ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ"

Transcript

1 ΚΕΦΑΛΑΙΟ ΠΕΜΠΤΟ ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ 5. Εισαγωγή Ο σκοπός κάθε συστήματος τηλεπικοινωνιών είναι η μεταφορά πληροφορίας από ένα σημείο (πηγή) σ ένα άλλο (δέκτης). Συνεπώς, κάθε μελέτη ενός τέτοιου συστήματος πρέπει να παρέχει μια βάση υπολογισμού της αποτελεσματικότητάς του σε συνάρτηση με τη μεταφερόμενη ποσότητα πληροφορίας. Η λέξη πληροφορία έχει πολλές έννοιες, οπότε πρέπει να γίνει διάκριση μεταξύ της πληροφορίας με την έννοια ποσότητα μηνυμάτων και εκείνης με την έννοια σημαντικότητα των μηνυμάτων. Από τη πλευρά της πληροφορίας με έννοια "σημαντικότητα" του μεταφερόμενου μηνύματος, το ποσόν της πληροφορίας είναι αντίστροφα ανάλογο της πιθανότητας, που είχε το αποτέλεσμα του μηνύματος να συμβεί. Υπάρχει, δηλαδή, μια σχέση μεταξύ της ποσότητας πληροφορίας και της πιθανότητας του αποτελέσματος, η οποία περιγράφεται από την πληροφορία. Για καλύτερη κατανόηση δίνεται ακόλουθο παράδειγμα. ΠΑΡΑΔΕΙΓΜΑ Έστω ότι δύο μαθητές Α και Β δίνουν πανελλήνιες εξετάσεις, από τους οποίους ο μεν Α είναι αριστούχος μαθητής, ο δε Β μόλις περνάει τη βάση στο απολυτήριο. Διαβάζοντας τα αποτελέσματα βλέπει κανείς ότι ο μαθητής Α πέτυχε, ενώ ο μαθητής Β απέτυχε. Είναι φανερό ότι ένα τέτοιο μήνυμα δεν έχει σημασία μιας και ήταν αναμενόμενο, δηλαδή δεν περιέχει πληροφορία. Αντίθετα, αν διαβάζοντας τα αποτελέσματα έβλεπε ότι ο μαθητής Α απέτυχε, ενώ ο μαθητής Β πέτυχε, τότε το μήνυμα αυτό έχει πολλή πληροφορία, γιατί ήταν κάτι που δεν το περίμενε κανείς. Συνεπώς, όταν η πιθανότητα να συμβεί το αποτέλεσμα είναι μονάδα, τότε η ποσότητα της μεταφερόμενης πληροφορίας είναι μηδενική. Αυτό σημαίνει ότι δεν χρειάζεται η διαβίβαση του μηνύματος, αφού το αποτέλεσμα είναι βέβαιο ότι θα συμβεί. Αντίθετα, αν η πιθανότητα του αποτελέσματος να συμβεί είναι μηδενική (απόλυτη αβεβαιότητα), τότε η μεταφερόμενη πληροφορία είναι άπειρη. Δηλαδή η σχέση της ποσότητας πληροφορίας και της πιθανότητας είναι λογαριθμική: 45

2 I = Πληροφορία = - log p (5.) Από την πλευρά του μηχανικού των τηλεπικοινωνιών, η έννοια πληροφορία συνδέεται με την ποσότητα των μηνυμάτων και τη μετράει με μέτρο το χρόνο, που χρειάζεται για να στείλει ένα ή περισσότερα μηνύματα. Ας θεωρηθεί η εκπομπή ενός σήματος, που αφορά τον αίθριο καιρό "Α" ή το βροχερό καιρό "Β" και τα δύο σήματα θεωρούνται ισοπίθανα. Είναι φανερό ότι ένα δυαδικό ψηφίο χρειάζεται για την εκπομπή του σήματος, που περιγράφει τον καιρό. Στη συνέχεια, ας υποτεθεί ότι, ένα μήνυμα τεσσάρων ισοπίθανων καταστάσεων Α, Β, Γ και Δ πρέπει να μεταδοθεί. Αν οι καταστάσεις αυτές μεταδοθούν με δυαδικά ψηφία, τότε δύο δυαδικά ψηφία μπορούν να καθορίσουν καθεμία κατάσταση, δηλαδή δύο χρονικοί παλμοί είναι αρκετοί για την εκπομπή μιας από τις δύο καταστάσεις. Αυτό σημαίνει ότι χρειάζονται δύο ψηφία πληροφορίας και απαιτείται διπλάσιος χρόνος από ότι στην προηγούμενη περίπτωση. Ανάλογα, για την εκπομπή οκτώ ισοπίθανων γεγονότων, θα υπάρχουν τρία ψηφία πληροφορίας και απαιτείται τριπλάσιος χρόνος εκπομπής. Επομένως, αν υπάρχουν Ν ισοπίθανα αποτελέσματα, τότε θ' απαιτούνται log 2 N ψηφία πληροφορίας και, συνεπώς, η πληροφορία είναι λογαριθμική συνάρτηση της πιθανότητας του σήματος. Η βάση του λογαρίθμου καθορίζει τη μονάδα, που ορίζεται για την πληροφορία. Έτσι, όταν χρησιμοποιείται ο φυσικός λογάριθμος (natural), τότε η μονάδα είναι το nat, ενώ όταν χρησιμοποιείται ο δεκαδικός λογάριθμος, τότε η μονάδα είναι το Hartley ή dect. Συνήθως, ως βάση χρησιμοποιείται το δύο, οπότε η μονάδα πληροφορίας είναι το bt. Τέλος, όταν δύο ανεξάρτητα μηνύματα m και m 2 μεταφέρονται σωστά, τότε η ποσότητα της μεταφερόμενης πληροφορίας είναι το άθροισμα της μεταφερόμενης πληροφορίας από κάθε μήνυμα ξεχωριστά. 5.2 Μέση Πληροφορία ή Εντροπία Έστω ότι υπάρχουν Μ μηνύματα ανεξάρτητα m, m 2,..., m M με αντίστοιχες πιθανότητες εμφάνισης p, p 2,..., p M. Τότε, κατά τη μετάδοση μιας μεγάλης σειράς L μηνυμάτων, ο αριθμός εμφάνισης καθενός από τα παραπάνω μηνύματα είναι p L, p 2 L,..., p M L, αντίστοιχα. Έτσι, το συνολικό ποσό της μεταφερόμενης πληροφορίας είναι: 46

3 M I = p Llog p = L p log p M total 2 = = 2 (5.2) Τότε, μέση πληροφορία ή εντροπία Η ορίζεται το πηλίκο της συνολικής ποσότητας πληροφορίας προς τον αριθμό των μηνυμάτων, δηλαδή: H I M total = = p log p L 2 = bts/μήνυμα (5.3) Η εντροπία είναι ένα μέτρο της αβεβαιότητας των διαφόρων μηνυμάτων. Όσο μεγαλύτερη είναι η εντροπία, τόσο μεγαλύτερη είναι η αβεβαιότητα και, επομένως, τόσο μεγαλύτερη είναι η ποσότητα της μεταφερόμενης πληροφορίας. ΠΑΡΑΔΕΙΓΜΑΤΑ 2. Έστω ένα σήμα με δυαδικά ψηφία "0" και "", με πιθανότητες p(0) = /8 και p() = 7/8. Η ποσότητα πληροφορίας του κάθε ψηφίου είναι: I(0) = - log 2 p(0) = - log 2 (/8) = 3 και I() = - log 2 p() = - log 2 (7/8) = Έστω ότι υπάρχουν Μ ισοπίθανα και ανεξάρτητα μηνύματα και Ν είναι ακέραιος τέτοιος ώστε M = 2 N. Στην περίπτωση αυτή η πληροφορία κάθε μηνύματος είναι: I k = - log 2 p k = - log 2 (/M) = log 2 M = N bts. 4. Έστω τα μηνύματα Α, Β, Γ, Δ με αντίστοιχες πιθανότητες /2, /4, /8, /8. Η πληροφορία του μηνύματος X = ΒΔΑ, θεωρώντας ότι τα μηνύματα είναι ανεξάρτητα, είναι: I x = log log log 2 2 = 6 bts. 5. Υπολογίστε και σχεδιάστε την εντροπία ενός δυαδικού κώδικα, στον οποίο η πιθανότητα εμφάνισης του κάθε συμβόλου είναι p και q = - p, αντίστοιχα. 2 H = p log ( / p ) = plog ( / p) + ( p)log [ /( p)] =

4 Η γραφική παράσταση της μεταβολής της εντροπίας με την πιθανότητα p δίνεται στο παρακάτω σχήμα. Σημειώνεται ότι για p = 0 και p = η εντροπία μηδενίζεται, ενώ η μέγιστη τιμή της εμφανίζεται όταν p = q = 0.5, οπότε, η αντίστοιχη τιμή της μέσης πληροφορίας είναι bt/μήνυμα. Επιπλέον, όταν υπάρχουν Μ μηνύματα, μπορεί να αποδειχτεί ότι η μέση πληροφορία ανά μήνυμα γίνεται μέγιστη, όταν όλα τα μηνύματα είναι ισοπίθανα και η τιμή της εντροπίας είναι H max M = log M = log M. M 2 2 = 6. Να υπολογιστεί η εντροπία Η για τον τετραδικό κώδικα του Παραδείγματος 4 καθώς και την εντροπία στην περίπτωση, που τα τέσσερα μηνύματα είναι ισοπίθανα. α) H = = 2 23 log log log + + = 75. bts/μήνυμα β) H = 4 log 4= 2 bts/μήνυμα Ρυθμός Πληροφορίας Στα συστήματα τηλεπικοινωνιών, ο ρυθμός πληροφορίας ή μέσος ρυθμός παροχής πληροφορίας R ορίζεται από τη σχέση: R = r S H bts/sec (5.4) όπου r S είναι ο ρυθμός μετάδοσης μηνυμάτων (συμβόλων) και Η η μέση πληροφορία ανά μήνυμα. 48

5 ΠΑΡΑΔΕΙΓΜΑ 7 Μια διακριτή πηγή εκπέμπει ένα από τα πέντε μηνύματα κάθε msec. Αν οι πιθανότητες των μηνυμάτων είναι /2, /4, /8, /6 και /6, βρείτε την εντροπία της πηγής και το μέσο ρυθμό πληροφορίας. 5 H = p log ( / p ) = 875. bts/μήνυμα και R = 875 bts/sec. = Χωρητικότητα Καναλιού - Θεώρημα Shannon Στις τηλεπικοινωνίες κανάλι ορίζεται ο χώρος μετάδοσης της πληροφορίας ανάμεσα στον πομπό και στο δέκτη και χωρητικότητα καναλιού ονομάζεται η οριακή τιμή του ρυθμού μετάδοσης πληροφορίας μέσα από το κανάλι. Ο λόγος του ορισμού της χωρητικότητας καναλιού απορρέει από το παρακάτω θεώρημα (Θεώρημα Shannon), το οποίο είναι θεμελιώδες στη θεωρία των τηλεπικοινωνιών. Θεώρημα: Αν ο ρυθμός πληροφορίας R είναι μικρότερος ή το πολύ ίσος με τη χωρητικότητα C του καναλιού, δηλαδή R C (5.5) τότε, υπάρχει πάντα μια τεχνική κωδικοποίησης, έτσι ώστε να είναι δυνατή η μετάδοση πληροφορίας μέσα από το κανάλι με οσοδήποτε μικρή πιθανότητα σφάλματος. Αντίθετα, αν R > C, τότε δεν είναι δυνατή η μετάδοση μηνυμάτων χωρίς λάθη. Η εξίσωση (5.5) ισχύει ακόμα και στην περίπτωση, που υπάρχει θόρυβος στο κανάλι. 5.5 Χωρητικότητα ενός Καναλιού Κατανομής Gauss Στην πράξη για να είναι δυνατή η σύγκριση των διαφόρων ειδών συστημάτων τηλεπικοινωνιών, το κανάλι περιγράφεται σε σχέση με το εύρος ζώνης και το λόγο σήματος-προς-θόρυβο (SNR). Για το λόγο αυτό, υπάρχει το θεώρημα Hartley-Shannon, που αποτελεί συμπλήρωμα του θεωρήματος Shannon, και εφαρμόζεται σε κανάλι, του οποίου ο θόρυβος έχει κατανομή Gauss. 49

6 Θεώρημα: Η χωρητικότητα C ενός καναλιού εύρους ζώνης Β με προσθετικό θόρυβο με κατανομή Gauss περιορισμένου εύρους ζώνης δίνεται από τη σχέση: S C = Blog 2( + ) bts per second ή bps (5.6) N όπου S και N είναι οι μέσες ισχείς του σήματος και του θορύβου, αντίστοιχα, στην έξοδο του καναλιού. Το θεώρημα αυτό αν και περιορίζεται για την περίπτωση Gaussan θορύβου, η συνέπειά του είναι γενική, αφού στα περισσότερα συστήματα τηλεπικοινωνιών το κανάλι μπορεί να μοντελοποιηθεί από ένα Gaussan κανάλι. Επίσης, το θεώρημα εφαρμόζεται και σε διακριτά και σε συνεχή κανάλια. Τέλος, το παραπάνω θεώρημα έχει δύο σπουδαίες συνέπειες. Πρώτον, δίνει τη μέγιστη δυνατή τιμή του ρυθμού μετάδοσης αξιόπιστων δεδομένων μέσα από ένα Gaussan κανάλι. Έτσι, κάθε σχεδιασμός συστήματος πρέπει να γίνεται, έτσι ώστε η χωρητικότητα C να πλησιάζει την τιμή της εξίσωσης (5.6) μ έναν αποδεκτό ρυθμό σφαλμάτων. Η δεύτερη συνέπεια του θεωρήματος αυτού έχει να κάνει με την ανταλλαγή σήματος-προς-θόρυβο με το εύρος ζώνης. Για να γίνει κατανοητή η ανταλλαγή αυτή δίνεται το ακόλουθο παράδειγμα. ΠΑΡΑΔΕΙΓΜΑ 8 Να βρεθεί η απαιτούμενη χωρητικότητα καναλιού εύρους ζώνης B = 3 khz για την ασφαλή μεταφορά δεδομένων με ρυθμό 0 kbps. Επίσης, να υπολογίσετε τη μεταβολή του SNR, όταν το Β = 0 khz. Επειδή R = 0000 bps C 0000 bps. Όταν B = 3 khz SNR = 2 (C/B) - 9, ενώ όταν B = 0 khz SNR =. Δηλαδή, μια αύξηση του εύρους ζώνης από 3 khz σε 0 khz, οδηγεί σε μείωση του SNR από 9 σε. Στο παραπάνω παράδειγμα δόθηκε η κλειστή σχέση, που συνδέει την ποσότητα της μεταφερόμενης πληροφορίας, του εύρους ζώνης του καναλιού και του λόγου σήματος-προς-θόρυβο. Συγκεκριμένα, αύξηση του εύρους ζώνης μπορεί να εκμεταλλευθεί με ελάττωση του λόγου σήματος-προς-θόρυβο και, αντίστροφα, 50

7 ελάττωση του εύρους ζώνης πρέπει να πληρωθεί με αύξηση του λόγου σήματος-προςθόρυβο, για δεδομένη ποσότητα μεταφερόμενης πληροφορίας. Από το θεώρημα Hartley-Shannon φαίνεται ότι η χωρητικότητα του καναλιού τείνει στο άπειρο, καθώς το εύρος ζώνης Β τείνει στο άπειρο, για ένα κανάλι δίχως θόρυβο. Στην πράξη όμως, η χωρητικότητα του καναλιού δεν απειρίζεται καθώς το εύρος ζώνης τείνει στο άπειρο, αφού αύξηση του εύρους ζώνης έχει σαν συνέπεια την αύξηση της ισχύος του θορύβου. Συνεπώς, για ένα καθορισμένο σήμα ισχύος με την παρουσία Gaussan θορύβου, η χωρητικότητα του καναλιού πλησιάζει ένα άνω όριο καθώς το εύρος ζώνης αυξάνει. Στο Παράδειγμα 9 υπολογίζεται το όριο αυτό. ΠΑΡΑΔΕΙΓΜΑΤΑ 9. Να υπολογιστεί το όριο της εξίσωσης (5.6), καθώς το εύρος ζώνης αυξάνει πλησιάζοντας το άπειρο. Χρησιμοποιώντας τη σχέση N = nβ στην εξίσωση (5.6), η τελευταία γράφεται: S S nb S S S nb S C = Blog ( + ) = log ( + ) = log [( + ) ] 2 nb n S 2 nb n 2 nb όπου n είναι η πυκνότητα του φάσματος ισχύος του θορύβου. Η τελευταία σχέση με την αντικατάσταση x = S/nB γράφεται: C S x = log [( + x) ] n 2 η οποία για B + δίνει: x lm C S S S ln e S = log lm ( + x) = log e = 44. (bps) (5.7) n 2 x 0 n 2 n ln2 n B 0. Υπολογίστε τη χωρητικότητα ενός καναλιού χαμηλών συχνοτήτων με διαθέσιμο εύρος ζώνης 3000 Hz και λόγο σήματος-προς-θόρυβο SNR = 0 3 στην έξοδό του. Υποτίθεται ότι ο θόρυβος του καναλιού είναι Gaussan. 5

8 Η χωρητικότητα του καναλιού C δίνεται από την εξίσωση (5.6): C = S Blog ( + ) N = 3000 log ( + 000) bps. Υπολογίστε τη χωρητικότητα ενός καναλιού με κατανομή θορύβου τύπου Gauss, εύρος ζώνης MHz και λόγο σήματος-προς-θόρυβο SNR = 30 db. Στη συνέχεια, υπολογίστε το χρόνο που χρειάζεται για τη μετάδοση ενός εκατομμυρίου χαρακτήρων ASCII με το παραπάνω κανάλι. (Σημειώνεται ότι στον κώδικα ASCII κάθε χαρακτήρας είναι κωδικοποιημένος σε δυαδικά ψηφία των 8-bts). Η χωρητικότητα του καναλιού C δίνεται από τη σχέση (5.6): S 6 30/0 6 C = Blog ( + ) = 0 log ( + 0 ) bps 2 N 2 Ο χρόνος, που χρειάζεται για τη μετάδοση του ενός εκατομμυρίου χαρακτήρων, δίνεται από το λόγο του συνολικού αριθμού των bts προς τη χωρητικότητα του καναλιού, ουσιαστικά του αντίστροφου του ρυθμού μετάδοσης δεδομένων, δηλαδή: T H H bts = = = = = r R C 6. sec bps S 2. Ένα Gaussan κανάλι έχει εύρος ζώνης 4 khz και πυκνότητα φάσματος ισχύος ίση με 0-4 W/Hz. Αν η ισχύς του σήματος στη λήψη πρέπει να είναι τουλάχιστον mw, υπολογίστε τη χωρητικότητα του καναλιού. C kbps S S 3 0 B log ( ) log 4 0 log ( ) = B 2 + = N ( / 2)2 n B = 3 52

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 1: Χωρητικότητα Καναλιών Το θεώρημα Shannon - Hartley Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Δυαδική σηματοδοσία 2. Μορφές δυαδικής σηματοδοσίας 3.

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 9 : Κανάλι-Σύστημα Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Χωρητικότητα Χ ό καναλιού Το Gaussian κανάλι επικοινωνίας Τα διακριτά

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 5 : Θόρυβος Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Είδη θορύβου Περιγραφή θορύβου Θεώρημα Shannon Hartley Απόδοση ισχύος και εύρους

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Χωρητικότητα Καναλιού Χωρητικότητα Καναλιού Η θεωρία πληροφορίας περιλαμβάνει μεταξύ άλλων: κωδικοποίηση πηγής κωδικοποίηση καναλιού Κωδικοποίηση πηγής: πόση

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 2 : Πληροφορία και Εντροπία Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Πληροφορία Μέτρο πληροφορίας Μέση πληροφορία ή Εντροπία Από κοινού εντροπία

Διαβάστε περισσότερα

Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών»

Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Ασκήσεις στο µάθηµα «Επισκόπηση των Τηλεπικοινωνιών» Άσκηση 1 Πρόκειται να µεταδώσουµε δυαδικά δεδοµένα σε RF κανάλι µε. Αν ο θόρυβος του καναλιού είναι Gaussian - λευκός µε φασµατική πυκνότητα W, να βρεθεί

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση

Ψηφιακές Τηλεπικοινωνίες. Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση Ψηφιακές Τηλεπικοινωνίες Πιθανότητα Σφάλματος για Δυαδική Διαμόρφωση Σύνδεση με τα Προηγούμενα Σχεδιάστηκε ο βέλτιστος δέκτης για κανάλι AWGN Επειδή πάντοτε υπάρχει ο θόρυβος, ακόμη κι ο βέλτιστος δέκτης

Διαβάστε περισσότερα

Ασκήσεις C B (2) SNR 10log( SNR) 10log(31) 14.91dB ΑΣΚΗΣΗ 1

Ασκήσεις C B (2) SNR 10log( SNR) 10log(31) 14.91dB ΑΣΚΗΣΗ 1 Ασκήσεις ΑΣΚΗΣΗ 1 Ένα ψηφιακό κανάλι πρέπει να έχει χωρητικότητα 25Mbps. Το ίδιο κανάλι έχει φάσμα μεταξύ 19 ΜΗz και 24 ΜΗz. Α)Ποιος είναι ο απαιτούμενος λόγος σήματος προς θόρυβο σε db για να λειτουργήσει

Διαβάστε περισσότερα

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης

Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Εθνικό και Καποδιστριακό Πανεπιστήμιο Αθηνών Τμήμα Φυσικής Εισαγωγή στα Συστήματα Τηλεπικοινωνιών Συστήματα Παλμοκωδικής Διαμόρφωσης Καθηγητής Ι. Τίγκελης itigelis@phys.uoa.gr ΚΒΑΝΤΙΣΗ Διαδικασία με την

Διαβάστε περισσότερα

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I

Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Επικοινωνίες I Δημήτρης Ευσταθίου Επίκουρος Καθηγητής ΘΟΡΥΒΟΣ ΣΕ ΔΕΚΤΕΣ ΛΟΓΟΣ ΣΗΜΑΤΟΣ ΠΡΟΣ ΘΟΡΥΒΟ (SIGAL TO OISE RATIO, ) - ΒΑΣΙΚΟ

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών

Συστήματα Επικοινωνιών Συστήματα Επικοινωνιών Ενότητα 3: Σύγκριση ψηφιακών Συστημάτων Σαγκριώτης Εμμανουήλ Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Σκοποί ενότητας 1. Ανάδειξη τεχνικών για τη σύγκριση των

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Θεωρία Πληροφορίας: Κωδικοποίηση Πηγής Ψηφιακή Μετάδοση Υπάρχουν ιδιαίτερα εξελιγμένες τεχνικές αναλογικής μετάδοσης (που ακόμη χρησιμοποιούνται σε ορισμένες εφαρμογές) Επίσης,

Διαβάστε περισσότερα

Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών

Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών 1.1 Βασικές μετατροπές Εργαστήριο 1: Αρχές Κινητών Επικοινωνιών Όταν μας ενδιαφέρει ο υπολογισμός μεγεθών σχετικών με στάθμες ισχύος εκπεμπόμενων σημάτων, γίνεται χρήση και της λογαριθμικής κλίμακας με

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 (2012-13) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #4. Έκδοση v2 με διόρθωση τυπογραφικού λάθους στο ερώτημα 6.3 Στόχος: Βασικό στόχο της 4 ης εργασίας αποτελεί η εξοικείωση με τα μέτρα ποσότητας πληροφορίας τυχαίων

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 10: Παλμοκωδική Διαμόρφωση, Διαμόρφωση Δέλτα και Πολύπλεξη Διαίρεσης Χρόνου Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Παλμοκωδική Διαμόρφωση (PCM) Παλμοκωδική Διαμόρφωση

Διαβάστε περισσότερα

Μοντέλο Επικοινωνίας Δεδομένων. Επικοινωνίες Δεδομένων Μάθημα 6 ο

Μοντέλο Επικοινωνίας Δεδομένων. Επικοινωνίες Δεδομένων Μάθημα 6 ο Μοντέλο Επικοινωνίας Δεδομένων Επικοινωνίες Δεδομένων Μάθημα 6 ο Εισαγωγή Με τη βοήθεια επικοινωνιακού σήματος, κάθε μορφή πληροφορίας (κείμενο, μορφή, εικόνα) είναι δυνατόν να μεταδοθεί σε απόσταση. Ανάλογα

Διαβάστε περισσότερα

Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου

Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου Ευρυζωνικά δίκτυα (2) Αγγελική Αλεξίου alexiou@unipi.gr 1 Σήματα και πληροφορία Βασικές έννοιες 2 Αναλογικά και Ψηφιακά Σήματα Στις τηλεπικοινωνίες συνήθως χρησιμοποιούμε περιοδικά αναλογικά σήματα και

Διαβάστε περισσότερα

Δεύτερη Σειρά Ασκήσεων

Δεύτερη Σειρά Ασκήσεων Δεύτερη Σειρά Ασκήσεων ΑΣΚΗΣΗ 1 Από ένα αθόρυβο κανάλι 4 khz παίρνουμε δείγματα κάθε 1 msec. - Ποιος είναι ο μέγιστος ρυθμός μετάδοσης δεδομένων; - Πώς μεταβάλλεται ο μέγιστος ρυθμός μετάδοσης δεδομένων

Διαβάστε περισσότερα

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015

EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια. Παράδοση: Έως 22/6/2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 13 Δ. Τουμπακάρης 30 Μαΐου 2015 EE728 (22Α004) - Προχωρημένα Θέματα Θεωρίας Πληροφορίας 3η σειρά ασκήσεων Διακριτά και Συνεχή Κανάλια Παράδοση:

Διαβάστε περισσότερα

Εισαγωγή. Λύση: Λύση:

Εισαγωγή. Λύση: Λύση: Εισαγωγή 1. Μία συλλογή πέντε δρομολογητών πρόκειται να συνδεθεί με ένα υποδίκτυο σημείου προς σημείο. Μεταξύ κάθε ζεύγους δρομολογητών, οι σχεδιαστές μπορούν να τοποθετήσουν είτε μια γραμμή υψηλής ταχύτητας

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣΟΡ Κεφάλαιο 1 : Εισαγωγή στη Θεωρία ωία Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Ομιλίας Έννοια της πληροφορίας Άλλες βασικές έννοιες Στόχος

Διαβάστε περισσότερα

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ, ΔΙΚΤΥΑ & ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΚΕΦΑΛΑΙΟ 2ο ΑΝΑΛΟΓΙΚΑ - ΨΗΦΙΑΚΑ ΣΗΜΑΤΑ & ΑΡΧΕΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Πληροφορία Επικοινωνία συντελείται με τη μεταβίβαση μηνυμάτων από ένα πομπό σε ένα δέκτη. Μήνυμα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 3 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

ΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ

ΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ ΕΙΣ. ΣΥΣΤ. ΕΠΙΚΟΙΝΩΝΙΩΝ 011-1 16/1/011 9:45:1 µµ ΣΥΓΚΡΙΣΗ ΕΠΙ ΟΣΕΩΝ ΨΗΦΙΑΚΩΝ ΚΑΝΑΛΙΩΝ & ΟΡΙΑ ΤΗΣ ΛΕΙΤΟΥΡΓΙΑΣ ΑΥΤΩΝ ΑΠΑΙΤΗΣΕΙΣ ΣΕ ΕΥΡΟΣ ΖΩΝΗΣ ΤΩΝ ΣΥΣΤΗΜΑΤΩΝ ΙΑΒΙΒΑΣΗΣ ΙΑΚΡΙΤΩΝ Ε ΟΜΕΝΩΝ Η ΣΧΕΣΗ ΜΕΤΑΞΥ ΕΥΡΟΥΣ

Διαβάστε περισσότερα

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης

Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ακαδημαϊκό Έτος 009-010 Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ η Εργαστηριακή Άσκηση: Εξομοίωση Τηλεπικοινωνιακού Συστήματος Βασικής Ζώνης Στην άσκηση

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 7: Θεωρία πληροφορίας Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα.

Διαβάστε περισσότερα

ΦΡΟΝ ΑΣΚΗΣΕΙΣ-2 ΕΙΣΑΓ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΦΡΟΝ ΑΣΚΗΣΕΙΣ-2 ΕΙΣΑΓ. ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Πρόβλημα 24 a. Να υπολογίσετε το δείκτη d 2 min/eb για ένα 16-QAM. b. Να υπολογίσετε το [(d 2 min/eb)16qam/(d 2 min/eb)qpsk]db. c. Αν θεωρήσουμε ότι το μέγεθος των αστερισμών του Ερωτήματος b) έχουν επιλεγεί

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Wepage: http://eclass.uop.gr/courses/tst233

Διαβάστε περισσότερα

Θεωρία της Πληροφορίας 3 ο Εξάμηνο

Θεωρία της Πληροφορίας 3 ο Εξάμηνο Σμήμα Πληροφορικής & Επικοινωνιών Θεωρία της Πληροφορίας 3 ο Εξάμηνο Τομέας Τηλεπικοινωνιών και Δικτύων Δρ. Αναστάσιος Πολίτης Καθηγητής Εφαρμογών 1 Διεξαγωγή και Εξέταση του Μαθήματος Μάθημα Πώς? 13 Διαλέξεις.

Διαβάστε περισσότερα

Βασικές λειτουργίες Ανίχνευση πλαισίων Τι κάνει το επίπεδο ζεύξης Χρησιμοποιεί τις υπηρεσίες του φυσικού επιπέδου, ήτοι την (ανασφαλή) μεταφορά δεδομέ

Βασικές λειτουργίες Ανίχνευση πλαισίων Τι κάνει το επίπεδο ζεύξης Χρησιμοποιεί τις υπηρεσίες του φυσικού επιπέδου, ήτοι την (ανασφαλή) μεταφορά δεδομέ Αρχές σχεδιασμού, μοντέλα αναφοράς, τυποποίηση Μιλτιάδης Αναγνώστου 19 Μαΐου 2011 1/41 Βασικές λειτουργίες Ανίχνευση πλαισίων Επίδραση του θορύβου Παραδείγματα 2/41 Βασικές λειτουργίες Ανίχνευση πλαισίων

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Ψηφιακή μετάδοση στη βασική ζώνη + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ +

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα ΙΙ

Τηλεπικοινωνιακά Συστήματα ΙΙ Τηλεπικοινωνιακά Συστήματα ΙΙ Διάλεξη 11: Κωδικοποίηση Πηγής Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Αλγόριθμοι κωδικοποίησης πηγής Αλγόριθμος Fano Αλγόριθμος Shannon Αλγόριθμος Huffman

Διαβάστε περισσότερα

Μέρος Β - Δίκτυα. Ασκήσεις I. Ποιος ο ρόλος του πομπού και του δέκτη στο μοντέλο επικοινωνίας που α- πεικονίζεται στο σχήμα που ακολουθεί; Μ Δεδομένα

Μέρος Β - Δίκτυα. Ασκήσεις I. Ποιος ο ρόλος του πομπού και του δέκτη στο μοντέλο επικοινωνίας που α- πεικονίζεται στο σχήμα που ακολουθεί; Μ Δεδομένα Μέρος Β - Δίκτυα 1 η Διδακτική Ενότητα Μοντέλο επικοινωνίας δεδομένων - Κώδικες - Σήματα Προβλεπόμενες διδακτικές ώρες: 1 Λέξεις Κλειδιά ASCII BCD Unicode αναλογικό σήμα ΕΛΟΤ-928 επικοινωνία δεδομένων

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ ΕΒΔΟΜΟ ΣΥΣΤΗΜΑΤΑ ΠΑΛΜΟΚΩΔΙΚΗΣ ΔΙΑΜΟΡΦΩΣΗΣ

ΚΕΦΑΛΑΙΟ ΕΒΔΟΜΟ ΣΥΣΤΗΜΑΤΑ ΠΑΛΜΟΚΩΔΙΚΗΣ ΔΙΑΜΟΡΦΩΣΗΣ ΚΕΦΑΛΑΙΟ ΕΒΔΟΜΟ ΣΥΣΤΗΜΑΤΑ ΠΑΛΜΟΚΩΔΙΚΗΣ ΔΙΑΜΟΡΦΩΣΗΣ 7.1 Εισαγωγή Η κατηγορία των συστημάτων διαμόρφωσης του κεφαλαίου αυτού χρησιμοποιείται για τη μετάδοση σημάτων, που είναι διακριτά όχι μόνο στο χρόνο

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας.

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΠΑΡΑΣΚΕΥΗ 06/05/016 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΘΕΜΑ 1 ο ΕΝΔΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΉΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25 e-ail:

Διαβάστε περισσότερα

Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών)

Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών) Παράμετροι σχεδίασης παλμών (Μορφοποίηση παλμών) Κύριοι παράμετροι στη σχεδίαση παλμών είναι (στο πεδίο συχνοτήτων): Η Συχνότητα του 1ου μηδενισμού (θέλουμε μικρό BW). H ελάχιστη απόσβεση των πλαγίων λοβών

Διαβάστε περισσότερα

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων

Χρήστος Ξενάκης. Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων ΘΕΩΡΙΑ ΠΛΗΡΟΦΟΡΙΑΣ Κεφάλαιο 3 : Πηγές Πληροφορίας Χρήστος Ξενάκης Πανεπιστήμιο Πειραιώς, Τμήμα Ψηφιακών Συστημάτων Περιεχόμενα Διακριτές Πηγές Πληροφορίας χωρίς μνήμη Ποσότητα πληροφορίας της πηγής Κωδικοποίηση

Διαβάστε περισσότερα

Μετάδοση σήματος PCM

Μετάδοση σήματος PCM Μετάδοση σήματος PCM Θόρυβος κατά τη μετάδοση Εύρος ζώνης μετάδοσης Το (διαμορφωμένο) σήμα PCM όταν μεταδίδεται μέσω του διαύλου είναι ένα σήμα συνεχούς χρόνου και έχει το δικό του εύρος ζώνης Το εύρος

Διαβάστε περισσότερα

Εισαγωγή στη θεωρία πληροφορίας

Εισαγωγή στη θεωρία πληροφορίας Θεωρία πληροφορίας Εισαγωγή στη θεωρία πληροφορίας Τηλεπικοινωνιακά συστήματα Όλα τα τηλεπικοινωνιακά συστήματα σχεδιάζονται για να μεταφέρουν πληροφορία Σε κάθε τηλεπικοινωνιακό σύστημα υπάρχει μια πηγή

Διαβάστε περισσότερα

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER

4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER 4. ΚΕΦΑΛΑΙΟ ΕΦΑΡΜΟΓΕΣ ΤΟΥ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΥ FOURIER Σκοπός του κεφαλαίου είναι να παρουσιάσει μερικές εφαρμογές του Μετασχηματισμού Fourier (ΜF). Ειδικότερα στο κεφάλαιο αυτό θα περιγραφούν έμμεσοι τρόποι

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΉΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 7 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s5 e-mail:

Διαβάστε περισσότερα

1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. / 2. Οι όροι Eb. και Ec

1 η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. / 2. Οι όροι Eb. και Ec Τµήµα Μηχανικών Υπολογιστών, Τηλεπικοινωνιών και ικτύων ΗΥ 44: Ασύρµατες Επικοινωνίες Εαρινό Εξάµηνο -3 ιδάσκων: Λέανδρος Τασιούλας η ΣΕΙΡΑ ΑΣΚΗΣΕΩΝ. Θεωρήστε ένα κυψελωτό σύστηµα, στο οποίο ισχύει το

Διαβάστε περισσότερα

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΦΥΣΙΚΗΣ ΤΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ ΣΗΜΕΙΩΣΕΙΣ ΤΟΥ ΜΑΘΗΜΑΤΟΣ ΕΙΣΑΓΩΓΗ ΣΤΑ ΣΥΣΤΗΜΑΤΑ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Ιωάννης Γ. Τίγκελης και Δημήτριος Ι. Φραντζεσκάκης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 4: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Θεωρητικές Ασκήσεις (# ): ειγµατοληψία, κβαντοποίηση και συµπίεση σηµάτων. Στην τηλεφωνία θεωρείται ότι το ουσιαστικό περιεχόµενο της

Διαβάστε περισσότερα

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1

Θεωρία πληροφοριών. Τεχνολογία Πολυµέσων 07-1 Θεωρία πληροφοριών Εισαγωγή Αµοιβαία πληροφορία Εσωτερική πληροφορία Υπό συνθήκη πληροφορία Παραδείγµατα πληροφορίας Μέση πληροφορία και εντροπία Παραδείγµατα εντροπίας Εφαρµογές Τεχνολογία Πολυµέσων 07-

Διαβάστε περισσότερα

2 η Εργαστηριακή Άσκηση

2 η Εργαστηριακή Άσκηση Πανεπιστήμιο Πατρών Τμήμα Μηχ. Η/Υ & Πληροφορικής Ψ Η Φ Ι Α Κ Ε Σ Τ Η Λ Ε Π Ι Κ Ο Ι Ν Ω Ν Ι ΕΣ 2 η Εργαστηριακή Άσκηση Σύγκριση Ομόδυνων Ζωνοπερατών Συστημάτων 8-PSK και 8-FSK Στην άσκηση αυτή καλείστε

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ. Εργαστήριο 8 ο. Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 8 ο Αποδιαμόρφωση PAM-PPM με προσαρμοσμένα φίλτρα Βασική Θεωρία Σε ένα σύστημα μετάδοσης

Διαβάστε περισσότερα

Δυαδικά Αντίποδα Σήματα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Πιθανότητα Σφάλματος σε AWGN Κανάλι. r s n E n. P r s P r s.

Δυαδικά Αντίποδα Σήματα. Προχωρημένα Θέματα Τηλεπικοινωνιών. Πιθανότητα Σφάλματος σε AWGN Κανάλι. r s n E n. P r s P r s. Προχωρημένα Θέματα Τηλεπικοινωνιών Πιθανότητα Σφάλματος σε AWGN Κανάλι Δυαδικά Αντίποδα Σήματα Δυαδικά Αντίποδα Σήματα Βασικής Ζώνης) : s (t)=-s (t) Παράδειγμα: Δυαδικό PA s (t)=g T (t) (παλμός με ενέργεια

Διαβάστε περισσότερα

ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ. Δίκτυα Υπολογιστών. Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα»

ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ. Δίκτυα Υπολογιστών. Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα» ΤΕΙ Στερεάς Ελλάδας Τμ. Ηλ.γων Μηχ/κων ΤΕ Δίκτυα Υπολογιστών Διάλεξη 2: Επίπεδο 1 «φυσικό στρώμα» Φυσικό στρώμα: Προσδιορίζει τις φυσικές διεπαφές των συσκευών Μηχανικό Ηλεκτρικό Λειτουργικό Διαδικαστικό

Διαβάστε περισσότερα

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ` Εφαρμογές της Θεωρίας Πληροφορίας στην ασφάλεια δικτύων ` ΦΟΙΤΗΤΡΙΑ: Καμπανά Νεκταρία ΜΕ/08051

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ` Εφαρμογές της Θεωρίας Πληροφορίας στην ασφάλεια δικτύων ` ΦΟΙΤΗΤΡΙΑ: Καμπανά Νεκταρία ΜΕ/08051 ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΑ ΤΜΗΜΑ ΔΙΔΑΚΤΙΚΗΣ ΤΗΣ ΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΨΗΦΙΑΚΩΝ ΣΥΣΤΗΜΑΤΩΝ (ΠΜΣ) ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ` Εφαρμογές της Θεωρίας Πληροφορίας στην ασφάλεια δικτύων ` ΦΟΙΤΗΤΡΙΑ: Καμπανά Νεκταρία ΜΕ/0805 ΕΠΙΒΛΕΠΩΝ

Διαβάστε περισσότερα

ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα. λ από τον ρυθμό μετάδοσής της. Υποθέτοντας ότι ο κόμβος A

ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα. λ από τον ρυθμό μετάδοσής της. Υποθέτοντας ότι ο κόμβος A ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα 1. Στο δίκτυο

Διαβάστε περισσότερα

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1

Ήχος. Τεχνολογία Πολυμέσων και Πολυμεσικές Επικοινωνίες 04-1 Ήχος Χαρακτηριστικά του ήχου Ψηφιοποίηση με μετασχηματισμό Ψηφιοποίηση με δειγματοληψία Κβαντοποίηση δειγμάτων Παλμοκωδική διαμόρφωση Συμβολική αναπαράσταση μουσικής Τεχνολογία Πολυμέσων και Πολυμεσικές

Διαβάστε περισσότερα

Καναλιού. Καναλιού. Προχωρημένα Θέματα Τηλεπικοινωνιών. Κατηγορίες Κωδικών Καναλιού. Τι πετυχαίνει η Κωδ. Καναλιού. Κωδικοποίηση Καναλιού.

Καναλιού. Καναλιού. Προχωρημένα Θέματα Τηλεπικοινωνιών. Κατηγορίες Κωδικών Καναλιού. Τι πετυχαίνει η Κωδ. Καναλιού. Κωδικοποίηση Καναλιού. Προχωρημένα Θέματα Τηλεπικοινωνιών Πηγή Δεδομένων Κωδικοποίηση Καναλιού Κώδικας Πηγής Κώδικας Καναλιού Διαμόρφωση Κανάλι Δέκτης Δεδομένων Αποκωδ/ση Πηγής Αποκωδ/ση Καναλιού Αποδιαμόρφωση Κωδικοποίηση Καναλιού

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες

Ψηφιακές Τηλεπικοινωνίες Ψηφιακές Τηλεπικοινωνίες Ενότητα: Ασκήσεις Αυτοαξιολόγησης Καθηγητής Κώστας Μπερμπερίδης Εργαστήριο Επεξεργασίας Σημάτων και Τηλεπικοινωνιών Τμήμα Μηχανικών Η/Υ και Πληροφορικής Περιεχόμενα Σκοπός Ενότητας

Διαβάστε περισσότερα

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής

Τεχνολογία Πολυμέσων. Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Τεχνολογία Πολυμέσων Ενότητα # 4: Ήχος Διδάσκων: Γεώργιος Ξυλωμένος Τμήμα: Πληροφορικής Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού έργου του διδάσκοντα. Το

Διαβάστε περισσότερα

ΔΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα

ΔΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ ΚΑΙ ΜΗΧ. ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΕΠΙΚΟΙΝΩΝΙΩΝ, ΗΛΕΚΤΡΟΝΙΚΗΣ ΚΑΙ ΣΥΣΤΗΜΑΤΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΚΤΥΑ ΕΠΙΚΟΙΝΩΝΙΩΝ Ασκήσεις για το φυσικό στρώμα 1. Μήνυμα μήκους

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση BPSK & QPSK

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ ΜΔΕ Προηγμένα Τηλεπικοινωνιακά Συστήματα και Δίκτυα Διάλεξη 4 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/tst25

Διαβάστε περισσότερα

Τηλεπικοινωνίες. Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ

Τηλεπικοινωνίες. Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων. Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Τηλεπικοινωνίες Ενότητα 5: Ψηφιακή Μετάδοση Αναλογικών Σημάτων Μιχάλας Άγγελος Τμήμα Μηχανικών Πληροφορικής ΤΕ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για

Διαβάστε περισσότερα

Ψηφιακή Επεξεργασία Σημάτων

Ψηφιακή Επεξεργασία Σημάτων Ψηφιακή Επεξεργασία Σημάτων Ενότητα 7: Μετατροπή Σήματος από Αναλογική Μορφή σε Ψηφιακή Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Μετατροπή Αναλογικού Σήματος σε Ψηφιακό Είδη Δειγματοληψίας: Ιδανική

Διαβάστε περισσότερα

ΘΕΜΑΤΑ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ

ΘΕΜΑΤΑ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Αντικείμενο: Δειγματοληψία ΘΕΜΑΤΑ ΠΟΛΛΑΠΛΗΣ ΕΠΙΛΟΓΗΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΕΣ Έστω οτι το σήμα x()=sinc(4) δειγματοληπτείται με συχνότητα δειγματοληψίας διπλάσια της συχνότητας Nyquis και κβαντίζεται με ομοιόμορφη

Διαβάστε περισσότερα

Θέματα Συστημάτων Πολυμέσων

Θέματα Συστημάτων Πολυμέσων Θέματα Συστημάτων Πολυμέσων Ενότητα # 6: Στοιχεία Θεωρίας Πληροφορίας Διδάσκων: Γεώργιος K. Πολύζος Τμήμα: Μεταπτυχιακό Πρόγραμμα Σπουδών Επιστήμη των Υπολογιστών Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 9 ο : Διαμόρφωση BPSK & QPSK Βασική Θεωρία Εισαγωγή Κατά την μετάδοση ψηφιακών δεδομένων

Διαβάστε περισσότερα

Αρχές Τηλεπικοινωνιών

Αρχές Τηλεπικοινωνιών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Αρχές Τηλεπικοινωνιών Ενότητα #12: Δειγματοληψία, κβαντοποίηση και κωδικοποίηση Χ. ΚΑΡΑΪΣΚΟΣ Τμήμα Μηχανικών Αυτοματισμών Τ.Ε.

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ Ι Μπατιστάτος Μιχάλης Εργαστήριο ο : Διαμόρφωση ΑΜ Βασική Θεωρία Εισαγωγή

Διαβάστε περισσότερα

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ

- ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ ΚΕΦΑΛΑΙΟ ο: ΣΥΝΑΡΤΗΣΕΙΣ - ΟΡΙΟ - ΣΥΝΕΧΕΙΑ ΣΥΝΑΡΤΗΣΗΣ ΕΝΟΤΗΤΑ 6: ΜΗ ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΣΤΟ R - ΟΡΙΟ ΣΥΝΑΡΤΗΣΗΣ ΣΤΟ ΑΠΕΙΡΟ - ΠΕΠΕΡΑΣΜΕΝΟ ΟΡΙΟ ΑΚΟΛΟΥΘΙΑΣ [Κεφ..6: Μη Πεπερασμένο Όριο στο R - Κεφ..7: Όρια Συνάρτησης

Διαβάστε περισσότερα

Nέες Τεχνολογίες. στις Επικοινωνίες

Nέες Τεχνολογίες. στις Επικοινωνίες Τεχνολογικό Εκπαιδευτικό Ίδρυμα Σερρών Τμήμα Πληροφορικής & Επικοινωνιών Nέες Τεχνολογίες στις Επικοινωνίες Δρ. Δημήτριος Ευσταθίου Επίκουρος Καθηγητής Κώδικες Διόρθωσης Λαθών Τεχνολογικό Εκπαιδευτικό

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 14 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: hp://ecla.uop.gr/coure/s15 e-mail:

Διαβάστε περισσότερα

Λύσεις Θεµάτων Εξεταστικής Ιανουαρίου 2009 Mάθηµα: «Ψηφιακές Επικοινωνίες» G F = 0.8 T F = 73 0 K

Λύσεις Θεµάτων Εξεταστικής Ιανουαρίου 2009 Mάθηµα: «Ψηφιακές Επικοινωνίες» G F = 0.8 T F = 73 0 K Λύσεις Θεµάτων Εξεταστικής Ιανουαρίου 9 Mάθηµα: «Ψηφιακές Επικοινωνίες» Θέµα 1 ο (3%) A =6 o K P R = 1pWatt SNR IN G LNA =13dB LNA =3 K LNA G F =.8 F = 73 K Φίλτρο G = db F = 8 db Ενισχυτής IF SNR OU 1.

Διαβάστε περισσότερα

22Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Τελική Εξέταση

22Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Τελική Εξέταση 22A004 (eclass EE278) Προχωρημένα Θέματα Θεωρίας Πληροφορίας Φυλλάδιο 11 Δ. Τουμπακάρης 6 Ιουνίου 2013 22Α004 - Προχωρημένα Θέματα Θεωρίας Πληροφορίας Τελική Εξέταση Διάρκεια Εξέτασης: 3 ώρες. 4 ασκήσεις

Διαβάστε περισσότερα

Ειδικά Θέματα Ηλεκτρονικών 1

Ειδικά Θέματα Ηλεκτρονικών 1 Ειδικά Θέματα Ηλεκτρονικών 1 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ 3...2 ΑΠΟΚΡΙΣΗ ΣΥΧΝΟΤΗΤΑΣ ΕΝΙΣΧΥΤΩΝ...2 3.1 Απόκριση συχνότητας ενισχυτών...2 3.1.1 Παραμόρφωση στους ενισχυτές...5 3.1.2 Πιστότητα των ενισχυτών...6 3.1.3

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση Μετάδοση πληροφορίας - Διαμόρφωση MYE006: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Διάρθρωση μαθήματος Μετάδοση Βασικές έννοιες Διαμόρφωση ορισμός είδη

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΕΛΛΗΝΙΚΟ ΑΝΟΙΚΤΟ ΠΑΝΕΠΙΣΤΗΜΙΟ Θ.Ε. ΠΛΗ22 (2012-13) ΓΡΑΠΤΗ ΕΡΓΑΣΙΑ #5 Στόχος Βασικό στόχο της 5 ης εργασίας αποτελεί η εξοικείωση με τις έννοιες και τα μέτρα επικοινωνιακών καναλιών (Κεφάλαιο 3), καθώς και με έννοιες και τεχνικές της

Διαβάστε περισσότερα

Μετάδοση πληροφορίας - Διαμόρφωση

Μετάδοση πληροφορίας - Διαμόρφωση ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΜΗΧ. Η/Υ & ΠΛΗΡΟΦΟΡΙΚΗΣ Μετάδοση πληροφορίας - Διαμόρφωση MYE006-ΠΛΕ065: ΑΣΥΡΜΑΤΑ ΔΙΚΤΥΑ Ευάγγελος Παπαπέτρου Διάρθρωση μαθήματος Βασικές έννοιες μετάδοσης Διαμόρφωση ορισμός

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΨΗΦΙΑΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ Εργαστήριο 6 ο : Διαμόρφωση Θέσης Παλμών Βασική Θεωρία Μ-αδική Διαμόρφωση Παλμών Κατά την μετατροπή

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 7 ο : Διαμόρφωση Θέσης Παλμών

Διαβάστε περισσότερα

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ

ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ ΦΙΛΤΡΑ ΜΕ ΠΑΘΗΤΙΚΑ ΣΤΟΙΧΕΙΑ Τα φίλτρα είναι ηλεκτρικά δικτυώματα που αφήνουν να περνούν απαραμόρφωτα ηλεκτρικά σήματα μέσα σε συγκεκριμένες ζώνες συχνοτήτων και ταυτόχρονα μηδενίζουν κάθε άλλο ηλεκτρικό

Διαβάστε περισσότερα

ΕΑΠ/ΠΛΗ22/ΑΘΗ-3. 3 η ΟΣΣ

ΕΑΠ/ΠΛΗ22/ΑΘΗ-3. 3 η ΟΣΣ ΕΑΠ/ΠΛΗ22/ΑΘΗ-3 3 η ΟΣΣ 04.02.207 Ν.Δημητρίου Σημείωση: Η παρουσίαση αυτή είναι συμπληρωματική της ύλης των βιβλίων (τόμος Β / μέρη Α,Β και τόμος Α ) καθώς και των 2 παρουσιάσεων στο study.eap.gr (oss3_plh22_digicomms_207,

Διαβάστε περισσότερα

Τρίτη Σειρά Ασκήσεων ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 1 ΛΥΣΗ ΑΣΚΗΣΗ 2

Τρίτη Σειρά Ασκήσεων ΑΣΚΗΣΗ 1 ΑΣΚΗΣΗ 1 ΛΥΣΗ ΑΣΚΗΣΗ 2 Τρίτη Σειρά Ασκήσεων ΑΣΚΗΣΗ 1 o Ένα πακέτο ανώτερου επιπέδου τεμαχίζεται σε 10 πλαίσια, κάθε ένα από τα οποία έχει πιθανότητα 80 τοις εκατό να φτάσει χωρίς σφάλμα. Αν το πρωτόκολλο συνδέσου μετάδοσης δεδομένων

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Θετικών Επιστημών Τεχνολογίας Τηλεπικοινωνιών Τμήμα Επιστήμης και Τεχνολογίας Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ ΕΠΙΚΟΙΝΩΝΙΕΣ ΙI Εργαστήριο 8 ο : Προσαρμοσμένα Φίλτρα Βασική

Διαβάστε περισσότερα

ΕΑΠ/ΠΛΗ22/ΑΘΗ-4. 3 η ΟΣΣ

ΕΑΠ/ΠΛΗ22/ΑΘΗ-4. 3 η ΟΣΣ ΕΑΠ/ΠΛΗ22/ΑΘΗ-4 3 η ΟΣΣ 06.02.2016 Ν.Δημητρίου Σημείωση: Η παρουσίαση αυτή είναι συμπληρωματική της ύλης των βιβλίων (τόμος Β / μέρη Α,Β και τόμος Α ) καθώς και των 2 παρουσιάσεων στο study.eap.gr (PLH22_3rdOSS_2015_16,

Διαβάστε περισσότερα

Κεφάλαιο 3 Πολυπλεξία

Κεφάλαιο 3 Πολυπλεξία Κεφάλαιο 3 Πολυπλεξία Μάθημα 3.1: Μάθημα 3.2: Μάθημα 3.3: Πολυπλεξία επιμερισμού συχνότητας χρόνου Συγκριτική αξιολόγηση τεχνικών πολυπλεξίας Στατιστική πολυπλεξία Μετάδοση Δεδομένων Δίκτυα Υπολογιστών

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α)

ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α) ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ 4 ΠΑΛΜΟΚΩΔΙΚΗ ΔΙΑΜΟΡΦΩΣΗ - PCM (ΜΕΡΟΣ Α) 3.1. ΣΚΟΠΟΣ ΑΣΚΗΣΗΣ Σκοπός της εργαστηριακής αυτής άσκησης είναι η μελέτη της παλμοκωδικής διαμόρφωσης που χρησιμοποιείται στα σύγχρονα τηλεπικοινωνιακά

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Σχολή Οικονομίας Διοίκησης και Πληροφορικής Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΕΡΓΑΣΤΗΡΙΟ ΑΝΑΛΟΓΙΚΩΝ & ΨΗΦΙΑΚΩΝ ΕΠΙΚΟΙΝΩΝΙΩΝ Αρχές Τηλ/ων Συστημάτων Εργαστήριο 7 ο : Δειγματοληψία και Ανασύσταση Βασική

Διαβάστε περισσότερα

Συμπίεση Δεδομένων

Συμπίεση Δεδομένων Συμπίεση Δεδομένων 2014-2015 Κβάντιση Δρ. Ν. Π. Σγούρος 2 Αναλογικά Ψηφιακά Σήματα Αναλογικό Σήμα x t, t [t min, t max ], x [x min, x max ] Δειγματοληψία t n, x t x n, n = 1,, N Κβάντιση x n x(n) 3 Αλφάβητο

Διαβάστε περισσότερα

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission

Ψηφιακή μετάδοση στη βασική ζώνη. Baseband digital transmission Ψηφιακή μετάδοση στη βασική ζώνη Baseband digital transmission Ψηφιακά σήματα Το ψηφιακό σήμα δεν είναι τίποτε άλλο από μια διατεταγμένη σειρά συμβόλων παραγόμενη από μια διακριτή πηγή πληροφορίας Η πηγή

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο

ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/2013. ΘΕΜΑ 1 ο ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 01-013 ΜΑΘΗΜΑ / ΤΑΞΗ : ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ / Γ ΕΠΑΛ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 14/04/013 ΘΕΜΑ 1 ο 1) Να χαρακτηρίσετε τις προτάσεις που ακολουθούν, γράφοντας δίπλα στο γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας.

ΘΕΜΑ 1 ο. α. τα μήκη κύματος από 100m έως 50m ονομάζονται κύματα νύχτας και τα μήκη κύματος από 50m έως 10m ονομάζονται κύματα ημέρας. ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ ΕΠΑΛ (ΟΜΑΔΑ Α ) & ΜΑΘΗΜΑΤΩΝ ΕΙΔΙΚΟΤΗΤΑΣ ΕΠΑΛ (ΟΜΑΔΑ Β ) ΘΕΜΑ 1 ο ΤΕΤΑΡΤΗ 16/04/014 - ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΗΛΕΚΤΡΟΝΙΚΕΣ ΕΠΙΚΟΙΝΩΝΙΕΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6) ΑΠΑΝΤΗΣΕΙΣ 1) Να χαρακτηρίσετε

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 7 ΕΠΕΞΕΡΓΑΣΙΑ ΚΑΙ ΜΕΤΑΔΟΣΗ ΨΗΦΙΑΚΩΝ ΔΕΔΟΜΕΝΩΝ

ΚΕΦΑΛΑΙΟ 7 ΕΠΕΞΕΡΓΑΣΙΑ ΚΑΙ ΜΕΤΑΔΟΣΗ ΨΗΦΙΑΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΕΦΑΛΑΙΟ 7 ΕΠΕΞΕΡΓΑΣΙΑ ΚΑΙ ΜΕΤΑΔΟΣΗ ΨΗΦΙΑΚΩΝ ΔΕΔΟΜΕΝΩΝ 1 ΕΙΣΑΓΩΓΗ Ο πραγματικός κόσμος είναι ένας αναλογικός κόσμος. Όλα τα μεγέθη παίρνουν τιμές με άπειρη ακρίβεια. Π.χ. το ηλεκτρικό σήμα τάσης όπου κάθε

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης

Ψηφιακές Τηλεπικοινωνίες. Θεωρία Ρυθμού Παραμόρφωσης Ψηφιακές Τηλεπικοινωνίες Θεωρία Ρυθμού Παραμόρφωσης Θεωρία Ρυθμού-Παραμόρφωσης Θεώρημα Κωδικοποίησης Πηγής: αν έχω αρκετά μεγάλο μπλοκ δεδομένων, μπορώ να φτάσω κοντά στην εντροπία Πιθανά Προβλήματα: >

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 8 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

Συστήματα Επικοινωνιών ΙI

Συστήματα Επικοινωνιών ΙI + Διδάσκων: Δρ. Κ. Δεμέστιχας e-mail: cdemestichas@uowm.gr Συστήματα Επικοινωνιών ΙI Παλμοκωδική διαμόρφωση (PCM) I + Ιστοσελίδα nιστοσελίδα του μαθήματος: n https://eclass.uowm.gr/courses/icte302/ + Περιεχόμενα

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 5 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst215

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΛΟΠΟΝΝΗΣΟΥ ΤΜΗΜΑ ΕΠΙΣΤΗΜΗΣ & ΤΕΧΝΟΛΟΓΙΑΣ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ Κ 17 Επικοινωνίες ΙΙ Χειμερινό Εξάμηνο Διάλεξη 15 η Νικόλαος Χ. Σαγιάς Επίκουρος Καθηγητής Webpage: http://eclass.uop.gr/courses/tst15

Διαβάστε περισσότερα

Τηλεπικοινωνιακά Συστήματα Ι

Τηλεπικοινωνιακά Συστήματα Ι Τηλεπικοινωνιακά Συστήματα Ι Διάλεξη 12: Βασικές Αρχές και Έννοιες Ψηφιακών Επικοινωνιών Δρ. Μιχάλης Παρασκευάς Επίκουρος Καθηγητής 1 Ατζέντα 1. Παράγοντες που επηρεάζουν τη σχεδίαση τηλεπικοινωνιακών

Διαβάστε περισσότερα

«Επικοινωνίες δεδομένων»

«Επικοινωνίες δεδομένων» Εργασία στο μάθημα «Διδακτική της Πληροφορικής» με θέμα «Επικοινωνίες δεδομένων» Αθήνα, Φεβρουάριος 2011 Χρονολογική απεικόνιση της εξέλιξης των Τηλεπικοινωνιών Χρονολογική απεικόνιση της εξέλιξης των

Διαβάστε περισσότερα

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών

Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Εργαστήριο 4: Κυψελωτά Δίκτυα Κινητών Επικοινωνιών Τα κυψελωτά συστήματα εξασφαλίζουν ασύρματη κάλυψη σε μια γεωγραφική περιοχή η οποία διαιρείται σε τμήματα τα οποία είναι γνωστά ως κυψέλες (Εικόνα 1).

Διαβάστε περισσότερα

Επίκ. Καθηγητής. Θεωρία-Ασκήσεις: Παρασκευή 8:00-11:00. όροφος

Επίκ. Καθηγητής. Θεωρία-Ασκήσεις: Παρασκευή 8:00-11:00. όροφος Θεωρία-Ασκήσεις: Παρασκευή 8:00-11:00 E-mail: tsiftsis@teilam.gr URL: http://users.teilam.gr/~tsiftsis Γραφείο: Κτήριο Βιβλιοθήκης, 1 ος όροφος 1 Πηγές Μαθήματος 1. Βιβλίο: Γ. K. Καραγιαννίδης, Τηλεπικοινωνιακά

Διαβάστε περισσότερα

Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος

Ψηφιακές Τηλεπικοινωνίες. Διαμόρφωση Παλμών κατά Πλάτος Ψηφιακές Τηλεπικοινωνίες Διαμόρφωση Παλμών κατά Πλάτος Διαμόρφωση Παλμών κατά Πλάτος Είπαμε ότι κατά την ψηφιακή μετάδοση μέσα από αναλογικό κανάλι κάθε σύμβολο αντιστοιχίζεται σε μια κυματομορφή σήματος

Διαβάστε περισσότερα