ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ"

Transcript

1 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

2 Περιεχόμενα Μαθήματος Επικοινωνίες ΙΙ Εισαγωγή στα σήματα Δειγματοληψία Ιδανική Κβάντιση Πρακτική Ομοιόμορφη Ανομοιόμορφη Διαφορική Κωδικοποίηση Παλμοκωδική διαμόρφωση Διαφορική παλμοκωδική διαμόρφωση Δέλτα διαμόρφωση Προσαρμοστική δέλτα διαμόρφωση Σίγμα-Δέλτα διαμόρφωση Σύγκριση συστημάτων Πολυπλεξία με διαίρεση χρόνου Επικοινωνίες ΙΙ (Κ7) Διαμόρφωση βασικής ζώνης Διαμόρφωση πλάτους παλμών (PAM) Διαμόρφωση θέσης παλμών (PPM) Άλγεβρα σημάτων Δέκτες Αποδιαμορφωτές Ανιχνευτές Επιδόσεις συστημάτων PAM και PPM Σύγκριση συστημάτων Κανάλια περιορισμένου εύρους ζώνης Διασυμβολική παρεμβολή Διάγραμμα οφθαλμού Σχεδίαση άριστων φίλτρων Επιδόσεις συστήματος PAM Διαμόρφωση διέλευσης ζώνης Σύμφωνο ASK, PSK, FSK Ασύμφωνο ASK, PSK, FSK 2

3 Διαμόρφωση Κανάλι AWGN i {b, b,,b K } i () r() bi Πομπός Δέκτης ˆ i bi 2 3 {,} {,} {, } {,} 2 3 ( ) ( ) ( ) ( ) n() Έστω M μηνύματα, i (i,,, M ), το καθένα αποτελούμενο από K bi, Κ log 2 (M) Ο αριθμός M ονομάζεται τάξη της διαμόρφωσης (odulaion order) Τα bi της πηγής είναι ισοπίθανα και συνεπώς τα i έχουν ίδια πιθανότητα εμφάνισης Ο πομπός αντιστοιχεί κάθε μήνυμα σε ένα Μ-ιαδικό σύμβολο, i () Το κανάλι αλλοιώνει τα εκπεμπόμενα σύμβολα Ο δέκτης πρέπει να αναγνωρίσει ποιο ανάμεσα από τα M πιθανά σύμβολα εκπέμφθηκε Βάσει της αντιστοίχισης των bi σε σύμβολα στον πομπό, προκύπτουν τα bi που στάλθηκαν Επικοινωνίες ΙΙ (Κ7) 3

4 Διαμόρφωση Ρυθμός μετάδοσης bi R b : Πόσα bi ανά ec εισέρχονται στον πομπό Ρυθμός μετάδοσης συμβόλων R : Πόσα σύμβολα ανά ec εξέρχονται από τον πομπό T b 5 T K 2 Πομπός T b 5T (), (), 3 (), (), 2 () T b, T : οι διάρκειες bi και συμβόλου, αντίστοιχα, T K T b Ο ρυθμός μετάδοσης συμβόλων είναι R Rb T KT K b Ο ρυθμός μετάδοσης συμβόλων είναι K φορές μικρότερος από το ρυθμό μετάδοσης bi Επικοινωνίες ΙΙ (Κ7) 4

5 Διαμόρφωση Πιθανότητα σφάλματος συμβόλου P e : Ορίζεται η πιθανότητα n από τα N σύμβολα που στέλνονται να αναγνωριστούν λάθος από το δέκτη P e n/n Πιθανότητα σφάλματος bi P be : Ορίζεται η πιθανότητα p από τα P bi που στέλνονται να είναι λάθος κατά τη λήψη P be p/p Για 2αδική διαμόρφωση M 2, κάθε σύμβολο μεταφέρει bi και συνεπώς, κάθε λάθος σύμβολο συνεπάγεται και λάθος στο bi, άρα P e P be Γενικότερα όμως, η σύνδεση της πιθανότητα σφάλματος συμβόλου με την πιθανότητα σφάλματος bi δεν είναι πάντα εύκολη Π.χ. για M 4, αν στείλαμε το () το οποίο μεταφέρει το {,} και αναγνωριστεί ως () {,}, έχουμε bi λάθος, ενώ αν αναγνωριστεί ως 3 () {,}, έχουμε 2 bi λάθος Επικοινωνίες ΙΙ (Κ7) 5

6 Διαμόρφωση Γενικά, η επιλογή του σχήματος διαμόρφωσης γίνεται βάσει: Ρυθμού μετάδοσης bi, R b Φασματικής απόδοση, R b / B w Απόδοσης ισχύος, E b / N Ανοχής στα προβλήματα του καναλιού μετάδοσης Κόστους υλοποίησης Επικοινωνίες ΙΙ (Κ7) 6

7 Διαμόρφωση πλάτους παλμού (pule apliude odulaion PAM) g T () Παλμός g T () πλάτους και διάρκειας T b Δυαδικό PAM (M 2) Για το bi, το πλάτος του παλμού είναι +A και η κυματομορφή: () A g T (), < T b () A T b Για το bi, το πλάτος του παλμού είναι A και η κυματομορφή: () -A g T (), < T b () T b T b -A Διαφορετική έκδοση του δυαδικού PAM είναι το on/off keying: Σύμβολα δυαδικού PAM (Μ 2) Για το bi, η κυματομορφή είναι () () A g T (), < T b A Για το bi, η κυματομορφή είναι () T b (), < T b T b Σύμβολα on/off (Μ 2) Επικοινωνίες ΙΙ (Κ7) 7

8 g T () Στο M-ιαδικό PAM κάθε σύμβολο αναπαριστάται με έναν παλμό, g T (), διάρκειας T και πλάτους A A (2 + M),,,, M, δηλ. A ±A, ±3 A, ±5 A,, ±(Μ-) A 3 () 3A T Η αντίστοιχη κυματομορφή είναι () A g T (), < T Η ενέργεια του συμβόλου () είναι ( ) ( ) T 2 2 T d 2 d 2 T d 2 T E A g A T A Η μέση ενέργεια ανά σύμβολο M-PAM είναι M M 2 T 2 M 2 E E A AT M M 3 () -A () -3A T T 2 () A T T Σύμβολα τετραδικού PAM (Μ 4) Επικοινωνίες ΙΙ (Κ7) 8

9 Φασματική πυκνότητα ισχύος M-PAM S pa (f) inc 2 (f T ) Η S pa (f) είναι κανονικοποιημένη ώστε η μέση ισχύς να είναι ανεξάρτητα του M Οι μηδενισμοί εμφανίζονται όταν f k / T, με k ±, ±2, ±3, Εύρος ζώνης από μηδενισμό-σε-μηδενισμό (null-o-null bandwidh) B - / T Το εύρος ζώνης είναι ανεξάρτητο του M S pa (f) (dbw/hz) Φασματική Πυκνότητα Ισχύος PAM (M 2, 4, 8) Επικοινωνίες ΙΙ (Κ7) / T ( ) B S f df B pa 9% / T f T Εύρος Φάσματος Περιεχόμενη Ισχύς ± / T 9% ±.5 / T 93% ±2 / T 95% ±3 / T 96.5% ±4 / T 97.5% ±5 / T 98% 9

10 Διαμόρφωση θέσης παλμού (pule poiion odulaion PPM) g T () Παλμός g T () πλάτους και διάρκειας T /M Δυαδικό PPM Για το bi, η κυματομορφή του συμβόλου αναπαρίσταται ως T / M () T () A g T (), < T b / 2 A Για το bi, η κυματομορφή του συμβόλου αναπαρίσταται ως () A g T ( T b / 2), T b / 2 < T b () A T b / 2 T b Στο M-ιαδικό PAM κάθε σύμβολο αναπαριστάται με έναν παλμό, g T (), διάρκειας T / M και πλάτους A. Η κυματομορφή του συμβόλου () είναι () A g T ( T / M ), T / M < ( + ) T / M με,,, M T b / 2 T b Σύμβολα δυαδικού PPM (Μ 2) () () 2 () 3 () A A A A T /4 2T /4 3T /4 T T /4 2T /4 3T /4 T T /4 2T /4 3T /4 T T /4 2T /4 3T /4 T Σύμβολα τετραδικού PPM (Μ 4) Επικοινωνίες ΙΙ (Κ7)

11 Η ενέργεια του συμβόλου () για το M-PPM είναι ( ) δηλαδή δεν εξαρτάται από το ( + ) ( + ) T E A g T A A M M T T M T M d T d d T M T M Συνεπώς και η μέση ενέργεια ανά σύμβολο είναι E E Ιδιαίτερο χαρακτηριστικό των συμβόλων PPM είναι ότι δεν αλληλοεπικαλύπτονται χρονικά και άρα T ( ) ( ) d, n n Σήματα για τα οποία ισχύει η παραπάνω ιδιότητα χαρακτηρίζονται ως ορθογώνια (orhogonal) Επικοινωνίες ΙΙ (Κ7)

12 Φασματική πυκνότητα ισχύος δυαδικού PPM Tb 2 ftb S2 pp ( f ) in c ( co( π ftb )) + δ ( f ) Το φάσμα του 2-PPM περιέχει τόσο συνεχές φάσμα όσο και διακριτό Στο 2-PPM μηδενισμοί στο φάσμα εμφανίζονται για f 2 k / T b με k ±, ±2, ±3, Σε σύγκριση με το 2-PAM, το 2-PPM απαιτεί διπλάσιο εύρος ζώνης S 2ap (f), S 2pp (f) (dbw/hz) 2-PAM 2-PPM / T ( ) 2-PAM: B S f df B 2pa 9% / T 2/ T ( ) 2-PPM: B S f df B 2pp 93% 2/ T f T b Φασματική Πυκνότητα Ισχύος 2-PAM και 2-PPM Επικοινωνίες ΙΙ (Κ7) 2

13 Φασματική πυκνότητα ισχύος τετραδικού PPM T 2 ft 2 π ft 2 π ft S4 pp ( f ) in c co co + δ ( f ) Γενικά, το φάσμα του M-PPM περιέχει τόσο συνεχές όσο και διακριτό φάσμα Στο M-PPM μηδενισμοί στο φάσμα εμφανίζονται για f k M / T με k ±, ±2, ±3, Σε σύγκριση με το M -PAM, το M -PPM απαιτεί M φορές μεγαλύτερο εύρος ζώνης 2/ T ( ) 2-PPM: B S f df B 2pp 93% 2/ T 4/ T ( ) 4-PPM: B S f df B 4pp 9% 4/ T 8/ T ( ) 8-PPM: B S f df B 8pp 9% 8/ T S pp (f) (dbw/hz) Φασματική Πυκνότητα Ισχύος PPM (M 2, 4, 8) 2 M 2 M 4 M 8 f T Επικοινωνίες ΙΙ (Κ7) 3

14 Ενέργεια συμβόλου Τα σύμβολα M-PAM έχουν μεταξύ τους διαφορετική ενέργεια Τα σύμβολα M-PPM έχουν μεταξύ τους όλα ίδια ενέργεια Μέση ενέργεια ανά σύμβολο Στο M-PAM η μέση ενέργεια ανά σύμβολο αυξάνεται με το M Στο M-PPM η μέση ενέργεια ανά σύμβολο μειώνεται με το M Επικοινωνίες ΙΙ (Κ7) 4

15 Τόσο στο M-PAM όσο και στο M-PPM μπορούν να χρησιμοποιηθούν παλμοί διάρκειας T και T / M, αντίστοιχα, διαφορετικοί από τετραγωνικούς Παλμοί για M-PAM: g T () g T () Παλμοί για M-PPM: g T () g T () T T T / M T T / M T Ως συνέπεια της διάρκειας των παλμών g T () προκύπτει ότι: Στο M-PAM το απαιτούμενο εύρος ζώνης διατηρείται σταθερό καθώς αυξάνει το M Στο M-PPM το απαιτούμενο εύρος ζώνης αυξάνει καθώς αυξάνει το M Το M-PPM απαιτεί εύρος ζώνης M φορές μεγαλύτερο από το εύρος ζώνης του M-PAM Επικοινωνίες ΙΙ (Κ7) 5

16 Σύγκριση M-PPM με M-PAM ως προς εύρος ζώνης (ίδιος ρυθμός μετάδοσης bi R b ) Για να μεταδώσουμε K bi με M-PAM χρειάζονται: M 2 K σύμβολα Διάρκεια κάθε παλμού T K / R b Εύρος ζώνης παλμού περίπου B W / (2 T ) Β 95% Άρα, απαιτούμενο εύρος ζώνης καναλιού BW R b / [2 log 2 (M)] Για να μεταδώσουμε K bi με M-PPM χρειάζονται: M 2 K σύμβολα διάρκειας T K / R b Διάρκεια κάθε παλμού T p T / M K / (Μ R b ) Εύρος ζώνης παλμού περίπου B W M / (2 T ) Β 95% Άρα, απαιτούμενο εύρος ζώνης καναλιού BW M R b / [2 log 2 (M)] Συνεπώς για να μεταδοθούν δεδομένα με ρυθμό R b, το M-PPM απαιτεί M φορές μεγαλύτερο εύρος ζώνης καναλιού σε σχέση με το M-PAM Επικοινωνίες ΙΙ (Κ7) 6

17 Κάθε κυματομορφή () την αντιμετωπίζουμε ως ένα διάνυσμα Το εσωτερικό γινόμενο μεταξύ δύο πραγματικών κυματομορφών () και n (), οι οποίες ορίζονται στο διάστημα [, 2 ], είναι 2 ( ), n( ) ( ) n( ) d Αν < (), n () >, όταν n τα () και n () είναι ορθογώνια Σημειώνουμε την ομοιότητα με την Ευκλείδεια γεωμετρία, όπου το εσωτερικό γινόμενο μεταξύ δύο διανυσμάτων ˆ ˆ ˆ f if+ jf2 + kf3 και g ig ˆ + ˆjg2 + kg ˆ 3 είναι 3 fg fn gn n Αν fg, τότε τα f και g είναι ορθογώνια μεταξύ τους f g Το μέτρο ή νόρμα μιας κυματομορφής (), στο διάστημα [, 2 ], είναι Η νόρμα συνδέεται με την ενέργεια της κυματομορφής ως E () 2 Η Ευκλείδεια απόσταση μεταξύ δύο κυματομορφών () και n (), στο διάστημα [, 2 ], είναι Επικοινωνίες ΙΙ (Κ7) 2 2 ( ) ( ), ( ) ( ) d 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) d, n n n, n n d 2 7

18 Έστω N το πλήθος κυματομορφών ψ () με,,, M με την παρακάτω ιδιότητα ψ ( ), ψ ( ) n,αν n, αν n Το σύνολο των N κυματομορφών αποτελούν μια ορθοκανονική βάση (orhonoral bai) Έχουν μοναδιαία ενέργεια E ψ ψ ( ) 2 Ο αριθμός N ονομάζεται διάσταση (dienion) του χώρου των κυματομορφών ψ ψ 2 N N 2 N 3 ψ ψ ψ ψ Επικοινωνίες ΙΙ (Κ7) 8

19 Είναι χρήσιμο να αναπαραστήσουμε ένα M-ιαδικό σύνολο συμβόλων σε μία ορθοκανονική βάση με N M Παρέχει σύντομο χαρακτηρισμό των σημάτων Απλοποιεί την ανάλυσή τους Παρέχει μια γεωμετρικού τύπου αναπαράσταση των σημάτων Η εύρεση της βάσης του χώρου είναι γενικά ένα δύσκολο πρόβλημα Ένας εύκολος τρόπος να βρεθεί μία βάση είναι με ορθογωνιοποίηση Gra-Schid Η βάση που προκύπτει δεν είναι μοναδική ψ N 2 () ψ Επικοινωνίες ΙΙ (Κ7) 9

20 Διαδικασία ορθογωνιοποίησης Gra-Schid: Η η κυματομορφή της ορθοκανονικής βάσης προκύπτει ως με E την ενέργεια του () ( ) ( ) ψ E Η 2 η κυματομορφή προκύπτει ως με E την ενέργεια του ψ ( ) ( ) c ψ ( ), E ( ) ψ ( ) c, και ( ) ψ ( ) c, d Η k-ιωστή (k,, 2, M-) κυματομορφή προκύπτει ως ψ με E k την ενέργεια του Επικοινωνίες ΙΙ (Κ7) k k k ki, i E k i ( ) ( ) c ψ ( ) k k ki, i i ( ) ψ ( ) c και ki, k( ) ψ i( ) d c 2

21 Παράδειγμα ορθογωνιοποίησης Gra-Schid τετραδικού σήματος (M 4) Η ορθοκανονική βάση έχει διάσταση N 3 Τα () εκφράζονται ως γραμμικός συνδυασμός των ψ () μέσω των διανυσμάτων ( 2,, ), (, 2, ), (, - 2, ) και ( 2,, ) 2 3 ψ () / () - () () - 3 () ( ) 2ψ ( ) ( ) 2ψ ( ) ( ) 2ψ ( ) + ψ ( ) ( ) 2ψ ( ) + ψ ( ) ψ () / 2 - / 2 ψ 2 () Τετραδικό σήμα (M 4) Ορθοκανονική βάση με N 3 Επικοινωνίες ΙΙ (Κ7) 2

22 Παράδειγμα ορθογωνιοποίησης Gra-Schid τετραδικού σήματος (M 4) Τα () εκφράζονται ως γραμμικός συνδυασμός των ψ () μέσω των διανυσμάτων ( 2,, ), (, 2, ), (, - 2, ) και ( 2,, ) 2 3 Τα σημεία στα οποία καταλήγουν τα διανύσματα απαρτίζουν το διάγραμμα αστερισμού (conellaion diagra) του τετραδικού σήματος ( ) 2ψ ( ) ( ) 2ψ ( ) ( ) 2ψ ( ) + ψ ( ) ( ) 2ψ ( ) + ψ ( ) O ψ ψ 2 ψ Επικοινωνίες ΙΙ (Κ7) 22

23 Ορθογωνιοποίηση Gra-Schid M-PAM Τα M-ιαδικά σύμβολα του PAM μπορούν να αναπαρασταθούν ως () A g T (), < T με A A (2 + M),,,, M g T () T 2 Ep gt ( ) d T Πραγματοποιώντας ορθογωνιοποίηση Gra-Schid, εύκολα προκύπτει ότι: Η ορθοκανονική βάση έχει διάσταση N Η συνάρτηση βάσης έχει μορφή ψ () g T () / E p, < T Τα M-ιαδικά σύμβολα εκφράζονται μέσω της συνάρτησης βάσης ως () ψ (), < T με A E p Δεδομένου ότι η διάσταση της ορθοκανονικής βάσης είναι N, το διάγραμμα αστερισμού είναι μονοδιάστατό (θεωρώντας E p ) -5A -3A -A A 3A 5A ψ () Επικοινωνίες ΙΙ (Κ7) 23

24 Ορθογωνιοποίηση Gra-Schid M-PPM Τα M-ιαδικά σύμβολα του PPM μπορούν να αναπαρασταθούν ως () A g T ( T / M), T / M < ( + ) T / M, με,,, M Πραγματοποιώντας ορθογωνιοποίηση Gra-Schid, εύκολα προκύπτει ότι: Η ορθοκανονική βάση έχει διάσταση N M Η συναρτήσεις βάσης έχουν μορφή ψ () g T ( T / M) / E p, T / M < ( + ) T / M Τα σύμβολα εκφράζονται μέσω των συναρτήσεων βάσης ως + ( ) Eψ ( ), T < T M M με E να είναι η ενέργεια κάθε συμβόλου E A 2 E p Δεδομένου ότι N M, το διάγραμμα αστερισμού δε μπορεί να αναπαρασταθεί γραφικά όταν M > 3 E,,,,,, και, E,,, M M M,,,, E M T ( + ) T M 2 p T T M E g T d M ψ A g T () ψ 2 A 2 T / M O A Διάγραμμα αστερισμού για M 3 και E p ψ Επικοινωνίες ΙΙ (Κ7) 24

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

Σεραφείµ Καραµπογιάς. Το κανάλι επικοινωνίας είναι το φυσικό µέσο που χρησιµεύει για να στέλνεται το σήµα από την πηγή στον προορισµό χρήσης.

Σεραφείµ Καραµπογιάς. Το κανάλι επικοινωνίας είναι το φυσικό µέσο που χρησιµεύει για να στέλνεται το σήµα από την πηγή στον προορισµό χρήσης. Στοιχεία ενός Συστήµατος Ηλεκτρικής Επικοινωνίας Ο σκοπός του συστήµατος επικοινωνίας είναι να µεταδώσει πληροφορία (raniion of inforaion)απόένασηµείοτουχώρου, πουλέγεταιπηγή, σεέναάλλοσηµείο, πουείναιο

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΜΕΤΑΤΡΟΠΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ ΨΗΦΙΑΚΟ

ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΜΕΤΑΤΡΟΠΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ ΨΗΦΙΑΚΟ ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΜΕΤΑΤΡΟΠΗ ΑΝΑΛΟΓΙΚΟΥ ΣΗΜΑΤΟΣ ΣΕ ΨΗΦΙΑΚΟ 5.1 Tο θεώρημα δειγματοληψίας. Χαμηλοπερατά σήματα 5.2 Διαμόρφωση πλάτους παλμού 5.3 Εύρος ζώνης καναλιού για ένα PAM σήμα 5.4 Φυσική δειγματοληψία

Διαβάστε περισσότερα

Μετάδοση σήματος PCM

Μετάδοση σήματος PCM Μετάδοση σήματος PCM Συγχρονισμός ΌπωςσεόλατασυστήματαTDM, απαιτείται συγχρονισμός μεταξύ πομπού και δέκτη Εάν τα ρολόγια στον πομπό και τον δέκτη διαφέρουν, αυτό θα οδηγήσει σε παραμορφώσεις του σήματος

Διαβάστε περισσότερα

ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ

ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΑ ΣΥΣΤΗΜΑΤΑ ΙΙ (ΨΗΦΙΑΚΑ ΤΗΛΕΠΙΚΟΙΝΩΙΑΚΑ ΣΥΣΤΗΜΑΤΑ) 3 η ΟΜΑΔΑ ΑΣΚΗΣΕΩΝ ΑΣΚΗΣΗ 1 Στο ανωτέρω Σχήμα η πρώτη κυματομορφή αποτελεί την είσοδο δύο κωδικοποιητών (Line Coders) ενώ οι επόμενες δύο

Διαβάστε περισσότερα

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου

Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Μοντέλο συστήματος αποδιαμόρφωσης παρουσία θορύβου Επίδοση παρουσία θορύβου Η ανάλυση της επίδοσης των συστημάτων διαμόρφωσης παρουσία θορύβου είναι εξαιρετικά σημαντική για τη σχεδίαση των διαφόρων επικοινωνιακών

Διαβάστε περισσότερα

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM)

Παλμοκωδική Διαμόρφωση. Pulse Code Modulation (PCM) Παλμοκωδική Διαμόρφωση Pulse Code Modulation (PCM) Pulse-code modulation (PCM) Η PCM είναι ένας στοιχειώδης τρόπος διαμόρφωσης που δεν χρησιμοποιεί φέρον! Το μεταδιδόμενο (διαμορφωμένο) σήμα PCM είναι

Διαβάστε περισσότερα

Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Τμήμα Μηχανικών Η/Υ και Πληροφορικής Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Τεχνικές Ψηφιακής Διαμόρφωσης και Μετάδοσης Tο γενικό

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW

Δέκτες ΑΜ ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ CW ΘΟΡΥΒΟΣ ΣΕ ΔΙΑΜΟΡΦΩΣΗ Στα συστήματα διαμόρφωσης (otiuou-ve) το κριτήριο της συμπεριφοράς τους ως προς το θόρυβο, είναι ο λόγος σήματος προς θόρυβο στην έξοδο (output igl-tooie rtio). λόγος σήματος προς

Διαβάστε περισσότερα

Μελέτη Επίδοσης Συστημάτων Πολλαπλών Εισόδων Πολλαπλών Εξόδων

Μελέτη Επίδοσης Συστημάτων Πολλαπλών Εισόδων Πολλαπλών Εξόδων Μελέτη Επίδοσης Συστημάτων Πολλαπλών Εισόδων Πολλαπλών Εξόδων Γεώργιος Χ. Αλεξανδρόπουλος Διπλ. Μηχανικός Η/Υ & Πληροφορικής MSc Συστήματα Επεξεργασίας Σημάτων & Εικόνων Εργαστήριο Ασυρμάτων Επικοινωνιών

Διαβάστε περισσότερα

Θεωρία Παλμοκωδικής Διαμόρφωσης (PCM)

Θεωρία Παλμοκωδικής Διαμόρφωσης (PCM) Κεφάλαιο 2 ο Θεωρία Παλμοκωδικής Διαμόρφωσης (PCM) 1 Εισαγωγή στα συστήματα μετάδοσης ψηφιακής πληροφορίας Ο σκοπός των σύγχρονων τηλεπικοινωνιών είναι να μεταφέρουν υψηλής ποιότητας σήματα πολυμέσων (φωνής,

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας.

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 16/04/014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΠΑΝΤΗΣΕΙΣ 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z

ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ. Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Z ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Εισαγωγή στα Σήµατα Εισαγωγή στα Συστήµατα Ανάπτυγµα - Μετασχηµατισµός Fourier Μετασχηµατισµός Laplace Μετασχηµατισµός Z Εφαρµογές Παράδειγµα ενός ηλεκτρικού συστήµατος Σύστηµα Παράδειγµα

Διαβάστε περισσότερα

Ημιτονοειδή σήματα Σ.Χ.

Ημιτονοειδή σήματα Σ.Χ. Ημιτονοειδή σήματα Σ.Χ. Αρμονική ταλάντωση και επειδή Ω=2πF Περιοδικό με βασική περίοδο Τ p =1/F Ημιτονοειδή σήματα Σ.Χ. 1 Ημιτονοειδή σήματα Σ.Χ. Σύμφωνα με την ταυτότητα του Euler Το ημιτονοειδές σήμα

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/013 ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος.

ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ. Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. 3. ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΓΜA - ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΑΝΑΛΟΓΙΚΩΝ ΣΗΜΑΤΩΝ Περιγράψουµε τον τρόπο ανάπτυξης σε σειρά Fourier ενός περιοδικού αναλογικού σήµατος. Ορίσουµε το µετασχηµατισµό Fourier ενός µη περιοδικού

Διαβάστε περισσότερα

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα:

ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ. () t. Διαμόρφωση Γωνίας. Περιεχόμενα: ΔΙΑΜΟΡΦΩΣΗ ΓΩΝΙΑΣ Περιεχόμενα: Διαμόρφωση Φάσης (PM) και Συχνότητας (FM) Διαμόρφωση FM από Απλό Τόνο - - Στενής Ζώνης - - Ευρείας Ζώνης - - από Πολλούς Τόνους Εύρος Ζώνης Μετάδοσης Κυματομορφών FM Απόκριση

Διαβάστε περισσότερα

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ

HY213. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ HY3. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΑΧΙΣΤΑ ΤΕΤΡΑΓΩΝΑ AΝΑΛΥΣΗ ΙΔΙΑΖΟΥΣΩΝ ΤΙΜΩΝ Π. ΤΣΟΜΠΑΝΟΠΟΥΛΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Μέθοδος ελαχίστων τετραγώνων Τα σφάλματα

Διαβάστε περισσότερα

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση)

Τι είναι βαθμωτό μέγεθος? Ένα μέγεθος που περιγράφεται μόνο με έναν αριθμό (π.χ. πίεση) TETY Εφαρμοσμένα Μαθηματικά Ενότητα ΙΙ: Γραμμική Άλγεβρα Ύλη: Διανυσματικοί χώροι και διανύσματα, μετασχηματισμοί διανυσμάτων, τελεστές και πίνακες, ιδιοδιανύσματα και ιδιοτιμές πινάκων, επίλυση γραμμικών

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ. Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ. Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Ασύρματη Διάδοση ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Ασύρματη διάδοση Εισαγωγή Κεραίες διάγραμμα ακτινοβολίας, κέρδος, κατευθυντικότητα

Διαβάστε περισσότερα

Εργαστήριο 3: Διαλείψεις

Εργαστήριο 3: Διαλείψεις Εργαστήριο 3: Διαλείψεις Διάλειψη (fading) είναι η παραμόρφωση ενός διαμορφωμένου σήματος λόγω της μετάδοσης του σε ασύρματο περιβάλλον. Η προσομοίωση μίας τέτοιας μετάδοσης γίνεται με την μοντελοποίηση

Διαβάστε περισσότερα

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ Τ.Ε.Ι. ΣΕΡΡΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: Μελέτη της τεχνικής ψαλιδισμού (clipping) του λόγου μέγιστης τιμής ισχύος προς μέση τιμή ισχύος σημάτων με ψηφιακή διαμόρφωση QPSK

Διαβάστε περισσότερα

ΘΕΜΑ. Προσομοίωση Φυσικού Επιπέδου και Επιπέδου Σύνδεσης Δεδομένων Ασύρματου Δικτύου Ιατρικών Αισθητήρων

ΘΕΜΑ. Προσομοίωση Φυσικού Επιπέδου και Επιπέδου Σύνδεσης Δεδομένων Ασύρματου Δικτύου Ιατρικών Αισθητήρων Πανεπιστήµιο Πατρών Σχολή Επιστηµών Υγείας Τµήµα Ιατρικής Εθνικό Μετσόβιο Πολυτεχνείο Τµήµα Ηλεκτρολόγων Μηχανικών & Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Τµήµα Μηχανολόγων Μηχανικών ΔΙΑΤΜΗΜΑΤΙΚΟ

Διαβάστε περισσότερα

Amplitude Shift Keying-ASK Frequency Shift Keying-FSK Phase Shift Keying-PSK

Amplitude Shift Keying-ASK Frequency Shift Keying-FSK Phase Shift Keying-PSK Εισαγωγή στις Τηλεπικοινωνίες Ψηφιακές ιαµορφώσεις Amplitude Shift Keying-ASK Frequency Shift Keying-FSK Phase Shift Keying-PSK ρ. Αθανάσιος. Παναγόπουλος Λέκτορας ΕΜΠ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών,

Διαβάστε περισσότερα

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ;

ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; ΤΙ ΕΙΝΑΙ Η ΗΛΕΚΤΡΟΝΙΚΗ; Ηλεκτρονικοί Υπολογιστές Κινητά τηλέφωνα Τηλεπικοινωνίες Δίκτυα Ο κόσμος της Ηλεκτρονικής Ιατρική Ενέργεια Βιομηχανία Διασκέδαση ΑΡΧΙΤΕΚΤΟΝΙΚΗ ΗΛΕΚΤΡΟΝΙΚΗ Τι περιέχουν οι ηλεκτρονικές

Διαβάστε περισσότερα

Αντοχή (ruggedness) στο θόρυβο μετάδοσης Αποτελεσματική αναγέννηση (regeneration) Δυνατότητα ομοιόμορφου σχήματος (uniform format) μετάδοσης Όμως:

Αντοχή (ruggedness) στο θόρυβο μετάδοσης Αποτελεσματική αναγέννηση (regeneration) Δυνατότητα ομοιόμορφου σχήματος (uniform format) μετάδοσης Όμως: ΨΗΦΙΑΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ Πλεονεκτήματα: Αντοχή (ruggedness) στο θόρυβο μετάδοσης Αποτελεσματική αναγέννηση (regeneration) Δυνατότητα ομοιόμορφου σχήματος (uniform format) μετάδοσης Όμως: Αύξηση απαίτησης εύρους

Διαβάστε περισσότερα

Φύλλο εργασίας. Ερωτήσεις ανασκόπησης του μαθήματος

Φύλλο εργασίας. Ερωτήσεις ανασκόπησης του μαθήματος Φύλλο εργασίας Παραθέτουμε μια ομάδα ερωτήσεων ανασκόπησης του μαθήματος και μια ομάδα ερωτήσεων κρίσης για εμβάθυνση στο αντικείμενο του μαθήματος. Θεωρούμε ότι μέσα στην τάξη είναι δυνατή η κατανόηση

Διαβάστε περισσότερα

1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 2 ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ 2-30. 1.1 Εισαγωγή 1-5. 1.2 Σειρές Fourier 1-5. 1.3 Το πεδίο της συχνότητας 1-7

1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 2 ΜΕΤΑΔΟΣΗ ΔΕΔΟΜΕΝΩΝ 2-30. 1.1 Εισαγωγή 1-5. 1.2 Σειρές Fourier 1-5. 1.3 Το πεδίο της συχνότητας 1-7 1 ΘΕΩΡΙΑ ΥΠΟΔΟΜΗΣ 1-5 1.1 Εισαγωγή 1-5 1.2 Σειρές Fourier 1-5 1.3 Το πεδίο της συχνότητας 1-7 1.4 Φάσμα μιας σειράς δυαδικών δεδομένων βασικής ζώνης 1-10 1.5 Ο μετασχηματισμός Fourier 1-11 1.6 Η διαδικασία

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 3 η Παρουσίαση : Συμπίεση Διδάσκων: Γιάννης Ντόκας Εισαγωγή 2 Συμπίεση πληροφορίας πολυμέσων 3 Γιατί χρειάζεται συμπίεση? 4

Διαβάστε περισσότερα

ΠΡΟΣΟΜΟΙΩΣΗ BPSK ΠΟΜΠΟΔΕΚΤΗ ΜΕ ΚΩΔΙΚΟΠΟΙΗΣΗ HAMMING ΣΕ ΠΕΡΙΒΑΛΛΟΝ AWGN ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ

ΠΡΟΣΟΜΟΙΩΣΗ BPSK ΠΟΜΠΟΔΕΚΤΗ ΜΕ ΚΩΔΙΚΟΠΟΙΗΣΗ HAMMING ΣΕ ΠΕΡΙΒΑΛΛΟΝ AWGN ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ & ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΡΟΣΟΜΟΙΩΣΗ BPSK ΠΟΜΠΟΔΕΚΤΗ ΜΕ ΚΩΔΙΚΟΠΟΙΗΣΗ HAMMING ΣΕ ΠΕΡΙΒΑΛΛΟΝ AWGN ΕΡΓΑΣΤΗΡΙΟ ΤΗΛΕΠΙΚΟΙΝΩΝΙΑΚΩΝ

Διαβάστε περισσότερα

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1

Ήχος και φωνή. Τεχνολογία Πολυµέσων 04-1 Ήχος και φωνή Φύση του ήχου Ψηφιοποίηση µε µετασχηµατισµό Ψηφιοποίηση µε δειγµατοληψία Παλµοκωδική διαµόρφωση Αναπαράσταση µουσικής Ανάλυση και σύνθεση φωνής Μετάδοση φωνής Τεχνολογία Πολυµέσων 4-1 Φύση

Διαβάστε περισσότερα

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης

Δίαυλος Πληροφορίας. Δρ. Α. Πολίτης Δίαυλος Πληροφορίας Η λειτουργία του διαύλου πληροφορίας περιγράφεται από: Τον πίνακα διαύλου μαθηματική περιγραφή. Το διάγραμμα διάυλου παραστατικός τρόπος περιγραφής. Πίνακας Διαύλου Κατασκευάζεται με

Διαβάστε περισσότερα

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ

Ασκήσεις στα Συστήµατα Ηλεκτρονικών Επικοινωνιών Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ Κεφάλαιο 3 ο : ΕΙΣΑΓΩΓΗ στις ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ ΗΛΕΚΤΡΟΜΑΓΝΗΤΙΚΟ ΚΥΜΑ και ΤΕΧΝΙΚΕΣ ΙΑΜΟΡΦΩΣΗΣ 1. Ποµπός ΑΜ εκπέµπει σε φέρουσα συχνότητα 1152 ΚΗz, µε ισχύ φέροντος 10KW. Η σύνθετη αντίσταση της κεραίας είναι

Διαβάστε περισσότερα

Εισαγωγή στην επιστήμη των υπολογιστών

Εισαγωγή στην επιστήμη των υπολογιστών Εισαγωγή στην επιστήμη των υπολογιστών Υπολογιστές και Δεδομένα Κεφάλαιο 3ο Αναπαράσταση Αριθμών www.di.uoa.gr/~organosi 1 Δεκαδικό και Δυαδικό Δεκαδικό σύστημα 2 3 Δεκαδικό και Δυαδικό Δυαδικό Σύστημα

Διαβάστε περισσότερα

Ενότητα 2. Φυσικό Στρώµα: Μέσα & Τεχνικές Μετάδοσης

Ενότητα 2. Φυσικό Στρώµα: Μέσα & Τεχνικές Μετάδοσης Ενότητα 2 Φυσικό Στρώµα: Μέσα & Τεχνικές Μετάδοσης Εισαγωγή στις βασικές έννοιες των δικτύων υπολογιστών ικτυακός Καταµερισµός Εργασίας Το υπόδειγµα του Internet Εξοπλισµός ικτύου Κατηγοριοποίηση ικτύων

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 6 : Κωδικοποίηση & Συμπίεση εικόνας Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Μελέτη και προσομοίωση ψηφιακών φίλτρων για δορυφορικό τηλεπικοινωνιακό πομποδέκτη με χρήση διαμόρφωσης 16-QAM.

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Μελέτη και προσομοίωση ψηφιακών φίλτρων για δορυφορικό τηλεπικοινωνιακό πομποδέκτη με χρήση διαμόρφωσης 16-QAM. TEΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΣΕΡΡΩΝ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ με θέμα Μελέτη και προσομοίωση ψηφιακών φίλτρων για δορυφορικό τηλεπικοινωνιακό

Διαβάστε περισσότερα

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο.

ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1. Τελεστές και πίνακες. 1. Τελεστές και πίνακες Γενικά. Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. ΤΕΤΥ Εφαρμοσμένα Μαθηματικά 1 Τελεστές και πίνακες 1. Τελεστές και πίνακες Γενικά Τι είναι συνάρτηση? Απεικόνιση ενός αριθμού σε έναν άλλο. Ανάλογα, τελεστής είναι η απεικόνιση ενός διανύσματος σε ένα

Διαβάστε περισσότερα

Εργαστήριο 8: Τεχνικές πολλαπλής πρόσβασης στα Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 8: Τεχνικές πολλαπλής πρόσβασης στα Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 8: Τεχνικές πολλαπλής πρόσβασης στα Δίκτυα Κινητών Επικοινωνιών Σε ένα σύστημα τηλεπικοινωνιών πολλών χρηστών, όπου περισσότεροι από ένας χρήστες στέλνουν πληροφορίες μέσω ενός κοινού καναλιού,

Διαβάστε περισσότερα

Περιεχόμενα διάλεξης

Περιεχόμενα διάλεξης 7η Διάλεξη Οπτικές ίνες Γ. Έλληνας, Διάλεξη 7, σελ. 1 Περιεχόμενα διάλεξης Διασπορά Πόλωσης Γ. Έλληνας, Διάλεξη 7, σελ. Page 1 Πόλωση Γενική θεωρία Γ. Έλληνας, Διάλεξη 7, σελ. 3 Μηχανικό ανάλογο Εγκάρσια

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΑΝΑΛΥΣΗ FOURIER (H ΣΕΙΡΑ FOURIER ΚΑΙ Ο ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER) Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Εργαστηριακό Μάθημα 1 Κυψελοποίηση

Κινητές επικοινωνίες. Εργαστηριακό Μάθημα 1 Κυψελοποίηση Κινητές επικοινωνίες Εργαστηριακό Μάθημα 1 Κυψελοποίηση 1 Αρχική Μορφή της Αρχιτεκτονικής του Τηλεφωνικού Συστήματος Κινητές Υπηρεσίες πρώτης γενιάς το σχέδιο με το οποίο έχει δομηθεί είναι παρόμοιο με

Διαβάστε περισσότερα

Δομές Δεδομένων και Αλγόριθμοι

Δομές Δεδομένων και Αλγόριθμοι Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 20 Huffman codes 1 / 12 Κωδικοποίηση σταθερού μήκους Αν χρησιμοποιηθεί κωδικοποίηση σταθερού μήκους δηλαδή

Διαβάστε περισσότερα

Τμήμα Μηχανικών Η/Υ και Πληροφορικής. Κινητά Δίκτυα Επικοινωνιών

Τμήμα Μηχανικών Η/Υ και Πληροφορικής. Κινητά Δίκτυα Επικοινωνιών Τμήμα Μηχανικών Η/Υ και Πληροφορικής Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Κινητά Δίκτυα Επικοινωνιών Μέρος Α: Τηλεπικοινωνιακά Θέματα: Πολλαπλές Κεραίες και Επικοινωνίες Χώρου - Χρόνου Μετάδοση

Διαβάστε περισσότερα

Pulse Amplitude (PAM) Pulse Code (PCM) Pulse Width (PWM) Delta (DM) Pulse Position (PPM) Adaptive Delta (ADM)

Pulse Amplitude (PAM) Pulse Code (PCM) Pulse Width (PWM) Delta (DM) Pulse Position (PPM) Adaptive Delta (ADM) Εισαγωγή στις Τηλεπικοινωνίες ιαµόρφωση Παλµών Αναλογική/Ψηφιακή PCM/DPCM DM/ADM ρ. Αθανάσιος. Παναγόπουλος Λέκτορας ΕΜΠ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ Εισαγωγή στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή

K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή K15 Ψηφιακή Λογική Σχεδίαση 1: Εισαγωγή Γιάννης Λιαπέρδος TEI Πελοποννήσου Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής ΤΕ Πληροφορίες για το μάθημα Περιεχόμενα 1 Πληροφορίες για το μάθημα

Διαβάστε περισσότερα

Συστήματα Πολυμέσων Ενότητα 7: Ψηφιοποίηση και ψηφιακή επεξεργασία σήματος.

Συστήματα Πολυμέσων Ενότητα 7: Ψηφιοποίηση και ψηφιακή επεξεργασία σήματος. Συστήματα Πολυμέσων Ενότητα 7: Ψηφιοποίηση και ψηφιακή επεξεργασία σήματος. Επικ. Καθηγητής Συνδουκάς Δημήτριος Τμήμα Διοίκησης Επιχειρήσεων (Γρεβενά) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται

Διαβάστε περισσότερα

ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ. Δίκτυα Υπολογιστών. Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα»

ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ. Δίκτυα Υπολογιστών. Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα» ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ Δίκτυα Υπολογιστών Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα» Φυσικό στρώμα: Προσδιορίζει τις φυσικές διεπαφές των συσκευών Μηχανικό Ηλεκτρικό Λειτουργικό Διαδικαστικό

Διαβάστε περισσότερα

ίκτυα Υπολογιστών και Επικοινωνία ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8: Το Φυσικό Επίπεδο

ίκτυα Υπολογιστών και Επικοινωνία ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8: Το Φυσικό Επίπεδο ίκτυα Υπολογιστών & Επικοινωνία ΙΑΛΕΞΗ 8 Η ιδάσκουσα: Παντάνο Ρόκου Φράνκα Παντάνο Ρόκου Φράνκα 1 ιάλεξη 8 η : Το Φυσικό Επίπεδο Το Φυσικό Επίπεδο ιάδοση Σήµατος Ηλεκτροµαγνητικά Κύµατα Οπτικές Ίνες Γραµµές

Διαβάστε περισσότερα

Ασκήσεις C B (2) SNR 10log( SNR) 10log(31) 14.91dB ΑΣΚΗΣΗ 1

Ασκήσεις C B (2) SNR 10log( SNR) 10log(31) 14.91dB ΑΣΚΗΣΗ 1 Ασκήσεις ΑΣΚΗΣΗ 1 Ένα ψηφιακό κανάλι πρέπει να έχει χωρητικότητα 25Mbps. Το ίδιο κανάλι έχει φάσμα μεταξύ 19 ΜΗz και 24 ΜΗz. Α)Ποιος είναι ο απαιτούμενος λόγος σήματος προς θόρυβο σε db για να λειτουργήσει

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Εικόνας

Ψηφιακή Επεξεργασία Εικόνας ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Ψηφιακή Επεξεργασία Εικόνας Ενότητα 4 : Δειγματοληψία και κβάντιση (Sampling and Quantization) Ιωάννης Έλληνας Τμήμα Η/ΥΣ Άδειες

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA

Κινητές επικοινωνίες. Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA Κινητές επικοινωνίες Κεφάλαιο 6 Τεχνικές πoλυπλεξίας - CDMA 1 Πολυπλεξία Η πολυπλεξία επιτρέπει την παράλληλη μετάδοση δεδομένων από διαφορετικές πηγές χωρίς αλληλοπαρεμβολές. Τρία βασικά είδη TDM/TDMA

Διαβάστε περισσότερα

ΣΧΕΔΙΑΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΨΗΦΙΑΚΟΥ ΔΕΚΤΗ ΜΕ ΔΙΑΜΟΡΦΩΣΗ QPSK

ΣΧΕΔΙΑΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΨΗΦΙΑΚΟΥ ΔΕΚΤΗ ΜΕ ΔΙΑΜΟΡΦΩΣΗ QPSK ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΚΑΙ ΕΦΑΡΜΟΓΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ: "ΣΥΓΧΡΟΝΕΣ ΗΛΕΚΤΡΟΝΙΚΕΣ ΤΕΧΝΟΛΟΓΙΕΣ" ΣΧΕΔΙΑΣΗ ΚΑΙ ΥΛΟΠΟΙΗΣΗ ΨΗΦΙΑΚΟΥ ΔΕΚΤΗ ΜΕ

Διαβάστε περισσότερα

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση

Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση Χειμερινό Εξάμηνο 2013-2014 Μετάδοση Πολυμεσικών Υπηρεσιών Ψηφιακή Τηλεόραση 5 η Παρουσίαση : Ψηφιακή Επεξεργασία Εικόνας Διδάσκων: Γιάννης Ντόκας Σύνθεση Χρωμάτων Αφαιρετική Παραγωγή Χρώματος Χρωματικά

Διαβάστε περισσότερα

Φυσικό Επίπεδο Σήµατα & Κωδικοποίηση. Ενότητα Β

Φυσικό Επίπεδο Σήµατα & Κωδικοποίηση. Ενότητα Β Ιόνιο Πανεπιστήµιο Τµήµα Αρχειονοµίας - Βιβλιοθηκονοµίας ίκτυα Η/Υ Φυσικό Επίπεδο Σήµατα & Κωδικοποίηση Ενότητα Β ρ. Ε. Μάγκος Βασικές Έννοιες Σηµάτων Τα ελαστικά σώµατα υφίστανται παροδικές παραµορφώσεις

Διαβάστε περισσότερα

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt

Εισαγωγή. Προχωρημένα Θέματα Τηλεπικοινωνιών. Ανάκτηση Χρονισμού. Τρόποι Συγχρονισμού Συμβόλων. Συγχρονισμός Συμβόλων. t mt Προχωρημένα Θέματα Τηλεπικοινωνιών Συγχρονισμός Συμβόλων Εισαγωγή Σε ένα ψηφιακό τηλεπικοινωνιακό σύστημα, η έξοδος του φίλτρου λήψης είναι μια κυματομορφή συνεχούς χρόνου y( an x( t n ) n( n x( είναι

Διαβάστε περισσότερα

Μαθηματικά Γ Γυμνασίου

Μαθηματικά Γ Γυμνασίου Α λ γ ε β ρ ι κ έ ς π α ρ α σ τ ά σ ε ι ς 1.1 Πράξεις με πραγματικούς αριθμούς (επαναλήψεις συμπληρώσεις) A. Οι πραγματικοί αριθμοί και οι πράξεις τους Διδακτικοί στόχοι Θυμάμαι ποιοι αριθμοί λέγονται

Διαβάστε περισσότερα

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος

iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος iii ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος xi 1 Αντικείμενα των Πιθανοτήτων και της Στατιστικής 1 1.1 Πιθανοτικά Πρότυπα και Αντικείμενο των Πιθανοτήτων, 1 1.2 Αντικείμενο της Στατιστικής, 3 1.3 Ο Ρόλος των Πιθανοτήτων

Διαβάστε περισσότερα

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής.

1/3/2009. Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν με τον «αναλογικό» ανθρώπινο κόσμο. Φλώρος Ανδρέας Επίκ. Καθηγητής. Από το προηγούμενο μάθημα... Μάθημα: «Ψηφιακή Επεξεργασία Ήχου» Δάλ Διάλεξη 2 η : «Βασικές Β έ αρχές ψηφιακού ήχου» Φλώρος Ανδρέας Επίκ. Καθηγητής Τα ψηφιακά ηχητικά συστήματα πρέπει να επικοινωνήσουν

Διαβάστε περισσότερα

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014)

Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 2013-14 (Ιούνιος 2014) Λύσεις θεμάτων Α εξεταστικής περιόδου χειμερινού εξαμήνου 201314 (Ιούνιος 2014) ΘΕΜΑ 1 Ο (3,0 μονάδες) Στο παρακάτω σχήμα δίνεται το δομικό λειτουργικό διάγραμμα που περιγράφει ένα αναγνωριστικό αυτοκινούμενο

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΨΗΦΙΑΚΩΝ ΔΙΑΜΟΡΦΩΣΕΩΝ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΨΗΦΙΑΚΩΝ ΔΙΑΜΟΡΦΩΣΕΩΝ ΠΑΝΕΠΙΣΤΉΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΔΙΔΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΚΑΤΕΥΘΥΝΣΗ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΚΑΙ ΔΙΚΤΥΑ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕΛΕΤΗ ΚΑΙ ΑΝΑΠΤΥΞΗ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΥΛΙΚΟΥ ΨΗΦΙΑΚΩΝ ΔΙΑΜΟΡΦΩΣΕΩΝ

Διαβάστε περισσότερα

HMY 795: Αναγνώριση Προτύπων

HMY 795: Αναγνώριση Προτύπων HMY 795: Αναγνώριση Προτύπων Διάλεξη 5 Κατανομές πιθανότητας και εκτίμηση παραμέτρων δυαδικές τυχαίες μεταβλητές Bayesian decision Minimum misclassificaxon rate decision: διαλέγουμε την κατηγορία Ck για

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

SOURCE. Transmitter. Channel Receiver

SOURCE. Transmitter. Channel Receiver Εισαγωγή στις Τηλεπικοινωνίες Εισαγωγή στα Σήµατα Ψηφιακές Επικοινωνίες - ειγµατοληψία ρ. Αθανάσιος. Παναγόπουλος Λέκτορας ΕΜΠ 1 Εργαστήριο Κινητών Ραδιοεπικοινωνιών, ΣΗΜΜΥ ΕΜΠ Εισαγωγή στις Τηλεπικοινωνίες

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ. Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα ΣΗΜΑΤΑ & ΣΥΣΤΗΜΑΤΑ Ενότητα : ΔΙΑΚΡΙΤΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Aναστασία Βελώνη Τμήμα Η.Υ.Σ 1 Άδειες Χρήσης Το παρόν εκπαιδευτικό

Διαβάστε περισσότερα

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου

Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Για το Θέμα 1 στα Μαθηματικά Γενικής Παιδείας Γ Λυκείου Διαφορικός Λογισμός 1. Ισχύει f (g())) ) f ( = f (g())g () όπου f,g παραγωγίσιµες συναρτήσεις 2. Αν µια συνάρτηση f είναι παραγωγίσιµη σε ένα διάστηµα

Διαβάστε περισσότερα

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014

ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014 ΤΕΧΝΙΚΗ ΣΧΟΛΗ ΜΑΚΑΡΙΟΣ Γ ΣΧΟΛΙΚΗ ΧΡΟΝΙΑ: 2013 2014 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΠΚΕΣ ΕΞΕΤΑΣΕΙΣ ΜΑΪΟΥ / ΙΟΥΝΙΟΥ 2014 Κατεύθυνση: ΠΡΑΚΤΙΚΗ Κλάδος: ΗΛΕΚΤΡΟΛΟΓΙΑ Μάθημα: ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΕΡΓΑΣΤΗΡΙΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Τάξη: A Τμήμα:

Διαβάστε περισσότερα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα

3-Φεβ-2009 ΗΜΥ 429. 4. Σήματα 3-Φεβ-2009 ΗΜΥ 429 4. Σήματα 1 Σήματα Σήματα είναι: σχήματα αλλαγών που αντιπροσωπεύουν ή κωδικοποιούν πληροφορίες σύνολο πληροφορίας ή δεδομένων σχήματα αλλαγών στο χρόνο, π.χ. ήχος, ηλεκτρικό σήμα εγκεφάλου

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 14 ΙΟΥΝΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ

Διαβάστε περισσότερα

ΑΝΑΝΕΩΣΗ ΔΗΛΩΣΕΩΝ ΜΑΘΗΜΑΤΩΝ ΓΙΑ ΤΟ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2012-2013

ΑΝΑΝΕΩΣΗ ΔΗΛΩΣΕΩΝ ΜΑΘΗΜΑΤΩΝ ΓΙΑ ΤΟ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2012-2013 ΑΝΑΝΕΩΣΗ ΔΗΛΩΣΕΩΝ ΜΑΘΗΜΑΤΩΝ ΓΙΑ ΤΟ ΧΕΙΜΕΡΙΝΟ ΕΞΑΜΗΝΟ 2012-2013 (εξάμηνα εγγραφής από 09-10 Εαρινό έως και 06-07 Χειμερινό) Οι φοιτητές που θα κάνουν ανανέωση από το 2 ο έως και το 7 ο εξάμηνο σπουδών θα

Διαβάστε περισσότερα

Εισαγωγή στην πληροφορική

Εισαγωγή στην πληροφορική Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Εισαγωγή στην πληροφορική Ενότητα 4: Ψηφιακή Λογική, Άλγεβρα Boole, Πίνακες Αλήθειας (Μέρος Α) Αγγελίδης Παντελής Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών

Διαβάστε περισσότερα

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB )

Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια «ανώδυνη» εισαγωγή στο μάθημα (και στο MATLAB ) Μια πρώτη ιδέα για το μάθημα χωρίς καθόλου εξισώσεις!!! Περίγραμμα του μαθήματος χωρίς καθόλου εξισώσεις!!! Παραδείγματα από πραγματικές εφαρμογές ==

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 2.1: Ανάλυση Fourier. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 2.1: Ανάλυση Fourier Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό υλικό,

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ. Παλμοκωδική Διαμόρφωση PCM : Pulse Code Modulation

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ. Παλμοκωδική Διαμόρφωση PCM : Pulse Code Modulation Εισαγωγικά ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ Παλμοκωδική Διαμόρφωση PCM : Pulse Code Modulation Εισαγωγικά Η παρούσα εργαστηριακή άσκηση αναπτύχθηκε στο Εργαστήριο Τηλεπικοινωνιακών Συστημάτων. Στην άσκηση αυτή ο φοιτητής

Διαβάστε περισσότερα

Κεφάλαιο 3-3.1 Μέσα Μετάδοσης

Κεφάλαιο 3-3.1 Μέσα Μετάδοσης Κεφάλαιο 3-3.1 Μέσα Μετάδοσης Γεώργιος Γιαννόπουλος, ΠΕ19 ggiannop (at) sch.gr σελ. 71-80 - http://diktya-epal-b.ggia.info/ Creative Commons License 3.0 Share-Alike Εισαγωγή: Μέσο Μετάδοσης Είναι η φυσική

Διαβάστε περισσότερα

ΑΝΤΙΣΤΟΙΧΙΣΕΙΣ ΜΑΘΗΜΑΤΩΝ ΙΣΧΥΟΥΝ ΑΠΟ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2007-2008 Α ΕΞΑΜΗΝΟ ΠΑΛΑΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. Κατηγορ ία ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΚΟΣ Υ/ΕΥ

ΑΝΤΙΣΤΟΙΧΙΣΕΙΣ ΜΑΘΗΜΑΤΩΝ ΙΣΧΥΟΥΝ ΑΠΟ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2007-2008 Α ΕΞΑΜΗΝΟ ΠΑΛΑΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. Κατηγορ ία ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΚΟΣ Υ/ΕΥ ΑΝΤΙΣΤΟΙΧΙΣΕΙΣ ΜΑΘΗΜΑΤΩΝ ΙΣΧΥΟΥΝ ΑΠΟ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2007-2008 ΠΑΛΑΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Α ΕΞΑΜΗΝΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΚΩΔΙ ΚΟΣ Κατηγορ ία Υ/ΕΥ ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΕΦΑΡΜΟΓΕΣ ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1 1.0 ΤΕΧΝΟΛΟΓΙΑ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΝΟΤΗΤΑ 1 1.0 ΤΕΧΝΟΛΟΓΙΑ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΝΟΤΗΤΑ 1 1.0 ΤΕΧΝΟΛΟΓΙΑ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΙΣΑΓΩΓΗ Γενικά οι τεχνολογίες είναι επιστήμες που αξιοποιούν τις γνώσεις, τα εργαλεία και τις δεξιότητες για επίλυση προβλημάτων με πρακτική εφαρμογή. Η Τεχνολογία

Διαβάστε περισσότερα

219 Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεσσαλονίκης

219 Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεσσαλονίκης 219 Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Θεσσαλονίκης Το Τμήμα Ηλεκτρολόγων Μηχανικών ιδρύθηκε με το ΒΔ.400/72 και άρχισε να λειτουργεί το 1972-73. Το ΑΠΘ είχε τότε ήδη 28.000 φοιτητές. Η ακριβής

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: 15180 Μαρούσι Ιστοσελίδα: www.minedu.gov.gr Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: 210-3443422 ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ. ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΣΧΟΛΗ ΟΙΚΟΝΟΜΙΑΣ ΔΙΟΙΚΗΣΗΣ και ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ και ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΟΔΗΓΟΣ ΜΕΤΑΒΑΤΙΚΩΝ ΔΙΑΤΑΞΕΩΝ 2014 2015 Επιτροπή προπτυχιακών σπουδών: Κ. Βασιλάκης Κ. Γιαννόπουλος

Διαβάστε περισσότερα

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι)

7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7.2 ΜΗΤΡΕΣ ΕΙΔΙΚΗΣ ΜΟΡΦΗΣ (Ι) 77 78 7 ΑΛΓΕΒΡΑ ΜΗΤΡΩΝ. 7. ΕΙΣΑΓΩΓΗ Η Άλγεβρα των μητρών οι πινάκων είναι ιδιαίτερα χρήσιμη για την επίλυση συστημάτων καθώς επίσης στις επιστήμες της οικονομετρίας και της στατιστικής. ΟΡΙΣΜΟΣ: Μήτρα

Διαβάστε περισσότερα

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α

Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α Σ Υ Λ Λ Ο Γ Η Α Σ Κ Η Σ Ε Ω Ν Β Λ Υ Κ Ε Ι Ο Υ Α Λ Γ Ε Β Ρ Α Σ Υ Σ Τ Η Μ Α Τ Α α 3y β 5 (1) Αν το (Σ) : 3 αy 5β τους α,β έχει λύση την (, y) = (1, ) να βρείτε () Να λυθούν τα συστήματα : y 4 3 y 5 6 5 6

Διαβάστε περισσότερα

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων

Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1 Εισαγωγή στα ψηφιακά Συστήµατα Μετρήσεων 1.1 Ηλεκτρικά και Ηλεκτρονικά Συστήµατα Μετρήσεων Στο παρελθόν χρησιµοποιήθηκαν µέθοδοι µετρήσεων που στηριζόταν στις αρχές της µηχανικής, της οπτικής ή της θερµοδυναµικής.

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

HY-335 : Δίκτυα Υπολογιστών

HY-335 : Δίκτυα Υπολογιστών W N net works R E O T HY-335 : Δίκτυα Υπολογιστών K Μαρία Παπαδοπούλη Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χειμερινό εξάμηνο 20010-2011 Θέματα προς συζήτηση Είδη πολυπλεξίας Μεταγωγή Καθυστερήσεις

Διαβάστε περισσότερα

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1

Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Προγραμματισμός Ηλεκτρονικών Υπολογιστών 1 Ενότητα 3: Άλγεβρα Βοole και Λογικές Πράξεις Δρ. Φραγκούλης Γεώργιος Τμήμα Ηλεκτρολογίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης

Διαβάστε περισσότερα

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ

ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ ΕΙ ΙΚΑ ΚΕΦΑΛΑΙΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΕΡΩΤΗΣΕΙΣ & ΘΕΜΑΤΑ ΠΕΡΑΣΜΕΝΩΝ ΕΞΕΤΑΣΤΙΚΩΝ ΠΕΡΙΟ ΩΝ α. Τι ονοµάζουµε διασπορά οπτικού παλµού σε µια οπτική ίνα; Ποια φαινόµενα παρατηρούνται λόγω διασποράς; (Αναφερθείτε σε

Διαβάστε περισσότερα

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης

Κωδικοποίηση Πηγής. Δρ. Α. Πολίτης Κωδικοποίηση Πηγής Coder Decoder Μεταξύ πομπού και καναλιού παρεμβάλλεται ο κωδικοποιητής (coder). Έργο του: η αντικατάσταση των συμβόλων πληροφορίας της πηγής με εναλλακτικά σύμβολα ή λέξεις. Κωδικοποίηση

Διαβάστε περισσότερα

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF

Σχεδίαση Ηλεκτρονικών Κυκλωμάτων RF ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Σχεδίαση Ηλεκτρονικών Κυκλωμάτων F Ενότητα: Φίλτρα και Επαναληπτικές Ασκήσεις Στυλιανός Μυτιληναίος Τμήμα Ηλεκτρονικής, Σχολή

Διαβάστε περισσότερα

Κινητές και Δορυφορικές Επικοινωνίες

Κινητές και Δορυφορικές Επικοινωνίες Πανεπιστήμιο Αιγαίου Κινητές και Δορυφορικές Επικοινωνίες Πρόγραμμα Μεταπτυχιακών Σπουδών Κατεύθυνση: «Τεχνολογίες Δικτύων Επικοινωνιών & Υπολογιστών» Βασικές Αρχές Κυψελωτών Συστημάτων Δημοσθένης Βουγιούκας

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝ/ΚΟ ΕΤΟΣ 2014-2015 Εξάμηνο 2ο ώρες ΔΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ ώρες

ΠΡΟΓΡΑΜΜΑ ΤΟΥ ΤΜΗΜΑΤΟΣ ΜΑΘΗΜΑΤΙΚΩΝ ΠΑΝ/ΚΟ ΕΤΟΣ 2014-2015 Εξάμηνο 2ο ώρες ΔΕΥΤΕΡΑ ΤΡΙΤΗ ΤΕΤΑΡΤΗ ΠΕΜΠΤΗ ΠΑΡΑΣΚΕΥΗ ώρες Εξάμηνο 2ο 2Α Εργ. Εισαγωγή στον Προγραμματισμό Πορφυριάδης, 2Β Δ31 Μαθ Προγραμ. 2A Δ31 Μαθ Προγραμ. 2 Δ31 Μαθηματικά Λογισμικά και Γλώσσες Αναπαράστασης Γνώσης Ι. Αντωνίου,, Μωυσιάδης, 2Α Δ11 Αναλυτική

Διαβάστε περισσότερα

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Δορυφορική ψηφιακή τηλεόραση

ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ. Δορυφορική ψηφιακή τηλεόραση ΤΕΙ ΚΡΗΤΗΣ ΤΜ. ΕΦΑΡΜΟΣΜΕΝΗΣ ΠΛΗΡ/ΚΗΣ & ΠΟΛΥΜΕΣΩΝ ΔΙΔΑΣΚΩΝ: Δρ. Γ. ΓΑΡΔΙΚΗΣ 4 Δορυφορική ψηφιακή τηλεόραση Δορυφορική τηλεόραση: Η εκπομπή και λήψη του τηλεοπτικού σήματος από επίγειους σταθμούς μεταξύ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-21 ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΜΑΤΙΚΗ ΕΝΟΤΗΤΑ: ΠΛΗ-2 ΨΗΦΙΑΚΗ ΣΧΕΔΙΑΣΗ ΑΣΚΗΣΕΙΙΣ ΓΡΑΠΤΩΝ ΕΡΓΑΣΙΙΩΝ & ΘΕΜΑΤΩΝ ΕΞΕΤΑΣΕΩΝ ΣΥΝΤΕΛΕΣΤΕΣ

Διαβάστε περισσότερα

ΑΝΤΙΣΤΟΙΧΙΣΕΙΣ ΜΑΘΗΜΑΤΩΝ ΙΣΧΥΟΥΝ ΑΠΟ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2007-2008 Α ΕΞΑΜΗΝΟ ΠΑΛΑΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. Κατηγορ ία ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΚΟΣ Υ/ΕΥ

ΑΝΤΙΣΤΟΙΧΙΣΕΙΣ ΜΑΘΗΜΑΤΩΝ ΙΣΧΥΟΥΝ ΑΠΟ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2007-2008 Α ΕΞΑΜΗΝΟ ΠΑΛΑΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ. Κατηγορ ία ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΚΟΣ Υ/ΕΥ ΑΝΤΙΣΤΟΙΧΙΣΕΙΣ ΜΑΘΗΜΑΤΩΝ ΙΣΧΥΟΥΝ ΑΠΟ ΤΟ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2007-2008 ΠΑΛΑΙΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ Α ΕΞΑΜΗΝΟ ΝΕΟ ΠΡΟΓΡΑΜΜΑ ΣΠΟΥΔΩΝ ΚΩΔΙ ΚΟΣ Κατηγορ ία Υ/ΕΥ ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ & ΕΦΑΡΜΟΓΕΣ ΑΠΕΙΡΟΣΤΙΚΟΣ ΛΟΓΙΣΜΟΣ

Διαβάστε περισσότερα

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες

Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες Ορισμός Στατιστική είναι το σύνολο των μεθόδων και θεωριών που εφαρμόζονται σε αριθμητικά δεδομένα προκειμένου να ληφθεί κάποια απόφαση σε συνθήκες αβεβαιότητας. Βασικές έννοιες Η μελέτη ενός πληθυσμού

Διαβάστε περισσότερα

B Γυμνασίου. Ενότητα 9

B Γυμνασίου. Ενότητα 9 B Γυμνασίου Ενότητα 9 Γραμμικές εξισώσεις με μία μεταβλητή Διερεύνηση (1) Να λύσετε τις πιο κάτω εξισώσεις και ακολούθως να σχολιάσετε το πλήθος των λύσεων που βρήκατε σε καθεμιά. α) ( ) ( ) ( ) Διερεύνηση

Διαβάστε περισσότερα