κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. 2. Τι ονομάζουμε επίλυση προβλήματος;

Διαβάστε περισσότερα

Κεφάλαιο 1 Ανάλυση προβλήματος

Κεφάλαιο 1 Ανάλυση προβλήματος Κεφάλαιο 1 Ανάλυση προβλήματος 1.1 Η έννοια πρόβλημα Με τον όρο πρόβλημα εννοείται μια κατάσταση η οποία χρειάζεται αντιμετώπιση, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. 1.2 Κατανόηση

Διαβάστε περισσότερα

1.1. Ðñïóäïêþìåíá áðïôåëýóìáôá 1.2. ÅðéðëÝïí ðáñáäåßãìáôá

1.1. Ðñïóäïêþìåíá áðïôåëýóìáôá 1.2. ÅðéðëÝïí ðáñáäåßãìáôá 1.1. Ðñïóäïêþìåíá áðïôåëýóìáôá Η μελέτη αυτού του πρώτου κεφαλαίου αναμένεται ότι θα σου καταστήσει σαφή την έννοια του προβλήματος. Η σωστή αντιμετώπιση ενός προβλήματος προϋποθέτει την καταρχήν πλήρη

Διαβάστε περισσότερα

Ανάλυση προβλήματος. Κεφάλαιο 1

Ανάλυση προβλήματος. Κεφάλαιο 1 Ανάλυση προβλήματος Κεφάλαιο 1 Η έννοια πρόβλημα Με τον όρο πρόβλημα εννοείται μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής Στάδια αντιμετώπισης

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 1ο ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ

ΚΕΦΑΛΑΙΟ 1ο ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ ΚΕΦΑΛΑΙΟ 1ο ΑΝΑΛΥΣΗ ΠΡΟΒΛΗΜΑΤΟΣ Στέργιος Παλαμάς 2006- ΣΤΟΧΟΙ ΚΕΦΑΛΑΙΟΥ: Πλήρης Κατανόηση του Προβλήματος Προσδιορισμός των Συστατικών Μερών του Προβλήματος Ανάλυση Προβλήματος σε απλούστερα Προσδιορισμός

Διαβάστε περισσότερα

Πρόβλημα είναι μία κατάσταση που χρειάζεται να αντιμετωπίσουμε και να δώσουμε λύση η Οποία δεν είναι προφανής ή γνωστή

Πρόβλημα είναι μία κατάσταση που χρειάζεται να αντιμετωπίσουμε και να δώσουμε λύση η Οποία δεν είναι προφανής ή γνωστή Πρόβλημα είναι μία κατάσταση που χρειάζεται να αντιμετωπίσουμε και να δώσουμε λύση η Οποία δεν είναι προφανής ή γνωστή Προβλήματα υπήρχαν από την αρχαιότητα όπως η πολιορκία της Τροίας που αναφέρεται στην

Διαβάστε περισσότερα

1.1 Θέματα Προς Απάντηση Να χαρακτηρίσετε καθεμία από τις ακόλουθες προτάσεις ως Σωστή (Σ) ή Λανθασμένη (Λ):

1.1 Θέματα Προς Απάντηση Να χαρακτηρίσετε καθεμία από τις ακόλουθες προτάσεις ως Σωστή (Σ) ή Λανθασμένη (Λ): 1.1 Θέματα Προς Απάντηση 1.1.1 Να χαρακτηρίσετε καθεμία από τις ακόλουθες προτάσεις ως Σωστή (Σ) ή Λανθασμένη (Λ): 1. Πρόβλημα είναι μια μαθηματική κατάσταση που πρέπει να αντιμετωπίσουμε. 2. Αν υποβάλλουμε

Διαβάστε περισσότερα

Κεφάλαιο 1 : Ανάλυση προβλήματος

Κεφάλαιο 1 : Ανάλυση προβλήματος Ποια είναι η σχέση προβλήματος και υπολογιστή; 1.1 Η έννοια πρόβλημα Παραδείγματα προβλημάτων Κοινωνικά προβλήματα (ναρκωτικά, ανεργία, επιδημίες) Φυσικά φαινόμενα (σεισμοί, πλημμύρες, επιδημίες) Μέτρηση

Διαβάστε περισσότερα

Ανάπτυξη εφαρµογών σε προγραµµατιστικό περιβάλλον (στοιχεία θεωρίας)

Ανάπτυξη εφαρµογών σε προγραµµατιστικό περιβάλλον (στοιχεία θεωρίας) Ανάπτυξη εφαρµογών σε προγραµµατιστικό περιβάλλον (στοιχεία θεωρίας) Εισαγωγή 1. Τι είναι αυτό που κρατάς στα χέρια σου. Αυτό το κείµενο είναι µια προσπάθεια να αποτυπωθεί όλη η θεωρία του σχολικού µε

Διαβάστε περισσότερα

1.4 Καθορισμός απαιτήσεων

1.4 Καθορισμός απαιτήσεων 1.4 Καθορισμός απαιτήσεων Είναι η διαδικασία κατά την οποία πρέπει να κάνουμε: τον επακριβή προσδιορισμό των δεδομένων που παρέχει το πρόβλημα την λεπτομερειακή καταγραφή των ζητούμενων που αναμένονται

Διαβάστε περισσότερα

Το πρόβλημα στην πληροφορική

Το πρόβλημα στην πληροφορική Το πρόβλημα στην πληροφορική Γενικές έννοιες ΤΕΛΟΣ Ανάλυση Προβλήματος (1) Ορισμός Κατανόηση Σωστή διατύπωση από τον δημιουργό Σωστή ερμηνεία από αυτόν που αναλαμβάνει την επίλυση Δομή προβλήματος Ορισμός

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. Καβακλή. Χειμερινό Εξάμηνο 2001

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ. Διδάσκουσα Δρ Β. Καβακλή. Χειμερινό Εξάμηνο 2001 ΕΙΣΑΓΩΓΗ ΣΤΟΥΣ ΑΛΓΟΡΙΘΜΟΥΣ ΚΑΙ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΤΜΗΜΑ ΠΟΛΙΤΙΣΜΙΚΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑΣ Διδάσκουσα Δρ Β. Καβακλή Χειμερινό Εξάμηνο 2001 1 Ανάλυση προβλήματος Η σωστή αντιμετώπιση

Διαβάστε περισσότερα

Η EΝΝΟΙΑ ΠΡΟΒΛΗΜΑ ΚΑΤΑΝΟΗΣΗ ΠΡΟΒΛΗΜΑΤΟΣ. Ορισμός. 1.1 Τι ονομάζουμε πρόβλημα;

Η EΝΝΟΙΑ ΠΡΟΒΛΗΜΑ ΚΑΤΑΝΟΗΣΗ ΠΡΟΒΛΗΜΑΤΟΣ. Ορισμός. 1.1 Τι ονομάζουμε πρόβλημα; ΑΝΑΛΥΣΗ Π 1 ΡΟΒΛΗΜΑΤΟΣ Η EΝΝΟΙΑ ΠΡΟΒΛΗΜΑ 1.1 Τι ονομάζουμε πρόβλημα; Ορισμός Πρόβλημα ονομάζουμε μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής.

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

Κεφ. 2 Θέματα Θεωρητικής Επιστήμης Υπολογιστών

Κεφ. 2 Θέματα Θεωρητικής Επιστήμης Υπολογιστών Κεφ. 2 Θέματα Θεωρητικής Επιστήμης Υπολογιστών Αυτός ο κύριος δείχνει να έχει σοβαρά προβλήματα!!! 2.1.1 Πρόβλημα Ορισμός: Πρόβλημα είναι μια οποιαδήποτε κατάσταση χρειάζεται αντιμετώπιση, απαιτεί λύση,

Διαβάστε περισσότερα

1. Ανάλυση προβλήµατος

1. Ανάλυση προβλήµατος 1. Ανάλυση προβλήµατος 1.1 Η έννοια πρόβληµα. ΕΣΕΠ06-Θ1Α1 Να δώσετε τον ορισµό του προβλήµατος. 1.2 Κατανόηση προβλήµατος. ΕΣ02-Θ1Α2 Με τον όρο δεδοµένο αναφέρεται οποιοδήποτε γνωσιακό στοιχείο προέρχεται

Διαβάστε περισσότερα

Η έννοια του προβλήματος

Η έννοια του προβλήματος Η έννοια του προβλήματος Οι άνθρωποι, από την πρώτη στιγμή της ύπαρξής τους, ήρθαν αντιμέτωποι με ποικίλα προβλήματα, τόσο στις καθημερινές τους δραστηριότητες όσο και σε διάφορους επιστημονικούς τομείς.

Διαβάστε περισσότερα

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL)

Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Ανάλυση- Σύνθεση προβλήματος Εισαγωγή Το πρόβλημα αποτελεί έννοια που απαντάται σε όλες τις επιστήμες και τους κλάδους τους, αλλά παράλληλα

Διαβάστε περισσότερα

Κεφάλαιο 1. Ανάλυση Προβλήματος

Κεφάλαιο 1. Ανάλυση Προβλήματος Κεφάλαιο 1 Ανάλυση Προβλήματος 1.1. Γενικός διδακτικός σκοπός Ο γενικός σκοπός του κεφαλαίου αυτοό είναι οι μαθητές να αναπτύξουν αναλυτικές και συνθετικές ικανότητες στην αντιμετώπιση προβλημάτων και

Διαβάστε περισσότερα

Ενότητα 1 η Επιστήμη των Υπολογιστών

Ενότητα 1 η Επιστήμη των Υπολογιστών Ενότητα 1 η 1.1. Επιστήμη των Υπολογιστών Στόχοι του κεφαλαίου είναι οι μαθητές - να περιγράφουν τους βασικούς τομείς της Επιστήμης των Υπολογιστών και - να μπορούν να αναφερθούν στα πεδία τόσο της Θεωρητικής

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ ΥΠΟΥΡΓΕΙΟ ΕΘΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ΠΑΙΔΑΓΩΓΙΚΟ ΙΝΣΤΙΤΟΥΤΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ Π ΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ Π ΕΡΙΒΑΛΛΟΝ Κ Υ Κ Λ Ο Υ Π Λ Η Ρ Ο Φ Ο Ρ Ι Κ Η Σ Κ Α Ι Υ Π Η Ρ Ε Σ Ι Ω Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών

ΚΕΦΑΛΑΙΟ 5. Κύκλος Ζωής Εφαρμογών ΕΝΟΤΗΤΑ 2. Εφαρμογές Πληροφορικής. Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών 44 Διδακτικές ενότητες 5.1 Πρόβλημα και υπολογιστής 5.2 Ανάπτυξη εφαρμογών Διδακτικοί στόχοι Σκοπός του κεφαλαίου είναι οι μαθητές να κατανοήσουν τα βήματα που ακολουθούνται κατά την ανάπτυξη μιας εφαρμογής.

Διαβάστε περισσότερα

Εισαγωγή στην Έννοια του Αλγορίθμου και στον Προγραμματισμό. Η έννοια του προβλήματος

Εισαγωγή στην Έννοια του Αλγορίθμου και στον Προγραμματισμό. Η έννοια του προβλήματος Εισαγωγή στην Έννοια του Αλγορίθμου και στον Προγραμματισμό Η έννοια του προβλήματος Τι είναι πρόβλημα; ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΣΜΟΣ ΠΡΟΒΛΗΜΑΤΟΣ Πρόβλημα είναι κάθε κατάσταση που μας απασχολεί και χρήζει αντιμετώπισης,

Διαβάστε περισσότερα

2.1. Πρόβλημα. 2.1.1 Η έννοια του προβλήματος ΚΕΦΑΛΑΙΟ

2.1. Πρόβλημα. 2.1.1 Η έννοια του προβλήματος ΚΕΦΑΛΑΙΟ ΚΕΦΑΛΑΙΟ 2.1 Πρόβλημα Στόχοι του κεφαλαίου αυτού είναι να μπορούν οι μαθητές: να περιγράφουν την έννοια του προβλήματος να κατατάσσουν ένα πρόβλημα στην κατηγορία που ανήκει να διακρίνουν την ύπαρξη υπολογιστικών

Διαβάστε περισσότερα

Κεφάλαιο 1: Κατανόηση καθορισμός και δομή του προβλήματος

Κεφάλαιο 1: Κατανόηση καθορισμός και δομή του προβλήματος Κεφάλαιο 1: Κατανόηση καθορισμός και δομή του προβλήματος Ερωτήσεις θεωρίας 1. ε τι συνίσταται η κατανόηση ενός προβλήματος; 2. Γιατί χωρίζουμε ένα πρόβλημα σε άλλα απλούστερα; 3. Τι περιλαμβάνει η ανάλυση

Διαβάστε περισσότερα

Βασίλειος Κοντογιάννης ΠΕ19

Βασίλειος Κοντογιάννης ΠΕ19 Ενότητα2 Προγραμματιστικά Περιβάλλοντα Δημιουργία Εφαρμογών 5.1 Πρόβλημα και Υπολογιστής Τι ονομάζουμε πρόβλημα; Πρόβλημα θεωρείται κάθε ζήτημα που τίθεται προς επίλυση, κάθε κατάσταση που μας απασχολεί

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΥΠΟΛΟΓΙΣΤΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΥΠΟΛΟΓΙΣΤΩΝ Εισαγωγή ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΥΠΟΛΟΓΙΣΤΩΝ Όπως για όλες τις επιστήμες, έτσι και για την επιστήμη της Πληροφορικής, ο τελικός στόχος της είναι η επίλυση προβλημάτων. Λύνονται όμως όλα τα προβλήματα;

Διαβάστε περισσότερα

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΔΙΑΧΕΙΡΙΣΗΣ ΠΟΛΙΤΙΣΜΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ ΚΑΙ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΙΜΕΛΕΙΑ: ΘΕΟΔΩΡΟΥ ΕΛΕΝΗ ΑΜ:453 ΕΞ.: Ζ ΕΙΣΗΓΗΤΗΣ: ΔΡ. ΔΗΜΗΤΡΗΣ ΤΣΩΛΗΣ ΚΟΛΟΜΒΟΥ ΑΦΡΟΔΙΤΗ

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΑΘΗΜΑ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ Ιστότοπος Βιβλίου http://www.iep.edu.gr/ και «Νέα Βιβλία ΙΕΠ ΓΕΛ και ΕΠΑΛ» 2 ΠΕΡΙΕΧΟΜΕΝΑ

Διαβάστε περισσότερα

Επανάληψη Θεωρίας. Καστούμης Γιώργος

Επανάληψη Θεωρίας. Καστούμης Γιώργος ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΨΗ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ορισµοί: Με τον όρο πρόβληµα εννοείται µια κατάσταση η οποία χρήζει αντιµετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή,

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 02/11/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ Α. ΙΛΕΡΗ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 02/11/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ Α. ΙΛΕΡΗ ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ / ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 02/11/2014 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Ι. ΜΙΧΑΛΕΑΚΟΣ Α. ΙΛΕΡΗ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω

Διαβάστε περισσότερα

Κεφ. 1: Εισαγωγή στην έννοια του Αλγορίθμου και στον Προγραμματισμό. Η έννοια του προβλήματος

Κεφ. 1: Εισαγωγή στην έννοια του Αλγορίθμου και στον Προγραμματισμό. Η έννοια του προβλήματος Η έννοια του προβλήματος 1. Αναφέρετε μερικά από τα προβλήματα που συναντάτε στην καθημερινότητά σας. Απλά προβλήματα Ποιο δρόμο θα ακολουθήσω για να πάω στο σχολείο; Πως θα οργανώσω μια εκδρομή; Πως θα

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

Α2. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα τα γράμματα της Στήλης Β που τους αντιστοιχούν.

Α2. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα τα γράμματα της Στήλης Β που τους αντιστοιχούν. ΜΑΘΗΜΑ / ΤΑΞΗ : ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ /Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 03-11-2013 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-8 και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

Τάξη: Γ Λυκείου Κατεύθυνση: Τεχνολογική Μάθημα: Ανάπτυξη Εφαρμογών σε Προγ/κό Περιβάλλον Είδος Εξέτασης: Διαγώνισμα Ημερομηνία Εξέτασης:

Τάξη: Γ Λυκείου Κατεύθυνση: Τεχνολογική Μάθημα: Ανάπτυξη Εφαρμογών σε Προγ/κό Περιβάλλον Είδος Εξέτασης: Διαγώνισμα Ημερομηνία Εξέτασης: Τάξη: Γ Λυκείου Κατεύθυνση: Τεχνολογική Μάθημα: Ανάπτυξη Εφαρμογών σε Προγ/κό Περιβάλλον Είδος Εξέτασης: Διαγώνισμα Ημερομηνία Εξέτασης: Ονοματεπώνυμο: Βαθμός: Θέμα 1 ο - (0) Α. Να γράψετε στο τετράδιό

Διαβάστε περισσότερα

Θεωρείς σημαντικό το γεγονός να μιλάς και να γράφεις πολύ καλά τη φυσική γλώσσα στην προσπάθειά σου να επιλύσεις ένα τυχαίο πρόβλημα;

Θεωρείς σημαντικό το γεγονός να μιλάς και να γράφεις πολύ καλά τη φυσική γλώσσα στην προσπάθειά σου να επιλύσεις ένα τυχαίο πρόβλημα; ΑΛΓΟΡΙΘΜΙΚΗ & ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 1.1. Η Έννοια Πρόβλημα Προερωτήσεις Θεωρείς σημαντικό το γεγονός να μιλάς και να γράφεις πολύ καλά τη φυσική γλώσσα στην προσπάθειά σου να επιλύσεις

Διαβάστε περισσότερα

σας δίπλα στον αριθμό που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη.

σας δίπλα στον αριθμό που αντιστοιχεί σε κάθε πρόταση τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή Λάθος, αν η πρόταση είναι λανθασμένη. 1 Ημερομηνία Μάθημα Υπεύθυνος καθηγητής Ονοματεπώνυμο μαθητή Τμήμα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Γιώργος Δρες ΘΕΜΑ Α Α. Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας στο

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 24 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει;

Αναδρομή. Τι γνωρίζετε για τη δυνατότητα «κλήσης» αλγορίθμων; Τι νόημα έχει; ΜΑΘΗΜΑ 7 Κλήση αλγορίθμου από αλγόριθμο Αναδρομή Σ χ ο λ ι κ ο Β ι β λ ι ο ΥΠΟΚΕΦΑΛΑΙΟ 2.2.7: ΕΝΤΟΛΕΣ ΚΑΙ ΔΟΜΕΣ ΑΛΓΟΡΙΘΜΟΥ ΠΑΡΑΓΡΑΦΟI 2.2.7.5: Κλήση αλγορίθμου από αλγόριθμο 2.2.7.6: Αναδρομή εισαγωγη

Διαβάστε περισσότερα

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27

Η έννοια του συνόλου. Εισαγωγικό κεφάλαιο 27 Εισαγωγικό κεφάλαιο 27 Η έννοια του συνόλου Σύνολο είναι κάθε συλλογή αντικειμένων, που προέρχονται από την εμπειρία μας ή τη διανόησή μας, είναι καλά ορισμένα και διακρίνονται το ένα από το άλλο. Αυτός

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

Από το πρόβλημα στην ανάπτυξη αλγόριθμου

Από το πρόβλημα στην ανάπτυξη αλγόριθμου Από το πρόβλημα στην ανάπτυξη αλγόριθμου 1 [ 11 ] 1. Από το πρόβλημα στην ανάπτυξη αλγορίθμου Στόχοι Μετά την μελέτη του κεφαλαίου θα μπορούμε να: αναγνωρίζουμε ένα σύνθετο πρόβλημα και τα πλεονεκτήματα

Διαβάστε περισσότερα

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ

ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ ΟΜΑΔΑ Ε ΓΕΩΡΓΙΟΥ ΦΩΤΕΙΝΗ ΗΛΙΟΥΔΗ ΑΦΡΟΔΙΤΗ ΜΕΤΑΛΛΙΔΟΥ ΧΡΥΣΗ ΝΙΖΑΜΗΣ ΑΛΕΞΑΝΔΡΟΣ ΤΖΗΚΑΛΑΓΙΑΣ ΑΝΔΡΕΑΣ ΤΡΙΓΚΑΣ ΑΓΓΕΛΟΣ Η ΔΙΔΑΣΚΑΛΙΑ ΤΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΟ ΛΥΚΕΙΟ Εισαγωγή Η μεγάλη ανάπτυξη και ο ρόλος που

Διαβάστε περισσότερα

Γραπτές Απολυτήριες Εξετάσεις Ιουνίου 2008 ΘΕΜΑΤΑ. ΘΕΜΑ 1 ο Σημειώστε δίπλα σε κάθε φράση (Σ) αν είναι σωστή ή (Λ) αν είναι λάθος.

Γραπτές Απολυτήριες Εξετάσεις Ιουνίου 2008 ΘΕΜΑΤΑ. ΘΕΜΑ 1 ο Σημειώστε δίπλα σε κάθε φράση (Σ) αν είναι σωστή ή (Λ) αν είναι λάθος. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Σχολ. Έτος : 2007-2008 Δ/ΝΣΗ Β/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Ν.... ΓΥΜΝΑΣΙΟ... Τάξη: Γ Μάθημα : Πληροφορική Ημερ/νία : 11 / 6 / 2008 Γραπτές Απολυτήριες Εξετάσεις Ιουνίου 2008 ΘΕΜΑΤΑ ΘΕΜΑ 1 ο Σημειώστε

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ...

ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ. Σύμφωνα με τα παραπάνω, για μια αριθμητική πρόοδο που έχει πρώτο όρο τον ... ΑΡΙΘΜΗΤΙΚΗ ΠΡΟΟΔΟΣ Ορισμός : Μία ακολουθία ονομάζεται αριθμητική πρόοδος, όταν ο κάθε όρος της, δημιουργείται από τον προηγούμενο με πρόσθεση του ίδιου πάντοτε αριθμού. Ο σταθερός αριθμός που προστίθεται

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ. 10. Τα επιλύσιμα προβλήματα κατηγοριοποιούνται περεταίρω με βάση το βαθμό δόμησης και το είδος επίλυσής τους.

ΔΙΑΓΩΝΙΣΜΑ ΘΕΜΑΤΑ. 10. Τα επιλύσιμα προβλήματα κατηγοριοποιούνται περεταίρω με βάση το βαθμό δόμησης και το είδος επίλυσής τους. Βουλιαγμένης 2/10/2011, Μάθημα : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΔΙΑΓΩΝΙΣΜΑ Καθηγητής/τρια: Χρόνος: 3 ώρες Ονοματεπώνυμο: Τμήμα: Γ ΘΕΜΑΤΑ Θέμα 1. Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000.

σει κανένα modem των 128Κ. Θα κατασκευάσει συνολικά = 320,000 τεμάχια των 64Κ και το κέρδος της θα γίνει το μέγιστο δυνατό, ύψους 6,400,000. Σ ένα εργοστάσιο ειδών υγιεινής η κατασκευή των πορσελάνινων μπανιέρων έχει διαμορφωθεί σε τρία διαδοχικά στάδια : καλούπωμα, λείανση και βάψιμο. Στον πίνακα που ακολουθεί καταγράφονται τα ωριαία δεδομένα

Διαβάστε περισσότερα

ΛΥΣΕΙΣ ΣΤΗΝ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ

ΛΥΣΕΙΣ ΣΤΗΝ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΛΥΣΕΙΣ ΣΤΗΝ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΗΜΕΡΟΜΗΝΙΑ : 08 / 04 / 2010 ΘΕΜΑ 1 Α1. 1-Σ, 2-Λ, 3-Λ, 4-Λ, 5-Σ Α2. Κ 1 Χ 10 _ΕΠΑΝΑΛΗΨΗΣ ΑΝ Κ < Α ΚΑΙ Χ < >

Διαβάστε περισσότερα

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή

3.5 Η ΣΥΝΑΡΤΗΣΗ y=α/x-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή ΣΥΝΑΡΤΗΣΗ y=α/ Η ΥΠΕΡΒΟΛΗ.5 Η ΣΥΝΑΡΤΗΣΗ y=α/-η ΥΠΕΡΒΟΛΗ Ποσά αντιστρόφως ανάλογα- Η υπερβολή Δύο ποσά λέγονται αντιστρόφως ανάλογα, όταν η τιμή του ενός πολλαπλασιαστεί επί έναν αριθµό, τότε η τιµή του

Διαβάστε περισσότερα

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής

Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Κεφάλαιο 3: Εισαγωγή στους αλγορίθμους - διαγράμματα ροής Αλγόριθμος (algorithm) λέγεται μία πεπερασμένη διαδικασία καλά ορισμένων βημάτων που ακολουθείται για τη λύση ενός προβλήματος. Το διάγραμμα ροής

Διαβάστε περισσότερα

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται:

4.4 Ερωτήσεις διάταξης. Στις ερωτήσεις διάταξης δίνονται: 4.4 Ερωτήσεις διάταξης Στις ερωτήσεις διάταξης δίνονται:! µία σειρά από διάφορα στοιχεία και! µία πρόταση / κανόνας ή οδηγία και ζητείται να διαταχθούν τα στοιχεία µε βάση την πρόταση αυτή. Οι ερωτήσεις

Διαβάστε περισσότερα

1. Όλα τα προβλήματα μπορούν να λυθούν με τη βοήθεια HY. 2. Ο υπολογισμός του εμβαδού τετραγώνου είναι πρόβλημα άλυτο.

1. Όλα τα προβλήματα μπορούν να λυθούν με τη βοήθεια HY. 2. Ο υπολογισμός του εμβαδού τετραγώνου είναι πρόβλημα άλυτο. Κεφάλαιο 2.1. Πρόβλημα >ΕΝΟΤΗΤΑ 2/ΚΕΦ.2.1/ ΤΥΠΟΥ Β1: ΣΩΣΤΟ-ΛΑΘΟΣ GI_V_EIY_0_19376 Β1. Να γράψετε στο γραπτό σας τον αριθμό κάθε πρότασης και δίπλα τη λέξη Σωστό, αν η πρόταση είναι σωστή, ή τη λέξη Λάθος

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ i ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΝΙΚΟΣ ΑΛΕΞΑΝΔΡΗΣ ΠΤΥΧΙΟΥΧΟΣ ΠΑΝΕΠΙΣΤΗΜΙΟΥ ΑΘΗΝΩΝ (ΕΚΠΑ)

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 6 ΟΥ ΚΕΦΑΛΑΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΟΝ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟ 6.1 Τι ονοµάζουµε πρόγραµµα υπολογιστή; Ένα πρόγραµµα

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1)

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΕΡΕΥΝΑ ΘΕΩΡΙΑ ΚΑΙ ΕΦΑΡΜΟΓΗ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΣΤΗ ΛΗΨΗ ΑΠΟΦΑΣΕΩΝ (1) 1 Προέλευση και ιστορία της Επιχειρησιακής Έρευνας Αλλαγές στις επιχειρήσεις Τέλος του 19ου αιώνα: βιομηχανική

Διαβάστε περισσότερα

ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΑΣΜΑ 12/10/2014

ΦΡΟΝΤΙΣΤΗΡΙΟ ΦΑΣΜΑ 12/10/2014 Γ ΤΑΞΗ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α [40 μόρια] ΔΙΑΓΩΝΙΣΜΑ α) Να επιλέξτε το γράμμα Σ, αν μια πρόταση είναι σωστή και

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ

Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Η ΣΗΜΑΣΙΑ ΤΩΝ ΟΠΤΙΚΩΝ ΑΝΑΠΑΡΑΣΤΑΣΕΩΝ ΣΤΗ ΔΙΔΑΣΚΑΛΙΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ Οι μαθηματικές έννοιες και γενικότερα οι μαθηματικές διαδικασίες είναι αφηρημένες και, αρκετές φορές, ιδιαίτερα πολύπλοκες. Η κατανόηση

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα

ΟΔΗΓΙΕΣ ΚΑΙ ΜΥΣΤΙΚΑ ΓΙΑ ΤΙΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ

ΟΔΗΓΙΕΣ ΚΑΙ ΜΥΣΤΙΚΑ ΓΙΑ ΤΙΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΟΔΗΓΙΕΣ ΚΑΙ ΜΥΣΤΙΚΑ ΓΙΑ ΤΙΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ( Πώς να γράφουμε καλύτερα στις εξετάσεις ) Μέρος της προσπάθειας των υποψηφίων για ένα καλύτερο αποτέλεσμα στις πανελλαδικές εξετάσεις είναι και η αναζήτηση

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Η έννοια πρόβλημα Κατανόηση προβλήματος Δομή προβλήματος Καθορισμός απαιτήσεων Κατηγορίες προβλημάτων Πρόβλημα και υπολογιστής

ΠΕΡΙΕΧΟΜΕΝΑ. Η έννοια πρόβλημα Κατανόηση προβλήματος Δομή προβλήματος Καθορισμός απαιτήσεων Κατηγορίες προβλημάτων Πρόβλημα και υπολογιστής ΠΕΡΙΕΧΟΜΕΝΑ Η έννοια πρόβλημα Κατανόηση προβλήματος Δομή προβλήματος Καθορισμός απαιτήσεων Κατηγορίες προβλημάτων Πρόβλημα και υπολογιστής Εισαγωγή Το πρόβλημα αποτελεί έννοια που απαντάται σε όλες τις

Διαβάστε περισσότερα

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους.

Γραφική επίλυση γραμμικού συστήματος με δύο αγνώστους. ΜΕΡΟΣ Α 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ 71 3. Η ΕΝΝΟΙΑ ΤΟΥ ΓΡΑΜΜΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΚΑΙ Η ΓΡΑΦΙΚΗ ΕΠΙΛΥΣΗ ΤΟΥ Αν έχουμε δύο γραμμικές εξισώσεις με δύο αγνώστους,, π.χ. α + β

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Η έννοια πρόβλημα Κατανόηση προβλήματος Δομή προβλήματος Καθορισμός απαιτήσεων Κατηγορίες προβλημάτων Πρόβλημα και υπολογιστής

ΠΕΡΙΕΧΟΜΕΝΑ. Η έννοια πρόβλημα Κατανόηση προβλήματος Δομή προβλήματος Καθορισμός απαιτήσεων Κατηγορίες προβλημάτων Πρόβλημα και υπολογιστής ΠΕΡΙΕΧΟΜΕΝΑ Η έννοια πρόβλημα Κατανόηση προβλήματος Δομή προβλήματος Καθορισμός απαιτήσεων Κατηγορίες προβλημάτων Πρόβλημα και υπολογιστής Εισαγωγή Το πρόβλημα αποτελεί έννοια που απαντάται σε όλες τις

Διαβάστε περισσότερα

Σελίδα 1 από 7 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ:

Σελίδα 1 από 7 ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: 08-09-2013 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-8 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη

Διαβάστε περισσότερα

. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o

. Πρόκειται για ένα σημαντικό βήμα, καθώς η παράμετρος χρόνος υποχρεωτικά μεταβάλλεται σε κάθε είδους κίνηση. Η επιλογή της χρονικής στιγμής t o Στις ασκήσεις Κινητικής υπάρχουν αρκετοί τρόποι για να δουλέψουμε. Ένας από αυτούς είναι με τη σωστή χρήση των εξισώσεων θέσης (κίνησης) και ταχύτητας των σωμάτων που περιγράφονται. Τα βήματα που ακολουθούμε

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Προτεινόμενα θέματα εξετάσεων Εργαστήριο. Μέρος 1 ό. ΤΕΙ Λάρισας- Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής

Προγραμματισμός Η/Υ. Προτεινόμενα θέματα εξετάσεων Εργαστήριο. Μέρος 1 ό. ΤΕΙ Λάρισας- Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής Προγραμματισμός Η/Υ Προτεινόμενα θέματα εξετάσεων Εργαστήριο Μέρος 1 ό ΤΕΙ Λάρισας- Σχολή Τεχνολογικών Εφαρμογών Τμήμα Πολιτικών Έργων Υποδομής Ιανουάριος 2011 Καλογιάννης Γρηγόριος Επιστημονικός/ Εργαστηριακός

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 6 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

y x y x+2y=

y x y x+2y= ΜΕΡΟΣ Α 3.1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ 59 3. 1 Η ΕΝΝΟΙΑ ΤΗΣ ΓΡΑΜΜΙΚΗΣ ΕΞΙΣΩΣΗΣ Η εξίσωση α+β=γ Λύση μιας εξίσωσης α + β = γ ονομάζεται κάθε ζεύγος αριθμών (, ) που την επαληθεύει. Για παράδειγμα η

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Ερωτήσεις Σωστό - Λάθος 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου αριθµού εντολών. 2. Η είσοδος σε έναν αλγόριθµο µπορεί να είναι έξοδος σε έναν άλλο αλγόριθµο. 3. Ένας αλγόριθµος

Διαβάστε περισσότερα

Κεφάλαιο 4 Σχεδίαση Βάσεων Δεδομένων

Κεφάλαιο 4 Σχεδίαση Βάσεων Δεδομένων Βάσεις Δεδομένων Επαγγελματικού Λυκείου Κεφάλαιο 4 Σχεδίαση Βάσεων Δεδομένων Εισηγητής Δελησταύρου Κωνσταντίνος Καθηγητής Πληροφορικής ΠΕ20 Μηχανικός Πληροφορικής Τ.Ε. M.Sc. στα Συστήματα Υπολογιστών Περιεχόμενα

Διαβάστε περισσότερα

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 003: ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΕΠΙΣΤΗΜΗ ΤΗΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δρ. Κόννης Γιώργος Πανεπιστήμιο Κύπρου - Τμήμα Πληροφορικής Προγραμματισμός Στόχοι 1 Να περιγράψουμε τις έννοιες του Υπολογιστικού Προβλήματος και του Προγράμματος/Αλγορίθμου

Διαβάστε περισσότερα

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος

Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Ποσοτικές Μέθοδοι στη Διοίκηση Επιχειρήσεων ΙΙ Σύνολο- Περιεχόμενο Μαθήματος Χιωτίδης Γεώργιος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες

1.3 Συστήματα γραμμικών εξισώσεων με ιδιομορφίες Κεφάλαιο Συστήματα γραμμικών εξισώσεων Παραδείγματα από εφαρμογές Παράδειγμα : Σε ένα δίκτυο (αγωγών ή σωλήνων ή δρόμων) ισχύει ο κανόνας των κόμβων όπου το άθροισμα των εισερχόμενων ροών θα πρέπει να

Διαβάστε περισσότερα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα

Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα Σενάριο 3. Τα µέσα των πλευρών τριγώνου Γνωστική περιοχή: Γεωµετρία Γ' Γυµνασίου: Παραλληλία πλευρών, αναλογίες γεωµετρικών µεγεθών, οµοιότητα τριγώνων, τριγωνοµετρικοί αριθµοί περίµετρος και εµβαδόν.

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Διάρκεια 3 ώρες. Όνομα... Επώνυμο... Βαθμός...

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Διάρκεια 3 ώρες. Όνομα... Επώνυμο... Βαθμός... 1 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Διάρκεια 3 ώρες Στοιχεία Μαθητή: Όνομα... Επώνυμο... Βαθμός... 2 Θεμα Α (30%) Α1 ΣΩΣΤΟ - ΛΑΘΟΣ 1. Ένα υποπρόγραμμα δεν μπορεί να κληθεί περισσότερες

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης

ΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης ΠΕΡΙΕΧΟΜΕΝΑ Εντολές επιλογής Εντολές επανάληψης Εισαγωγή Στο προηγούμενο κεφάλαιο αναπτύξαμε προγράμματα, τα οποία ήταν πολύ απλά και οι εντολές των οποίων εκτελούνται η μία μετά την άλλη. Αυτή η σειριακή

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 24 ΙΟΥΝΙΟΥ 2014 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΝΑΛΥΣΗΣ ΤΗΣ ΘΕΣΗΣ ΕΡΓΑΣΙΑΣ

ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΝΑΛΥΣΗΣ ΤΗΣ ΘΕΣΗΣ ΕΡΓΑΣΙΑΣ ΕΡΩΤΗΜΑΤΟΛΟΓΙΟ ΑΝΑΛΥΣΗΣ ΤΗΣ ΘΕΣΗΣ ΕΡΓΑΣΙΑΣ Το παρόν ερωτηματολόγιο ανάλυσης της θέσης εργασίας σχεδιάστηκε με σκοπό τη συλλογή πληροφοριών σχετικά με τα καθήκοντα και τις απαιτήσεις της θέσης εργασίας,

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 10 ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ

ΚΕΦΑΛΑΙΟ 10 ΥΠΟΠΡΟΓΡΑΜΜΑΤΑ ΚΕΦΑΛΑΙΟ 10 Όπως είδαμε και σε προηγούμενο κεφάλαιο μια από τις βασικότερες τεχνικές στον Δομημένο Προγραμματισμό είναι ο Τμηματικός Προγραμματισμός. Τμηματικός προγραμματισμός ονομάζεται η τεχνική σχεδίασης

Διαβάστε περισσότερα

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ

ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ ΤΑΞΗ ΚΕΦΑΛΑΙΟ 2 ο ΕΙΣΗΓΗΤΗΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ : ΚΑΖΑΝΤΖΗΣ ΧΡΗΣΤΟΣ 1. Γενικός

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ

ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ ΕΡΩΤΗΣΕΙΣ ΚΛΕΙΣΤΟΥ Ή ΑΝΤΙΚΕΙΜΕΝΙΚΟΥ ΤΥΠΟΥ Με τις ερωτήσεις του τύπου αυτού καλείται ο εξεταζόμενος να επιλέξει την ορθή απάντηση από περιορισμένο αριθμό προτεινόμενων απαντήσεων ή να συσχετίσει μεταξύ

Διαβάστε περισσότερα

1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες

1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες 1.1 Δραστηριότητα: Εισαγωγή στις άπειρες διαδικασίες Θέμα της δραστηριότητας Η δραστηριότητα αυτή είναι μια εισαγωγή στις άπειρες διαδικασίες. Η εισαγωγή αυτή επιτυγχάνεται με την εφαρμογή της μεθόδου

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 27 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση:

Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Ο μαθητής που έχει μελετήσει το κεφάλαιο αυτό θα πρέπει να είναι σε θέση: Να γνωρίζει: α. την έννοια του μιγαδικού αριθμού και β. πότε δύο μιγαδικοί αριθμοί είναι ίσοι. Να μπορεί να βρίσκει: α. το άθροισμα,

Διαβάστε περισσότερα